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Impact dynamics of compound drops of fluids
with density contrast

Zhen Zhang1, Chun-Yu Zhang1, Hao-Ran Liu1 and Hang Ding1,†
1Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026,
PR China

(Received 10 August 2022; revised 21 March 2023; accepted 28 April 2023)

The dynamics of compound drops impacting on a flat substrate is numerically investigated
using a ternary-fluid diffuse-interface method, with the aim of assessing the effect of a
density difference between the inner and outer droplets (denoted by λ) on the evolution
of the interfaces. With the help of numerical simulations, we find that, at the intermediate
stage of drop impact, the inner droplet exhibits a self-similar deformation at λ = 1 and
relatively high Weber number, and experiences more or less a uniform acceleration for
various λ. In particular, the acceleration magnitude at λ /= 1 can be correlated with the
acceleration at λ = 1 and the Atwood number. When the inner droplet is denser than
the outer one, a lamella occurs at the spreading front of the inner droplet. We present
a scaling analysis of the thickness of the lamella, and the resultant theoretical prediction
is in good agreement with numerical results. At the maximal spreading of the compound
drop, a bulging structure is formed around the symmetry axis due to the presence of the
inner droplet, thereby effectively reducing the liquid supply to the spreading front and
leading to a decrease of maximal spreading ratio βmax as compared with a pure drop. We
proposed a corrected Weber number We∗

λ by taking account of the combined effects of λ,
volume fraction of the inner droplet, Weber number and morphology of the compound
drop. Integrating We∗

λ with the universal model of βmax for impacting pure drops, we
successfully build up a new model for predicting the maximal spreading ratio of impacting
compound drops with various λ.

Key words: drops, contact lines

1. Introduction

Impact of compound drops on a solid substrate can be widely seen in industrial processes,
such as ink-jet printing (Derby 2010; Wijshoff 2018; Lohse 2022), tissue construction
(Murphy & Atala 2014; Hendriks et al. 2015) and microcapsule collection in pharmacy
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Figure 1. A sketch of a compound drop impacting onto a horizontal substrate at a vertical velocity V . The
diameters of the outer and inner droplets of the compound drop are D and d, respectively. The simulations are
performed in cylindrical coordinates (r, z), with z = 0 being the substrate.

(Delcea, Mohwald & Skirtach 2011; De Cock et al. 2010; Liu et al. 2018a). In these
industrial processes, the compound drops consist of an outer (or shell) droplet and
one/multiple inner (or core) droplets, and the inner droplets are encapsulated by the outer
one. To optimize the processes requires us to gain insights into the impact dynamics of
compound drops, especially the deformation of the inner droplet and the spreading of
the whole compound drop at various impact conditions. Similar to impacting pure drops
(Yarin 2006; Josserand & Thoroddsen 2016), the dynamics of impacting compound drops
is affected by impact velocity V , surface tension γ , drop size D, wettability of the solid
wall and the material properties of the liquid. For compound drops, the differences in fluid
properties between the inner and outer droplets, e.g. the volume ratio (α), surface tension
ratio (η), viscosity ratio and density ratio (λ) of the inner droplet to the outer one, are also
expected to influence the flow features of drop impact. Therefore, the impact dynamics of
compound drops is much more complicated than that of pure drops. A schematic diagram
of compound drops impacting onto a substrate is shown in figure 1. Two dimensionless
parameters are usually used to describe the impact dynamics of compound drops, i.e. the
Weber number We (= ρ1V2D/σ13) and the Reynolds number Re (= ρ1VD/μ1), where ρ1
and μ1 are the density and viscosity of the shell liquid, respectively, and σ13 denotes the
surface tension coefficient between the shell fluid and surrounding air.

The presence of inner droplets gives rise to fascinating flow phenomena during the
impact processes. Gulyaev & Solonenko (2013) observed the occurrence of a counter-jet
rising vertically along the centre line of the drop in the experimental investigation of
hollow glycerin drops impacting onto a solid surface. Liu & Tran (2018) revealed in
experiments that the change of the volumetric oil ratio in compound drops consisting of
water and silicone oil might lead to the transition from spreading to splashing. Moreover,
they also reported the emergence of two spreading lamellae, which significantly affect
the overall spreading behaviour. Later, they further investigated the splashing dynamics
of impacting compound drops (Liu & Tran 2019). Blanken et al. (2020) experimentally
found that, for an impacting compound drop consisting of core water droplet and oil shell,
the core water droplet could rebound from the surface below a threshold impact velocity;
they attributed this phenomenon to the lubrication from the oil shell that prevents the
contact between the water core and the substrate. Zhang, Li & Thoroddsen (2020) reported
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the occurrence of fine radial jets near the substrate in the impact of a compound drop
containing a number of emulsion droplets. The formation of these radial jets results from
the local focusing of the outer liquid, which is forced into the narrowing wedge under each
internal droplet.

Numerical simulations have also been used to investigate the impact dynamics of
compound drops. Tasoglu et al. (2010) studied the deformation and spreading of compound
drops at relatively low We (∼0.5–10) and Re (∼15–45) using a front-tracking method, to
model the printing of droplet-encapsulated biological cells. Liu et al. (2018b) investigated
the maximal spreading ratio of impacting compound drops with equal density (i.e. λ = 1)
at moderate Reynolds and Weber numbers (Re = 1000 and 10 ≤ We ≤ 800), with a focus
on the effect of α and η. Based on the morphology of the compound drop at maximal
spreading, they identified two flow regimes, i.e. jammed spreading (at small α) and joint
rim formation (at relatively large α), which differ in that the inner droplet does not
participate in the rim formation of the compound drop in the former while it does in
the latter. A universal rescaling of impacting compound drops was then proposed with a
corrected Weber number that takes α, η and the flow regime into account. Wei & Thoraval
(2021) simulated the impact dynamics of an air-in-liquid compound drop with various α.
They observed that the addition of a bubble in the drop decreases its maximal spreading,
and attributed this to the decrease of the kinetic energy of the drop and the formation of
a vertical jet at its centre. A recent review on impacting compound drops can be found in
Blanken et al. (2021).

