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Abstract. Let G be a connected Lie group and let F be a lattice in G (not necessarily
co-compact). We show that if («,) is a unipotent one-parameter subgroup of G then
every ergodic invariant (locally finite) measure of the action of («,) on G/Y is finite.
For 'arithmetic lattices' this was proved in [2]. The present generalization is obtained
by studying the 'frequency of visiting compact subsets' for unbounded orbits of
such flows in the special case where G is a connected semi-simple Lie group of
R-rank 1 and Y is any (not necessarily arithmetic) lattice in G.

0. Introduction
Let G be a connected Lie group and Y be a lattice in G; that is, G/Y admits a
finite G-invariant (Borel) measure. Let («,),eH be a one-parameter subgroup consist-
ing of unipotent elements (that is, each Ad u, is a unipotent linear transformation
of the Lie algebra of G). The action of such a one-parameter group on G/Y (on
the left) is dubbed a unipotent flow.

In the particular case when G = SL (n, R) and Y = SL («, Z) it was proved by
Margulis [6] that for any xeG/Y the positive semi-orbit {u,x\ t >0} of a unipotent
flow does not tend to infinity; that is, there exists a compact set K, depending on
x, such that the set

is unbounded. In [2] the present author strengthened this assertion by proving that
for a suitable compact set K the set EK(x) is of positive density; that is,

lim inf ^/(£*(*) n [0 , r ] )>0 , (0.1)

where / is the usual Haar measure on R. Further as an application of this it was
deduced that every locally finite ergodic invariant measure of a unipotent flow, and
more generally of the action of any subgroup consisting only of unipotent elements,
is finite.

Using certain standard facts about arithmetic subgroups the above results can
easily be generalized to the situation where G is any connected Lie group and Y is
an arithmetic lattice in G (cf. [2] for details). In [3], where the above finiteness
assertion was used crucially in the classification of invariant measures of maximal

https://doi.org/10.1017/S0143385700002248 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002248


26 S. G. Dani

horospherical flows, the author raised the question of whether the results hold also
for non-arithmetic lattices. The purpose of this note is to show that that is indeed
the case (cf. theorem 4.1).

As a knowledgable reader would recognize, in view of Margulis's arithmeticity
theorem the above question reduces to its special case where G is a simple Lie
group of R-rank 1. In the present article we shall in fact prove that for any lattice
in a simple Lie group of R-rank 1 we can demonstrate an even stronger version of
(0.1), where the right hand side is replaced by 1 - e, e > 0 and that the compact set
could be chosen to be the same for all unbounded orbits. There are of course,
bounded orbits lying outside any given compact set. For these (0.1) holds anyway
with the closure as the compact set in question. Specifically we have the following:

(0.2) THEOREM. Let G be a connected semisimple Lie group of U-rank 1 and Y be a
lattice in G. Let (u,),6R be a unipotent one-parameter subgroup of G. Then given e > 0
there exists a compact subset C ofG/ Y such that for any xeG/Y whose orbit {u,x\ t e U}
is not bounded (i.e. relatively compact) in G/Y we have

limjnf — Xc(u,x) dt>l-e,

Xc being the characteristic function of C on G/T.

The method of proof is fundamentally different and in some ways more natural
than in [2]. However unfortunately it seems to work only for R-rank 1 groups. It
may be noted that the method is reminiscent of [4], where it was proved that for
G = SL (2, R) any non-periodic orbit of a unipotent flow as above is in fact uniformly
distributed with respect to the G-invariant measure.

Combining theorem 0.2 with the results of [2] and arguing as in the latter it is
easy to deduce the following, (cf. theorem 4.3).

(0.3) THEOREM. Let G be a connected Lie group and let T be a lattice in G. Let U be
a subgroup of G consisting only of unipotent elements. Then any locally finite ergodic
U-invariant measure on G/Y is finite.

Acknowledgement. It is a pleasure to thank John Smillie, some of whose ideas, learnt
by the author while collaborating on [4] turned out to be very useful in proving
theorem 0.2.

1. Preliminaries and notation
Let G be a connected semisimple Lie group of R-rank 1; that is, any maximal vector
subgroup whose adjoint action on the Lie algebra of G is (simultaneously)
diagonalizable over R is one-dimensional. Let # be the Lie algebra of G and let A
be a one-parameter subgroup whose adjoint action on g is diagonalizable over R.
Let Z be the centralizer of A, the subgroup consisting of all elements which commute
with each element of A. Let $ be the Lie subalgebra associated to Z. There exists
a unique character a:A-*U+ such that
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where

i = ± l ,±2 ,

and p±l are positive dimensional. We note that p±2
 m a v be trivial. For any s > 0 put

As = {ae A\a(a)<s}.