Despite of this research on compound drops impacting onto a flat substrate, the density
effect on the interaction between the inner and outer interfaces of the compound drops
remains unclear. Also, it is important in practice to understand how the density difference
between the inner and outer droplets affects the deformation and motion of the inner
droplet, and the overall spreading behaviour of whole compound drops.

In this paper, we numerically investigate the dynamics of compound drops impacting
onto a flat substrate, aiming to evaluate the effect of λ on the evolution of the interfaces. For
this purpose, we perform axisymmetric simulations using a ternary-fluid diffuse-interface
method, in the parameter space of We = 50–500, λ = 0.001–4, α = 0.027–0.216 and Re =
1000. We examine the temporal evolution of the inner and outer interfaces, and assess
the interaction between the inner and outer droplets at different stages of drop impact.
Based on the numerical results, we characterize the motion and deformation of the inner
droplet at various λ, and establish a new universal model for the maximal spreading ratio
of impacting compound drops.

2. Problem statement and methodology

2.1. Problem statement
We consider here the axisymmetric impact of a compound drop onto a rigid smooth
substrate, as shown in figure 1. The compound drop consists of two concentric droplets,
with diameters denoted by d (for the inner droplet) and D (for the outer droplet),
respectively. The density and viscosity of the fluids are defined as ρi and μi, where the
subscript i denotes the respective fluid (i = 1, 2 or 3). The surface tension coefficient
between fluid i and j is represented by σij. We assume that the compound drop is
made of liquids of low viscosity. For convenience of study, the following parameters
are fixed: Re = 1000, ρ3/ρ1 = 0.001, μ2/μ1 = 1, μ3/μ1 = 0.025 and the ratio of the
inner and outer interfacial tension coefficient σ12 = σ13. Then, we restrict our study to the
variation of We (or surface tension coefficients), density ratio λ = ρ2/ρ1 and volume ratio
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α = (d/D)3, with a focus on the effect of the density and size of the inner droplet on the
dynamics of impacting compound drops. To avoid very strong coupling between the inner
and outer interfaces from the very beginning of drop impact, we only consider relatively
small α, ranging from 0.027 to 0.216. Such a numerical set-up is relevant to real physical
conditions. For example, if water is taken as the shell fluid, Re = 1000 corresponds to
a millimetre-sized drop with impact velocity of O(1) m s−1. Accordingly, the gravity
effect is negligibly small compared with the acceleration encountered in the drop impact
(∼V2/D); for example, the Froude number Fr = V2/gD is of the order of 102, where g
is the gravitational acceleration. Unless stated otherwise, the diameter of the compound
droplet D is chosen as the unit length, the time is made dimensionless by the scale D/V
and the time t = 0 refers to the moment when the compound drop comes into contact with
the substrate.

In the present study, the core droplet hardly comes into contact with the solid surface
during the spreading of the compound drop, primarily owing to the lubrication effect
of the liquid film under it (Blanken et al. 2020). It should also be noted that there is
no splashing of the shell droplet in the range of parameters considered. Therefore, the
wetting dynamics is mainly determined by the contact angle θ13, i.e. the angle at which the
interface between fluids 1 and 3 intersects with the substrate. In particular, we consider a
superhydrophobic substrate with a fixed θ13(= 150◦), while θ12 and θ23 are set to 150◦ and
90◦, respectively. Given σ12, σ13, θ12, θ13 and θ23, the surface tension coefficient σ23 can
be uniquely determined (Zhang et al. 2016), specifically, here, σ23 = 2σ13.

A ternary-fluid diffuse-interface model is used to simulate the impact dynamics of
compound drops (Zhang et al. 2016). The same method has been used previously
to investigate the maximal spreading of impacting compound drops with λ = 1 (Liu
et al. 2018b), i.e. the shell and core liquids have the same density. In the method,
a cylindrical coordinate system (r, z) is adopted to simulate the flow dynamics in a
computational domain of 2D × 1.2D on a uniform Cartesian mesh. A no-slip condition
and the geometric moving contact line model are imposed at the substrate (z = 0), a
symmetry condition at r = 0 and a far-field boundary condition at the right and upper
boundaries. Initially, the compound drop is located above the substrate with a distance of
0.1D, and then descends with velocity of V , while the surrounding air is assumed to be
stationary.

2.2. Convergence study
We simulate the impact dynamics of a compound drop at We = 500, α = 0.064 and λ =
0.1, to check the convergence of the numerical results. Figure 2 shows snapshots of the
compound drop at the dimensionless time t = 0.5 on successively refined meshes, where
the mesh sizes are Δx = 0.004, 0.002 and 0.001. It is clear that the numerical results
converge with the mesh refinement, in terms of the drop shape. The numerical results
with Δx = 0.002 are nearly overlapping with those on the finest mesh Δx = 0.001. We
also examine the convergence of the maximal spreading ratio βmax, which is the diameter
ratio of the wetted area at the maximal spreading to the initial compound drop. Table 1
shows the variation of βmax for the different meshes, where the difference decreases with
mesh refinement. In particular, the relative error ε between the meshes Δx = 0.002 and
0.001 becomes rather small (ε = 0.24%). Therefore, a Cartesian mesh with mesh size of
Δx = 0.002 is used in the following studies.
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Figure 2. Convergence study with respect to the drop shape at the dimensionless time t = 0.5 with We = 500,
α = 0.064 and λ = 0.1. Different curves denote the numerical results with different mesh resolutions: Δx =
0.004 (dash-dot-dotted), 0.002 (dashed) and 0.001 (solid). The inset shows a zoomed-in view of the interface
near the bottom of the inner droplet.

Mesh size (Δx) βmax ε

0.004 3.1220 1.04 %
0.002 3.1471 0.24 %
0.001 3.1548

Table 1. Convergence study on successive refined meshes.

3. Results and discussion

3.1. Impact dynamics of compound drops
Figure 3 shows the snapshots of impacting compound drops with a fixed volume fraction
(α = 0.064) and Weber number (We = 500), but different density ratios (λ = 0.1, 1
and 4), where the results of a pure drop (α = 0) are included for a comparison of the
dynamic process. The dynamics of the impacting compound drops is shown in the three
supplementary movies available at https://doi.org/10.1017/jfm.2023.388. At the early stage
of drop impact (t ≤ 0.5), the outer interfaces of all the impacting compound drops have a
close resemblance to that of the pure drop. There is little interaction between the inner and
outer interfaces at this stage, primarily because the distance between the two interfaces
remains relatively large. By contrast, the effect of different λ can be clearly seen in the
movement of the inner droplets: the larger λ is, the lower the location the inner droplet
reaches. In addition, the inner droplet with λ = 0.1 has a concave bottom at t = 0.25,
while those with λ ≥ 1 have a convex one. At this stage, the inner and outer interfaces of
the impacting compound drops appear to evolve independently.

At the intermediate stage of drop impact (e.g. 0.5 < t ≤ 1), the downward motion of the
compound drop pushes the inner droplet further towards the substrate; at the same time,
the distance between the inner and outer interfaces is gradually shortened. As a result, the
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Figure 3. Snapshots of an impacting pure drop at We = 500 (a) and impacting compound drops at α = 0.064,
We = 500 and various density ratios λ: 0.1 (b), 1 (c) and 4 (d). The columns from left to right correspond to the
results at the time t = 0.25, 0.75 and tmax, where tmax denotes the moment when the drop reaches its maximal
spreading. In each column, the reference velocity vectors are the same and are shown at the upper-right corner
in (a). The numbers above the arrows indicate the values of the reference vector.

effect of λ becomes noticeable in this stage: an upward liquid counter-jet is induced at the
bottom of the light inner droplet (λ = 0.1), thereby hindering the descending of the outer
interface near the symmetry axis to some degree (see the second image of figure 3b). By
contrast, the dense inner droplet (λ = 4) apparently impacts onto the substrate (with no
formation of contact lines), and spreads over a thin film of fluid 1, with its front rolling
up (see the second image of figure 3d). At the intermediate stage, the deformation of the
inner droplet starts to affect the evolution of the outer interface.

At the late stage of drop impact, e.g. at the moment of maximal spreading tmax, the
maximal spreading ratio of the compound drop, βmax, depends on the value of λ. For the
case with λ = 0.1, the inner droplet is penetrated by the induced liquid counter-jet, and
evolves into a donut-like shape; subsequently, a recirculation zone occurs at the centre of
the compound drop. As a result, the supply of fluid 1 is restricted from the central region
to the front of spreading, thereby making its βmax smaller than the pure drop. By contrast,
such an effect of flow restriction is much weaker in the case with λ = 1. Therefore, the
compound drop with λ = 1 has almost the same βmax as the pure drop. For the case
with large λ(= 4), the liquid film beneath the inner droplet breaks up and forms a ring
on the substrate, while the rolling-up part of the inner droplet pinches off and expands
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Impact dynamics of compound drops of fluids

radially outwards. The dense inner droplet provides extra momentum to the spreading of
the compound drop, which is responsible for the larger βmax than that of the pure drop.

It is clear from the observation of numerical results above that the density contrast of
the compound drop plays an important role in the evolution of the inner droplet, which in
turn affects the maximal spreading ratio of the whole compound drop. In the following, we
will further investigate the dynamic behaviours of the inner interface with different λ (in
§ 3.2), and quantitatively assess the effect of the density contrast on the maximal spreading
ratio (in § 3.3).

3.2. Evolution of the inner interface

3.2.1. Uniform acceleration and self-similar interface evolution at λ = 1
In this section, we study the motion of the inner droplet at the early stage of drop impact
and interface evolution at the intermediate stage for compound drops with equal density
(λ = 1). The interface of an impacting drop can be represented by the vertical component
of its position vector z = h(r, t). To examine the motion of the inner droplet, we track
the vertical positions of its centroid (denoted by hC), as well as the top and bottom of
the inner droplet at the symmetry axis (denoted by hT and hB, respectively; see the first
image in figure 3c). The temporal evolutions of hT , hB and hC are shown in figure 4 for an
impacting compound drop at We = 500, α = 0.064, λ = 1 and various α (= 0.027, 0.064
and 0.125). We find that the inner droplet experiences a uniform acceleration a at the early
stage, in the sense that hC can be approximated by

h(0, t) = h(0, 0) − t + 1
2 a0t2, (3.1)

where h(0, 0) is the initial position and a0 = aD/V2 denotes the dimensionless
acceleration. Moreover, the trajectories of hC are the same for three different α (so as to
give a constant a0,C = 1.5 for 0 ≤ t ≤ 0.4 by data fitting), which suggests that the motion
of the inner droplet does not depend on α at the early stage of drop impact.

Interestingly, the time variations of hT and hB in figure 4(a–c) follow a manner very
similar to hC, and can also be described by (3.1). For example, in the case of α = 0.064,
we can obtain hT |t=0 = 0.7 and hB|t=0 = 0.3 from the initial set-up, and the acceleration
at the top of the inner droplet a0,T = 0.83 and that at the bottom a0,B = 3.5 by data fitting;
here, the duration of acceleration depends on the vertical location, and 0 ≤ t ≤ 0.5 at the
top and 0 ≤ t ≤ 0.2 at the bottom of the inner droplet. That is, the acceleration at the
bottom of the inner droplet is much higher than its top, which accounts for its gradual
flattening with time. The difference between a0,T and a0,B is found to increase with α,
e.g. a0,B = 4.8 and a0,T = 0.75 for α = 0.125 while a0,B = 2.8 and a0,T = 0.95 for α =
0.027. Such an acceleration process is not contradictory with zero acceleration at the drop
apex at the early stage of impact of pure drops (Eggers et al. 2010). Figure 4(d) shows
the trajectories of drop apex of the impacting compound drops for α = 0.027, 0.064 and
0.125. We can see that all the trajectories generally overlap and, moreover, have nearly zero
acceleration until t ≈ 0.2, at which time the pressure gradient arising from drop impact
starts to affect the drop apex; see e.g. figure 5.