Let N be the analytic subgroup corresponding to #x + p2 (the latter is indeed a Lie
subalgebra of #). It then follows easily that every element of Z normalizes N. Put
P = ZN. Then P is a minimal parabolic subgroup of G. In what follows we shall
also fix a maximal compact subgroup K of G. For any s > 0 and any compact subset
rjofJV let

Now let F be a non-uniform lattice in G; that is, F is a discrete subgroup such that
G/Y is non-compact but admits a finite G-invariant measure. We need the following
result due to Garland and Raghunathan (cf. [5, theorems 0.6 and 0.7]).

(1.1) THEOREM. Let the notation be as above. There exists so>0, a compact subset
r)0 of N and a finite subset 1 of G such that the following assertions hold:

(i) G = il(so,Vo)lY.
(ii) For all a el., F n o~~x No- is a (cocompact) lattice in <x~' No:

(iii) For all compact subsets 17 of N the set

is finite.
(iv) Given a compact subset -n of N containing TJ0, there exists s, € (0, s0) such that

whenever a, T G 2 are such that fl(s0, •»j)o"ynft(sI, T;)T is non-empty for some y then
a=T and o-yo-~' e(KnZ)- N<= p.

In view of assertion (ii) above, there exists a compact subset 77 of N containing %
such that 7)o-(cr~l No- n F) = Mr for all a el.. In what follows we shall fix such a set
r) and s{ e (0, s0) so that assertion (iv) in the theorem is satisfied for the set 17. For
a el. and s < s0 put

In view of assertion (i) in the theorem, for any s<s0 the complement of Uo-e2 X(o~, s)
in G/T is compact. Since 1 is finite this means that in order to prove theorem 0.2
it is enough to prove the following:

(1.2) PROPOSITION. Let the notation be as above. Let (u,) be a unipotent one-parameter
subgroup of G. Let a el and e > 0 be given. Then there exists s>0 such that for any
xe G/Y either {u,x\teU} is bounded in G/Y or

1 fT

lim sup — Xs(utx) dt < e,
T-.00 1 Jo

where \s is the characteristic function of X{a, s) in G/Y.

The proof of the proposition will be completed in § 3. As is now justified, along
with the data as in theorem 0.2 we shall henceforth assume o-eStobe given.
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Now let L be the connected component of the identity in <r~'(K nZ) • No: Then
L is a normal subgroup of a'1 Pa of codimension 1. In view of assertion (ii) of
theorem 1.1, LnF is a lattice in L.

(1.3) Remark. For any s>0 , KAs7)a(Lr\T) = KAsaL.

Proof. Since CT~XT)<J<^ o-~l No-a L we get

KAsr)O-(L n T) <= /L4jO-L.

On the other hand aLa~' <=(KnZ) • N and No-a T)O-{LC\Y), the latter by choice
of T). Thus

X nZ)No-= KAsNa <= /C4s7/o-(Ln T). D

2. A representation
We now define a representation p of G as follows. Let / be the dimension of L and
let V = A '9 , the /th exterior power of 9 (as a vector space). The subalgebra associated
to L determines a one-dimensional subspace of V. Let v be any non-zero vector in
this subspace. Let p be the /th exterior power of the adjoint representation of G
on p. Since L is normal in a~xPo- there exists a homomorphism 0:o-~]Pa-*U* such
that p(x)v = 6(x)v for all xeo-''Pa. It is easy to verify that 6(x)= 1 for all xe L.
Evidently the vector p(o-)v is a highest weight vector of the representation p with
respect to the minimal parabolic subgroup P, and the corresponding weight character
on A is given by a >-* 0{a~xaa). Therefore there exists q > 0 (actually a half-integer)
such that for all a e A,

6(o-'laa)=a(a)q. (2.1)

In what follows let (,) be a p(K)-invariant inner product on V and let || • || be the
corresponding norm. For any S > 0 let Bs be the open ball (with respect to the norm
|| • ||) in V with centre at 0 and radius S. Also for any s > 0 let

8(j) = *'||p(<r)»||,

where q > 0 is as in (2.1). In particular S is a monotonically increasing function on
R+ and 5(s)-»0 as s->0.

(2.2) LEMMA. For any s > 0,

KAscrL = {geG\p(g)veBHs)}.