The motion of the inner droplet is closely related to the pressure distribution inside
the compound drop. Figure 5 shows the pressure contours at the early stage of drop
impact (from t = 0.05 to 0.30), with λ = 1, We = 500 and α = 0.064. Firstly, once the
drop comes into contact with the substrate, we can see that a high pressure zone is
instantaneously established in the vicinity of the impact region, and the inner droplet is
immediately surrounded by vertical pressure gradients. After this, the high pressure zone
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Figure 4. Motion of the inner droplet in terms of time variation of hC, hT and hB, with We = 500, λ = 1 and
various α: (a) α = 0.064, (b) α = 0.027 and (c) α = 0.125. The dashed lines represent the prediction of (3.1),
and the solid lines correspond to the prediction of (3.5). (d) Evolution of the apex of the compound droplets,
where the dashed line represents the prediction of (3.1) with zero acceleration.

expands with the increase of the wetted area on the substrate, while the magnitude of the
highest pressure gradually decreases with time. In principle, at the early stage of drop
impact, the process of an impacting compound drop with high impact speed and equal
density and viscosity (i.e. λ = 1, μ2 = μ1, We � 1 and Re � 1), is similar to that of an
impacting pure drop, owing to the dominance of drop inertia over the surface tension of the
inner droplet. Consequently, the interface of the inner drop can be viewed as a flow tracer,
until the effect of its surface tension cannot be neglected anymore (e.g. when the curvatures
at the sides of the flattened inner droplet become high). This explains why the trajectories
of hC and the drop apex are independent of α. Secondly, the flow inside the compound
drop is decelerated vertically by the pressure gradients, and is then redirected near the
substrate to the spreading (see also figure 3). We note that the pressure gradient varies
with the vertical position. More precisely, the closer the position relative to the substrate,
the stronger the pressure gradient and, therefore, the larger the acceleration of the flow.
In addition, because the maximum pressure decreases with time, the pressure distribution
around the inner droplet does not significantly change with the droplet descending, leading
to the more or less uniform acceleration of the inner droplet. Thirdly, as the drop apex is
away from the substrate, it is hardly affected by the pressure gradient at the very beginning
of drop impact.
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Figure 5. Time variation of pressure contours (black thin lines) of an impacting compound drop (blue thick
lines) with We = 500, α = 0.064 and λ = 1.0 at times t = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30.

In the intermediate stage, the flow inside the drop is no more driven by the high pressure
induced by the impact, and can be approximated by an axisymmetric stagnation point flow
(Eggers et al. 2010). As a result, the shape evolution of an impacting pure drop would
enter a self-similar inertial regime thereafter (Eggers et al. 2010; Lagubeau et al. 2012;
Gordillo, Sun & Cheng 2018; Mitchell et al. 2019). Because the inner droplet is enclosed
by the outer liquid of the compound drop, the self-similar evolution of the inner interface is
supposed to start at the same time as the establishment of the stagnation point flow inside
the impacting compound drop.

If the flow in the compound drop evolves into stagnation point flow, it can be expressed
in the axisymmetric framework by

vr = r
τ

and vz = −2z
τ

, (3.2a,b)

where τ denotes the time of the stagnation point flow, vr and vz are the radial and vertical
velocity components, respectively. The subsequent interface evolution follows Dh/Dτ =
0, or

∂h
∂τ

+ vr
∂h
∂r

= vz. (3.3)

Equation (3.3) has the similarity solution

h(r, τ ) = 1
τ 2 H

( r
τ

)
, (3.4)

which is valid for any function H (Eggers et al. 2010). In other words, if the deformed
interface has a scale of l in the z direction, (3.4) suggests that its scale in the r direction
should be of the order of l−1/2.
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Figure 6. (a) The superimposed shapes of the inner droplet at different times at We = 500, λ = 1 and α =
0.064. (b) Illustration of self-similar evolution of the inner droplet, in which the droplet shapes are rescaled by
the self-similar length scales.

Eggers et al. (2010) reported that the stagnation point flow might start from t ≈ 0.5 for
an impacting pure drop. We check whether this is also true for the impacting compound
drop by examining the time variation of hT and hB. Note that τ is related to the physical
time t by τ = t + t0, in which t0 is a case-dependent constant. To determine t0 in a
specific flow problem, we need to take account of the condition of vz in (3.2a,b). From
the numerical results at t = 0.5, we get hT = 0.307 and vz = −0.52 at the top of the
inner interface, which suggests t0 = 0.680. In addition, we can also obtain hB = 0.092
and vz = −0.16 at the bottom of the inner interface at t = 0.5, which gives t0 = 0.644.
Because the two t0 only have a difference of 5 % in magnitude, it implies that the flow in
the compound drop at t = 0.5 is very close to stagnation point flow.

Suppose that the flow enters the regime of stagnation point flow at τ = τ0, it is easy to
obtain from (3.4) that the subsequent time variation of hT (and hB) should obey

h(0, τ )

h(0, τ0)
=

(τ0

τ

)2
. (3.5)

We plot in figure 4 the prediction of hC, hT and hB by (3.5), with τ0 = 0.5 + t0 and t0 =
0.662 (i.e. the averaged value of the two t0). We can see that the theoretical prediction
agrees well with the numerical results for t ∈ [0.5, 1]. Furthermore, it is also interesting
to see in figure 4(a) that the self-similar solution of hC can be extended to as early as
t = 0.24, while it is t = 0.16 for hB and t = 0.44 for hT . This observation suggests that the
lower part of flow enters the self-similar inertial regime at an earlier time.

Figure 6(a) shows the snapshots of the inner interface in the stagnation point flow
at We = 500, λ = 1 and α = 0.064 (specifically from time t = 0.5 to 0.9, with a time
interval of 0.1). To check whether the interface evolution is self-similar, we firstly choose
l = hT − hB as the characteristic length of the deformed inner droplet in the z direction.
If the inner interface undergoes self-similar evolution, it would have 1/

√
hT − hB as its

characteristic length in the r direction. Then, we rescale the corresponding droplet shapes
by the self-similar scales, i.e. (r

√
hT − hB, (z − hB)/(hT − hB)), and the results are shown

in figure 6(b). We can see that the inner interface at different times appears to overlap in
the self-similar coordinate, except the region near its spreading front. The deviation from
the self-similar solution at the spreading front is reasonably expected at the late times
(t = 0.8 and 0.9). Because the local curvature progressively increases with time (also see
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Figure 7. Evolution of hC at We = 500, α = 0.064 and various λ. The dashed lines correspond to the
prediction of (3.1) using the acceleration aλ calculated by (3.7).
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Figure 8. Pressure contours (lines with numbers) of impacting compound drops (thick lines) with We = 500,
α = 0.064 and various λ = 0.1, 1.0, 4.0 at time t = 0.15.

figure 6a), the effect of surface tension on the drop shape cannot be neglected at the late
times.

3.2.2. Density effect on the motion of inner droplet
In order to assess the effect of density ratio on the dynamics of the inner droplet, we
plot the time evolution of hC at We = 500, α = 0.064 and various λ(= 0.25, 0.5, 1, 2, 4)

in figure 7. We can see that, the lower the density of the inner droplet, the higher the
position of hC. This indicates that the inner droplets encounter different accelerations, of
which the magnitude increases monotonically with λ. The density difference also affect
the pressure distribution inside the compound drop. Figure 8 shows the pressure contours
of impacting compound drops at the early stage (more precisely, t = 0.15) with We =
500, α = 0.064 and various λ (= 0.1, 1.0, 4.0). We can see that the maximum pressure
increases with λ, because initial momentum of the inner droplet also increases with λ and
a denser droplet is harder to stop. Similar to the cases with λ = 1 in § 3.2.1, a uniform
acceleration process is expected for the inner droplet with λ /= 1 at the early stage of drop
impact. If so, the trajectory of the inner droplet can also be described by (3.1), by replacing
a0 by a λ-dependent acceleration aλ.
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Figure 9. Evolution of the vertical position of the centroid of the inner droplet (hC) at We = 500 and various
α (= 0.027, 0.064 and 0.125). In particular, λ = 0.25 in (a), and λ = 4 in (b). The dashed line corresponds to
the prediction of (3.1), with aλ calculated by (3.7). The inset shows the superimposed interfaces of the inner
droplets with different α.

Because for small α the inner and outer interfaces of the impacting compound drops
evolve independently at the early stage of impact, the motion of the inner droplet can
be modelled as a droplet subject to an impulsive acceleration a0 of the surrounding
fluid in an open space. Without loss of generality, we use the Atwood number A =
(ρ1 − ρ2)/(ρ1 + ρ2) = (1 − λ)/(1 + λ) to represent the effect of λ on the acceleration
aλ. A linear approximation of aλ as a function of A can be obtained by Taylor expansion
around A = 0 (or equivalently λ = 1),

aλ = a0 + ∂aλ
∂A

A + O(A2). (3.6)

At the early stage of drop impact, the buoyancy force and the effect of added mass play a
major role in the acceleration process (and both are a linear function of density), while the
viscous force exerted by the surrounding fluid can be neglected. It is reasonable to assume
that the quadratic term on the right-hand side of (3.6) is negligibly small.

To determine the value of (1/a0)(∂aλ/∂A), we check aλ/a0 under two extreme
conditions, i.e. A = −1 and 1 (corresponding to λ→ ∞ and λ→ 0, respectively). When
A → −1, it is straightforward to have aλ/a0 → 0. The case of A → 1 corresponds to
a gas bubble immersed in an accelerated dense liquid. We assume that the bubble is
more or less spherical, so that the added mass can be approximated by 1

2ρ1Ω , where
Ω denotes the volume of the bubble. Taking the added mass and the buoyancy force
(≈ ρ1Ωa0) into account, we can get aλ/a0 → 2 for A → 1. It is noteworthy that we obtain
(1/a0)(∂aλ/∂A) ≈ 1 from either A → −1 or A → 1. This fact is further confirmation that
the acceleration of the inner droplet at the early stage of drop impact theoretically follows

aλ = a0(1 + A). (3.7)

Equation (3.7) can be verified by comparing the prediction of hC by (3.1) against the
numerical results. Figure 9 shows the evolution of hC at We = 500 and various α (= 0.027,
0.064 and 0.125) and λ (= 0.25 and 4), along with the prediction of (3.1), in which
a0,C = 1.5 obtained from numerical results at λ = 1 is used to calculate aλ by (3.7).
It is interesting to see that the trajectories of hC for the three different α are virtually
overlapped at the early stage of impact, specifically t ≤ 0.25 for λ = 0.25 and t ≤ 0.35 for
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Figure 10. Snapshots of impacting compound droplets with α = 0.064, We = 500 and various λ. In particular,
(a) λ = 0.1, t = 0.25, (b) λ = 1, t = 1.25, (c) λ = 2, t = 0.9, (d) λ = 4, t = 0.6. The horizontal velocity
contour (left) and vorticity (right) are shown.

λ = 4. That is, the time variation of hC is not sensitive to α for relatively small α. Also,
the predictions are in good agreement with the numerical results in the respective range of
time, as expected.