Proof. Let g = kaat;, where k e K, aeAs and £ e L. Then

| = II P(k)p(a)p(o-)p(t)v\\ = || p(a)p(o-)v\\

<s<\\p(cr)v\\ =

Therefore p(g)ve BSis). Conversely let geG be such that p(g)ve BS{S). By the
Iwasawa decomposition there exists k e K, aeA and n e N such that go-~] = kan.
Since JV<= o~La~\ n may be expressed as cr^a'\ where f s L Thus g = fcacrf, where
fee/C, a e A and f e L . Since p(g)t;eBS ( s ) and BHs) is p(K)-invariant using (2.1)
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we deduce that
a(a)qp(<r)v = 6{a~l aa)p(a)v = p(a)p(cr)v

= p(a)p(o-)p(£)veBS(s).
Therefore

o(a)«||p(cr)o||<«(s) = s»||p(tr)B||.
Hence a(a) < s, or in other words a e As. Thus g = fca<r£ e KAsaL, which proves the
lemma. •

(2.3) COROLLARY. Let geG. Then gF e X(a, s) if and only if there exists yeT such
that p(gy)v e Bs, where S = 8(s). Furthermore, ifs < s, and y, and y2 in F are such
that p(gy,)v e B«, i = 1,2 then

Proof. If gPeX((r, s) then by the definition of X(<r, s) there exists ye F such that

gy 6 ft(s, 17)0- = AL4S77C7- <= KAsaL.

Then by lemma 2.2, p(gy)v G B5. Conversely suppose that p(gy)ve Bs for some y e F.
Then by lemma 2.2 and remark 1.3, gye KAso-L<=- KAsr\o-Y. Hence gTeX(o; s).

Next suppose s s j , and yu y2 e F are such that p(g"y,)u G BS, I = 1,2. Then as above

gyt G KAso-L <= /C4s77tr(L n F).

That is, there exist TT,, 7r2e L n F such that

geil(s, ^aiTty^nilis, rOo-rt^.

By assertion (iv) in theorem 1.1 this implies that

y^y2eo--\KnZ)- Mr.

But L is of finite index in <T~\K n Z) • Mr. Hence (rl"1^)'' s L, where /> is the index
in question. By an earlier remark we get that

which implies that 0(yx) = ±B(y2) and in turn that

)v= ±p(gy2)v. •

As a consequence of corollary 2.3 there exists a well-defined function q>: X(a, s,)-» U+

defined by ^>(gF)= || pCgoOw||2» where y e F is any element such that p(gy)t;G BS(S|),
(such a y exists and the value is independent of which one we choose). The crucial
point is that if (u,),eR is as in the theorem then ^(u,gF), which is defined for t in
various intervals, is a polynomial function in / over each of the intervals and the
degree of the polynomial is bounded independently of g and the interval. This
follows from the following two lemmas.

(2.4) LEMMA. Let x = gFG G/F, and 0 < s < s , . Let (a, b) be an interval in U, where
aeU but b may possibly be 00, and suppose that u,x G X(a, s) for all t e (a, b). Then
there exists y e F such that

for all t G (a, b), (y being independent oft). A similar assertion holds for closed intervals.
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Proof. Since X(<r, s{) contains a neighbourhood of the closure of X(cr, s) we have
uax€X(cr, s,). By corollary 2.3 we can choose y such that

\\p(uagy)v\\<S(Si).

We prove the assertion in the lemma for this y. Since uaxeX{o-, s') if and only if
s < s', the second part of that Corollary implies that in fact || p(uagy)v\\ = 8(s). Now
let t be the smallest value >a such that

II p(u,gy)\\=kW + «(*!»;
choose t = oo if no such finite value exists. Again, by corollary 2.3 this implies that
u,gT does not belong to the closure of X(a, s). Hence I> b. In particular, || p(M,gy)|| <
5(s,) for all te(a, b). This implies that the lemma is true for open intervals and a
similar argument works for closed intervals. •

(2.5) LEMMA. Let ge G. Then || p(u,g)v\\2 is a polynomial in t whose degree is at most
twice the dimension of V. Further, there exists C > 0 such that \\ p(u,g)v\\2< C for all
t>0 if and only if p(u,g)v = v for all teU.