3.2.3. Density effect on the inner droplet deformation at the immediate stage
At the intermediate stage of drop impact, the deformation of the inner droplets with λ < 1
is very different from that with λ > 1 (cf. the middle column in figure 3). For λ < 1, the
non-alignment of pressure and density gradients at the bottom of the inner droplet gives
rise to the baroclinic effect and the subsequent generation of vorticity at the interface
(cf. figure 10a). This phenomenon consequently enhances the ascending movement of
the bottom of the inner droplet. At a later time, an upward counter-jet is induced by the
vorticity, and breaks up the inner droplet (see the two right images in figure 3b). Such
a counter-jet has been experimentally observed in a wide range of Re and We after the
impact of hollow drops, and it could be so strong as to penetrate the whole compound
drop, especially with large impact velocity and α (Gulyaev & Solonenko 2013). When the
inner droplet with λ ≥ 1 is approaching the substrate, its deformation is characterized by
the formation and subsequent evolution of a lamella at the spreading front. Figure 10 shows
the snapshots of impacting drops at α = 0.064, We = 500 and various density contrasts
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Figure 11. (a) Variation of lamella thickness of the inner droplet (hl/D) as a function of We at α = 0.064 on
a log–log scale. (b) The lamella thickness as a function of λ(1 − A)2α−1/3We on a log–log scale, in which We
ranges from 50 to 500, λ from 1 to 4 and α from 0.027 to 0.125.

(λ = 1, 2 and 4). We notice that, with the increase of λ, the lamella becomes thinner and
thinner, probably accompanied by curling up.

Figure 11(a) shows the lamella thickness of the inner droplet (hl) as a function of We
for λ = 1, 1.5, 2 and 4. Here, hl is defined as the mean thickness of the lamella (over
a distance of 0.03 starting from the lamella front), which is measured at the moment
when the velocity of the inner droplet centroid approaches zero. Despite of the differences
between the results at various λ, the dimensionless lamella thickness hl/D is seen to have
a scaling of We−1/2 for the cases with the same λ. This observation is very similar to the
deformation of a pure drop after impacting onto a substrate, for which Clanet et al. (2004)
experimentally found that the dimensionless lamella thickness follows hl/D ∼ We−1/2.
Moreover, they attributed this to the balance between the surface tension and the vertical
deceleration of the drop (∼ V2/D). The balance gives rise to an effective capillary length
(∼

√
σD/(ρV2) = D We−1/2), which is nothing but the scale of the lamella thickness.

The idea of Clanet et al. (2004) is adopted here to analyse the lamella thickness of the
inner droplet. At the early stage of drop impact, the inner droplet experiences more or
less uniform acceleration a0(1 + A)V2/D, as indicated in (3.7). When the inner droplet
is approaching the substrate (at t ≈ 0.5), its vertical velocity approximately reduces to
Ui = V(1 − A)/2. Then, after a time scale of d/Ui, the vertical momentum of the inner
droplet is supposed to completely transform to its horizontal spreading. In other words,
the inner droplet encounters an acceleration of scale U2

i /d in the process of momentum
transformation. Therefore, from the balance between surface tension and drop acceleration
as in Clanet et al. (2004), the dimensionless lamella thickness of the inner droplet with
λ ≥ 1 should follow

hl

D
∼ [λ(1 − A)2α−1/3We]−1/2. (3.8)

Figure 11(b) shows hl vs λ(1 − A)2α−1/3We on a log–log scale with different λ and α.
The results roughly collapse onto a straight line, which corresponds to the theoretical
predictions in (3.8).

The rolling up of the lamella of the inner droplet is caused by a mechanism that is the
same as that of the ejected sheet in the impact of a pure drop (Riboux & Gordillo 2014).
This is a combined effect of the lubrication force exerted by the surrounding fluid near
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Figure 12. (a) Maximal spreading ratio βmax vs We with two fixed λ; specifically, λ = 0.25 (hollow symbols)
and 2 (filled symbols). Various values of α are considered, including α = 0.064 (), 0.125 (�) and 0.216 (�).
(b) Maximal spreading ratio βmax at We = 500 as a function of λ with different α. The horizontal dashed line
denotes the value for the pure drop (α = 0).

the lamella front, and the suction force due to the Bernoulli pressure acting on top of
the spreading lamella. Obviously, the mechanism becomes more significant for a thinner
lamella.

3.3. The maximal spreading ratio of compound drops
At the late stage of spreading of impacting compound drops, the interaction between the
inner and outer interfaces becomes more intensive (see e.g. the last column of figure 3), and
the presence of the inner droplet can affect the maximal spreading of the whole compound
drop. Liu et al. (2018b) identified two flow regimes, i.e. jammed spreading (at small α) and
joint rim formation (at large α). In particular, in the regime of jammed spreading, which
is closely related to the present study, the contribution of the initial kinetic energy of the
inner droplet to the spreading of the whole drop was found to decrease linearly with α. In
this section, we focus on the effect of the density variation of the inner droplet (represented
by λ) on the maximal spreading ratio βmax.

Figure 12(a) shows the variation of βmax as a function of We for different values
of α (0 ≤ α ≤ 0.216) and λ (= 0.25 and 2). We can see that at low λ(= 0.25), βmax
monotonically decreases with α for all Weber numbers; comparatively, βmax is less
sensitive to the change of α at relatively high λ(= 2). More results are shown in
figure 12(b), in terms of βmax vs λ. We can see that βmax generally increases with λ for the
same α and We.

To interpret these observations, we present the snapshots of the impacting compound
drops at maximal spreading at different relatively small λ (= 0.1 and 0.5) in figure 13
and relatively large λ (= 1.5) in figure 14. For the compound drops, the drop shape at
the maximal spreading is characterized by the upward bulging of the drop at its centre.
The bulging arises from the floating inner droplet, which could be flattened (cf. λ > 1 in
figure 14) or reshaped into a ’donut’ (cf. λ = 0.1 in figure 13). The size of the bulging
structure can be approximately measured by its height at the symmetry axis H and the
radius of the spreading front of the inner droplet Rb (see the first row in figure 13c).