Proof. Since (M,) is a unipotent one-parameter subgroup, p(w,) is also a one-parameter
group of unipotent linear transformations of V. By Jordan canonical form the
co-ordinates of p(u,)p(g)v with respect to any basis of V are polynomials in / of
degree at most dim V, the dimension of V. Choosing the basis to be an orthonormal
basis with respect to the inner product corresponding to the norm || • || we see that
|| p(u,g)v\\2 is a polynomial in t of degree at most 2 dim V. The second part follows
from the fact that the polynomials, corresponding to the coordinates, cannot be
bounded over the whole of U+ unless they are constant. D

The next result shows what distinguishes the unbounded orbits in G/T.

(2.6) COROLLARY. Let x = gFe G/T be such that the (u,)-orbit of x is not bounded
in G/T. Then for any 0< s < 5, and aeU the set

E={t>a\u,xeX(cr,s)}

is a proper subset of (a, oo).

Proof. Suppose E = (a, oo). By lemma 2.4 there exists y e T such that

(p(u,x) = || p(«,gy)»||2 < S(s,)2 for all t e (a, oo).

By lemma 2.5 this implies that p(u,gy)v = v for all teU. By the definition of p,
firstly this implies that for all teU, u,gy normalizes L. But o-~'Per is a maximal
subgroup of G normalizing L and hence u,gy must belong to cr"1 Per. But then we
must also have d(u,gy) = 1 and hence

u,gyeo-~l(KnZ)-No- forallfeR.

But in view of assertion (ii) of theorem 1.1, o-~'(KnZ) • NcrT/T is a compact
subset of G/T, which implies that the (w,)-orbit of x is bounded, thus proving
the lemma. •

In what follows we shall need the following simple result on the behaviour of
non-negative polynomials.
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(2.7) LEMMA. Let neN, c > 0 and r> 1 be given. Then there exists (3 e (0, c) such that
the following holds: iffis any non-negative polynomial of degree at most n such that
/(0)=c, and f(t)< c for all t e[0,1] then there exists f e(l , r) SMC/J thatf(t)>(3.

Proof. The space of non-negative polynomials of degree at most n which are bounded
over a closed interval is a compact space (under the topology of uniform convergence
on compact sets). Now suppose that the lemma is false. Then for all large j e N there
exists a non-negative polynomial fi of degree s n such that fj(O) = c and fj(t) < c for
all f e[0, 1], andyj(<)=£ 1/j for all te(l,r). By compactness, there exists a polynomial
/ which is a limit point of {£}. But then we must have /(0) = c and also f(t) = 0 for
all f e(l , r). This is a contradiction. •

3. Proof of proposition 1.2
In the proof we shall use the following constants. Let M G N be such that n/2 is the
dimension of V. Let 5e(0, s,) and c = 5(S)2. Let r> 1 be such that n ( r - l ) < e ,
where e > 0 is as in the statement of the proposition. Let /3 e (0, c) be such that the
contention of lemma 2.7 holds for the above values of n, c and r. Finally let 5 € (0, S)
be such that /? = S(s)2. We shall show that the proposition holds for this value of s.

Let x = gY be an arbitrarily chosen element whose (w,)-orbit is unbounded. Put

E0 = {t>0\u,xeX(o-,S)}
and

El={t>0\ulx€X((r,s)}.

Then Eo and £, are open subsets of R+. Further in view of corollary 2.6 they are
unions of bounded open intervals (possibly empty-but that does not make any
difference). Let (a, b) be one of the connected components of Eo such that a > 0.
We shall prove that for all Te[a, b]

l(E,n[a, r ] ) < e ( r - a ) = /(£on[a, T]) (3.1)

where / is the usual Lebesgue measure on R.
Let <p:X(o; 5,)-*R+ be the function defined following corollary 2.3. By lemma

2.4 there exists y € F such that for all / € [a, b]

Arguing as in the proof of lemma 2.4 we see that

Similarly if t e [a, b] is an endpoint of any connected component of Ex n [a, b] then
2 2 (3.2)

Since the left hand side of (3.2) is a polynomial (cf. lemma 2.5) in t of degree at
most n (twice the dimension of V) there are at most n such endpoints (and fewer
intervals). Note also that in view of the above, neither a nor b is such an endpoint.
Let tu t2,..., tp e (a, b) where f, < t2 • • • < tp is such that each f, is an endpoint of a
connected component of Et n [a, b] but not a common endpoint of two such
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successive intervals. Then p is an even number s n and
P/2

(3.3)

where / is a finite subset of [a, b], each element of which is a common endpoint
of successive intervals in £, and hence satisfies (3.2).

For each of i = 1,2,..., p/2 define a non-negative polynomial / by

fM=\\P(uvMgy)v\\\

where v{ is the affine transformation of R defined by

Let i be an index between 1 and p/2. Then/ is a non-negative polynomial of degree
<n such that/(O) = c and ft(t)<c for all re[0,1]. Therefore by lemma 2.7 there
exists t e(l, r) such that /(f)> 0. On the other hand by (3.3) we find that for all
re(l , vj\t2i)), v,(t)eE\vJ and consequently/(0^/3. Therefore vj'(t2i)<r. Thus
'2i< I'r(r) = ('2i-i - a ) r + a. Equivalently

(t2i-t2i^)<(t2i.t-a)(r-l), i=l,2,...,p/2. (3.4)

We shall now prove (3.1). For simplicity of presentation let us also put to = a and
tp+i = b. Let Te[a, b] and let j be the largest integer =£p/2 such that T> t2j. Let *
be the characteristic function on [a, b] of the half open interval (t2j+,, b]. Then by
(3.3) and (3.4) we have

l(Ein[a,T])= £ (t2l-t2l

= ( T - a ) ( r -

since./+;r(T)<ps n and n( r - l)<e. This proves (3.1).
Now let T > 0 be arbitrary. Let $ be the family of connected components / of

Eo such that / <= (0, T) and 0 or T is not an endpoint of I. Let /<, = [0, b0) be the
connected component of Eo^j{0} containing 0. Let /, be the connected component
EQ^J {T} containing T. Evidently for T> b0, {I e $}, Io and /, n [0, T] together form
a partition of Eor\ [0, T]. We then have for T> b0,

/(£, n [0, T]) = I /(£, n /) + /(£, n 70) + /(£, n 7, n [0, 7])

(3-5)
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Observe that if x* is the characteristic function of X(cr, s) on G/T then for any T,
•T

i:Jo

Therefore, noting that b0 is a constant (independent of T) we deduce from (3.5) that
1 [T 1

hm sup — Xs(u,x) dt = hm sup — /(£, n [0, T]) < e.
7"-»oo ' J o T - > o o 1

This completes the proof of proposition 1.2 and in turn of theorem 0.2. •

4. Conclusions
Combining theorem 0.2 with the results of [2] we can deduce the following theorems.

(4.1) THEOREM. Let G be a connected Lie group and T be a lattice in G. Let (u,) be
a unipotent one-parameter subgroup ofG. Then for any x e G/T there exists a compact
subset C such that

1 fT
lim inf— Xc(uix) dt > 0,

where Xc denotes the characteristic function of C on G/T.

Proof. There exists a unique minimum closed normal subgroup M of G such that
G/M is a semisimple Lie group with trivial centre and without compact factors.
Further MT is a closed subgroup and the natural quotient map G/F-»G/MF is
proper (cf. [1, lemma 9.1]). Therefore replacing G by G/M if necessary (and F by
MT/M) we may assume G itself to be a semisimple Lie group with trivial centre
and without compact factors. Then there exist (closed) normal subgroups
G,, G2, . . . , Gr of G such that G = G, • G2... • Gr (direct product) and for each
i = l,2, . . . , r , r, = G,nF is an irreducible lattice in G, (cf. [7]). Evidently
F' = r , F 2 . . . Fr is a subgroup of finite index in F and hence in proving the theorem
we may without loss of generality assume it to be the whole. The theorem would
therefore follow if we prove it for each of Gt and F, in the place of G and F. In
other words we may assume F to be an ireducible lattice.

The contention of the theorem is obvious if G/T is compact and on the other
hand it follows from theorem 0.2 if the R-rank of G is 1. If neither of these holds
then by Margulis's arithmeticity theorem F is an arithmetic lattice in G (in the sense
of [7, § 10]) and therefore the theorem follows from theorem 2.10 of [2] and
proposition 10.15 of [7].

(4.2) Remark. An assertion analogous to theorem 4.1 for a cyclic subgroup generated
by a unipotent element can easily be deduced from the former.

(4.3) THEOREM. Let G be a Lie group and T be a lattice in G. Let U be a subgroup
ofG consisting only of unipotent elements. Let nbea locally finite U-invariant measure
on G/T. Then there exist measurable U-invariant subsets Xh i e M, such that TT(X,) < oo
for all i and G/T = U^=i -X,-- In particular every locally finite ergodic U-invariant
measure is finite.

Proof. This can be deduced from theorem 4.1 and the individual ergodic theorem
following almost verbatim the proof of theorem 3.3 in [2]. We omit the details. •
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