For the cases with λ < 1, we can see that the lower the λ, the higher the H; in particular,
the deformed inner droplet holds more liquid than that at λ = 1 (figure 13), due to the
density effect on its motion (see details in § 3.2.2). This fact gives rise to a smaller
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Figure 13. Snapshots of compound drops at the maximal spreading at We = 500 and various α and λ.
Specifically, (a) α = 0.064, (b) α = 0.125 and (c) α = 0.216; λ = 0.1 in the top row, λ = 0.5 in the middle
row and λ = 1.0 in the bottom row. Here, H and Rb are the dimensionless height of the compound drop at the
symmetry axis and the dimensionless radius of the inner droplet, respectively. For comparison, the maximal
spreading diameters at λ = 1.0 are marked by the dashed lines.
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Figure 14. Snapshots of compound drops at the maximal spreading at fixed We (= 500) and λ (= 1.5) but
different α: 0.064 (a), 0.125 (b) and 0.216 (c). The dashed line denotes the maximal spreading diameter for
α = 0.216, i.e. the case in (c).

βmax at λ < 1 than at λ = 1, because a larger bulging structure would reduce the liquid
supply to the spreading front more significantly. Furthermore, the deformation of the inner
droplet with λ ≤ 1 can be measured by the relative significance of droplet inertia to surface
tension, i.e. ρ1V2d/σ12 = α1/3We. A larger α would lead to a more deformed inner droplet
(or larger Rb; see figure 13) at the same Weber number and subsequently a more noticeable
bulging structure. Therefore, the change of the bulging structure for λ < 1 accounts for the
monotonic decrease of βmax with α in figure 12. By contrast, for the cases with λ > 1, the
flattened inner drop is generally located in the vicinity of the substrate at the maximal
spreading, which is similar to that at λ = 1. Furthermore, H (≈ 0.06) is not sensitive to λ
for small values of α (see figure 14).
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To obtain the relation between βmax and λ for the impacting compound drops, we follow
the modelling strategy of Liu et al. (2018b); that is, to propose a corrected Weber number
We∗
λ by taking account of the density contrast, and use We∗

λ in the universal scaling for
impacting pure drops. In order to do so, it is crucial to assess how much of the initial
kinetic energy of compound drops would contribute to the spreading of the compound
drop. The initial kinetic energy of a compound drop can be expressed by ηiEk, where Ek =
πρ1D3V2/12 corresponds to the initial kinetic energy of the compound drop at λ = 1, and

ηi = 1 + α(λ− 1). (3.9)

For the impacting compound drops with λ = 1 in the regime of jammed spreading,
which occurs at small α, Liu et al. (2018b) found that the contribution of the kinetic energy
of the inner droplet decreases linearly with α. In particular, given σ12/σ13 = 1, their model
of the corrected Weber number ((3.3) in their paper) can be simplified to

We∗ = (1 − α)We. (3.10)

We can see in figure 3 that the descending inner droplet with λ > 1 is more capable
of draining away the fluid beneath it than that with λ = 1, thereby producing a similar
but slightly lower bulging structure. Despite of the possible difference in topology of the
inner droplet between λ = 1 and λ > 1, we assume that the effective contribution of the
kinetic energy with λ > 1 can also be approximated by (3.10). Combining (3.10) with the
correction of drop inertia by λ, i.e. (3.9), we can obtain the λ-corrected Weber number

We∗
λ = ηiWe∗ = (1 − α + αλ)(1 − α)We, for λ ≥ 1. (3.11)

Wang et al. (2022) recently proposed a universal model to predict βmax for impacting
pure drops in a wide range of Reynolds number (10 ≤ Re ≤ 10 000), Weber number (20 ≤
We ≤ 1000) and substrate wettability (30◦ ≤ θ ≤ 150◦), which gives

βmaxRe−1/5 = f (P)

2 + f (P)
, (3.12)

where f (P) = P1/4 + 10P1/2, and P = WeRe−4/5(1 − cos θ)−2. Substituting the corrected
Weber number in (3.11) into (3.12), we can expect to obtain a universal model of βmax for
impacting compound drops.

However, when using (3.11) for the cases with λ < 1, the numerical results are found
to be scattered below the theoretical prediction; by contrast, these with λ = 1 are well
predicted by the model; see figure 15(a). The particular bulging structure at λ < 1 is
probably responsible for the deviation from the theoretical prediction. Because of the
baroclinic effect at the bottom of the inner droplet and the induced counter-jet, the bulging
structure at λ < 1 is noticeably bigger than that at λ = 1 (cf. figure 13). This should be
taken into account in the estimate of We∗

λ, e.g. by introducing a correction of ηb

We∗
λ = (1 − α + αλ)(1 − α − ηb)We, for λ ≤ 1. (3.13)

Clearly, the correction ηb is dependent on α and λ. It is straightforward to get ηb → 0
when either λ→ 1 (compound drops with equal density) or α → 0 (pure drops). In such a
way, the effect of the additional blocked liquid vanishes in case of either compound drops
with λ = 1 or pure drops.

On the other hand, ηb should be proportional to the additional volume of liquid 1 held
in the bulging structure at λ < 1 relative to λ = 1. Figure 16(a) shows the variation of
the bulge size as a function of λ in terms of H and Rb for α = 0.064, 0.125 and 0.216.
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Figure 15. Value of βmax as a function of We∗
λ for the cases with λ ≤ 1: (a) without the correction ηb, and (b)

with the correction ηb. The numerical results consist of those with α = 0.216 and various λ (= 0.1, 0.5, 1) (�),
those with λ = 0.25 and various α (= 0.064, 0.125, 0.216) (♦) and those with λ = 0.001 (corresponding to the
hollow drops) and various α (= 0.064, 0.125, 0.216) (◦). The filled symbols indicate the numerical results with
λ = 1, and the solid curve represents the universal model of (3.12).
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Figure 16. (a) Variation of H (filled symbols and solid lines) and Rb (dashed lines and empty symbols) as a
function of λ at We = 500. (b) Variation of Vb|λ<1 − Vb|λ=1 as a function of α(1 − λ)2(1 − α) at We = 50
(filled symbols) and 500 (empty symbols); the solid line denotes Vb|λ<1 − Vb|λ=1 = 6α(1 − λ)2(1 − α). The
symbols represent numerical data at different α: 0.064 (), 0.125 (�) and 0.216 (�).

The plot indicates that H generally decreases with λ. Moreover, both H and Rb are not
sensitive to α when λ ≥ 0.5. For λ < 0.5, the increase of α leads to more significant
changes of Rb with λ, approximately 10 % at α = 0.064 and 25 % at α = 0.216. In the
present study, the volume of the bulging structure is approximated by Vb = 6R2

bH. As
shown in figure 16(b), Vb|λ<1 − Vb|λ=1 is found to be roughly proportional to α(1 −
λ)2(1 − α); in particular, the smaller the α, the better the proportionality. Therefore, ηb
is expected to have a form

ηb ∝ α(1 − λ)2(1 − α). (3.14)

The results with the ηb correction (by an approximation of ηb in (3.14) with a prefactor of
1) for λ < 1 are shown in figure 15(b). We can see that the numerical results gather around
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Figure 17. (a) Universal model of βmax of impacting drops using We∗
λ. The numerical results include symbols

pure drops (◦) and compound drops, and are represented by symbols. For the impacting compound drops, the
cases consist of those with λ = 0.25 and various α (= 0.064 (), 0.125 (�) and 0.216 (�)), those with λ = 2
and various α (= 0.064 (�), 0.125 (�) and 0.216 (�)), those with α = 0.216 and λ ranging from 0.1 to 2 (∗)
and those with λ = 0.001 and α ranging from 0.064 to 0.216 (•). The solid curve denotes the universal model
(3.12) with We∗

λ as the variable. (b) Rescaled βmax as a function of We∗
λ defined in (3.11). The symbols represent

the numerical results, which are the same as in (a); the solid curve denotes the theoretical prediction of Wei
& Thoraval (2021), in which the modified Reynolds number Re∗ = 0.83(1 − α2/3)Re and the fitting parameter
β0 = 1.2 were used.

the theoretical prediction now, and the maximal difference relative to the prediction of
(3.13) also reduces from 13 % (without the correction) to 6 % (with the correction).

It is noteworthy that the corrections of the Weber number in (3.11) and (3.13) are only
applicable to relatively small α (≤ 0.216 in the present study). We present all the numerical
results in figure 17(a) with respect to βmax vs We∗

λ. All the results appear to collapse onto
a single curve, which is in line with the prediction of (3.12). We find that this universal
model for pure drops can well represent the results for compound drops by using We∗

λ,
with a maximum relative difference of 6 %. Based on the numerical simulations, Wei &
Thoraval (2021) also proposed a model ((4) in their paper) for impacting hollow drops,
i.e. λ = 0.001. Figure 17(b) shows the comparison of the prediction of Wei & Thoraval’s
model against our numerical results. Note that we use We∗

λ = (1 − α)(1 − α + αλ)We in
their model instead of We∗

λ = (1 − α)2We in the original paper, in order to take account
of the density effect in drop inertia and get a better agreement. Because it was established
based on results for hollow drops, it is not surprising that the model agrees excellently
with our numerical results of hollow drops. However, the distribution of the other data is
more scattered compared with the present model in figure 17(a).

4. Conclusion

We have numerically studied the dynamics of impacting compound drops at moderate
Weber and Reynolds numbers using a ternary-fluid diffuse-interface method, with a focus
on how the density ratio λ between the inner and outer droplets affects the evolution
of the interfaces. We firstly examined the dynamic behaviour of the inner droplet at
different stages of drop impact. At the early stage, the inner droplet experiences more
or less a uniform acceleration, owing to the development of impact-induced pressure.
The magnitude of the acceleration at λ /= 1 (denoted by aλ) was then correlated with
the acceleration at λ = 1 (denoted by a0) and the Atwood number (A), specifically by

964 A34-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

38
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.388


Z. Zhang, C.-Y. Zhang, H.-R. Liu and H. Ding

aλ = a0(1 + A). At the intermediate stage, the shape evolution of the inner droplet at
λ = 1 followed a self-similar trend, which is closely related to the occurrence of stagnation
point flows inside the compound drop. For λ > 1, a lamella was found to form at the
spreading front of the inner droplet, similar to the deformation of a pure drop after
impacting onto a substrate. We theoretically analysed the thickness of the lamella hl, and
ended up with a scale of hl/D ∼ (λ(1 − A)2α−1/3We)−1/2, which agrees with numerical
results. Secondly, we investigated the effect of the density ratio on the maximal spreading
of the compound drop. A bulging structure is generally observed at the centre of the
compound drop due to the presence of the inner droplet, thereby effectively reducing the
liquid supply to the spreading front and leading to a decrease of βmax as compared with
a pure drop. In particular, the occurrence of a counter-jet at λ < 1 makes the bulging
structure much larger than that at λ ≥ 1. To obtain a universal expression of βmax for
impacting compound drops, we analysed the effect of λ on the contribution of the initial
kinetic energy to the drop spreading and the features of the bulging structure. Then,
we proposed a corrected Weber number We∗

λ by taking account of the combined effects
of λ, α, We and the morphology of the compound drop. Replacing We by We∗

λ in the
universal model for impacting pure drops, we successfully obtained a good prediction of
the maximal spreading ratio for compound drops with liquids of different densities.

In the present study, we considered a fixed θ13 = 150◦. Similarly to the impact dynamics
of pure drops (Wang et al. 2022), the substrate wettability (represented by θ13 here) is
supposed to affect the maximal spreading of compound drops too. In addition, as the
substrate is essentially superhydrophobic, the compound droplet would retract after the
maximal spreading happens. The effect of wettability and the retraction dynamics is
beyond the scope of the present study and would be the topic of our future research.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.388.
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