
RESEARCH ARTICLE

Data-driven optimization of a gas turbine combustor: A
Bayesian approach addressing NOx emissions, lean extinction
limits, and thermoacoustic stability

Johann Moritz Reumschüssel1 , Jakob G. R. von Saldern2, Bernhard Ćosić3 and
Christian Oliver Paschereit1

1Chair of Fluid Dynamics, TU Berlin, Müller-Breslau-Straße 8, 10623 Berlin, Germany
2Laboratory for Flow Instabilities and Dynamics, TU Berlin, Müller-Breslau-Straße 8, 10623 Berlin, Germany
3MAN Energy Solutions SE, Steinbrinkstraße 1, 46145 Oberhausen, Germany
Corresponding author: Johann Moritz Reumschüssel; Email: reumschuessel@tu-berlin.de

Received: 06 March 2024; Revised: 22 June 2024; Accepted: 22 July 2024

Keywords: Bayesian statistics; data-driven optimization; emission reduction; gas turbine combustion; surrogate modeling;
thermoacoustics

Abstract

The design of gas turbine combustors for optimal operation at different power ratings is a multifaceted engineering
task, as it requires the consideration of several objectives that must be evaluated under different test conditions.
We address this challenge by presenting a data-driven approach that uses multiple probabilistic surrogate models
derived from Gaussian process regression to automatically select optimal combustor designs from a large parameter
space, requiring only a few experimental data points. We present two strategies for surrogate model training that differ
in terms of required experimental and computational efforts. Depending on themeasurement time and cost for a target,
one of the strategies may be preferred. We apply the methodology to train three surrogate models under operating
conditions where the corresponding design objectives are critical: reduction of NOx emissions, prevention of lean
flame extinction, and mitigation of thermoacoustic oscillations. Once trained, the models can be flexibly used for
different forms of a posteriori design optimization, as we demonstrate in this study.

Impact statement

The development of gas turbine combustors for safe, stable, and low-emission operation under various load
conditions is a highly challenging engineering task that requires extensive testing and is usually approached
through iterative trial-and-error procedures. We present a data-driven approach based on multiple probabilistic
surrogate models that automatically selects optimal burner designs from a large parameter space, requiring only a
few experimental data points. We show how different criteria that require separate measurements can be
considered in the automated routine, and thus the design process can be rendered significantly more efficient.
The proposed approach is particularly suitable for the design of gas turbine burners for operational flexibility but
can also be adapted to other costly design processes.

1. Introduction

The design of gas turbine (GT) combustors is a multifaceted challenge characterized by stringent
requirements for emission control, flame anchoring, and thermoacoustic stability. Employing lean premix
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combustion in modern GTs effectively minimizes the emissions, yet it presents challenges for flame
stabilization. Typically, combustors are engineered to a full-load operating point, where aerodynamic
flame stabilization is achieved within the flow field. However, one of the main strengths of gas turbines
lies in their exceptional load flexibility, that is, the ability to adapt their power output to meet changing
demands. The part-load operation is realized by reducing the fuel flow, which reduces the heat output of
the flame. The associated changes in local stoichiometry, pressure, and the flow field result in the variation
of flame speed, bearing the risk of lean blowout, or extinction (Lieuwen, 2012). Furthermore, the flame’s
susceptibility to acoustic perturbations varies with the operating parameters, potentially leading to
thermoacoustic instability (Krebs et al., 2002; Poinsot, 2017; Beuth et al., 2023). To enable part-load
operation, most technical combustion systems use multiple injection stages to adapt to changing
conditions (Janus et al., 2014; Krebs et al., 2022; Pennell et al., 2023). Although each additional fuel
line enhances operational flexibility, it inevitably increases system complexity. To fully exploit the
capability of operational flexibility, combustor design must take into account the complexities of varying
operating conditions, which further complicates the engineering process. Addressing diverse load
conditions demands extensive testing across multiple operation conditions, typically requiring individual
experimental measurements or computational fluid dynamics (CFD) simulations for each operating point.
The effort required to design a combustion chamber with regard to operational flexibility is therefore
particularly high, while tests of different designs (experiments and CFD) are limited to a few.

In order to overcome this hurdle, a data-driven approach is pursued in this work, in which probabilistic
surrogate models are trained using data from automated experiments, which can then be used for
prediction and design optimization. The individual surrogate models map the parameterized burner
design to target variables and, as such, are system specific. The presented methodology, however, is
universally applicable and particularly suited to the multi-objective design of GT burners, as will be
elucidated in the following sections.

In aerodynamics, it is common to use data-driven methods for automated CFD-based design opti-
mization (Martins, 2022), for example, for design of blades in turbo machinery (Li and Zheng, 2017) or
shape design of tall buildings (Xie, 2014). In the field of reacting flows, such optimization methods are
less common. This is because the associated simulations are generallymore complex, hardly automatable,
and the design of a combustor involves numerous degrees of freedom and different design objectives
(Rogero, 2002). Yet, in some studies, optimization methods were applied to combustor design, for
example, in combination with semiempirical preliminary design tools (Despierre et al., 1997; Rogero,
2002; Pegemanyfar et al., 2006; Fuligno et al., 2009; Angersbach et al., 2013) or steady flow simulations
(Jeong et al., 2006; Janiga andThévenin, 2007;Motsamai et al., 2008; Elmi et al., 2021; Yang et al., 2023),
which are numerically sufficiently inexpensive to enable iterative optimization. Optimization involving
combustion dynamics poses specific challenges, as these are generally hard to predict with sufficient
accuracy and at affordable cost. Only a handful of studies report application of purely data-driven
optimization to unsteady numerical simulations (Wankhede et al., 2011) or to low-order thermoacoustic
network models (Reumschüssel et al., 2022a). Making use of the governing physical equations, adjoint-
based methods have been developed for efficient computation of thermoacoustic stability with respect to
parameter changes (Magri, 2019). These methods can be embedded in classic optimization routines, for
example, to maximize thermoacoustic damping rate, as demonstrated by Aguilar and Juniper (2018).
Another approach to incorporate physical knowledge into optimization was recently proposed by Huhn
and Magri (2022), who combined model-informed neural networks for time prediction of a chaotic
thermoacoustic system with Bayesian techniques for efficient optimization based on sparse data.

While low-order models and CFD simulations generally allow flexible variation of the geometric
parameters of combustion chambers, they are always subject to modeling errors. Experimental optimiza-
tion, in contrast, is only realizable with automatically variable burner hardware. In addition, many
variables that are essential for assessing performance can only be detected indirectly and with measure-
ment noise. Accordingly, the literature on experimental applications of data-driven optimization is very
limited. Multi-objective optimization of the fuel injection system of an industrial GTcombustor has been
conducted byBüche et al. (2002) and Paschereit et al. (2003). In these studies, emission of nitrogen oxides
(NOx) and flame oscillations are measured simultaneously and a Pareto front is identified by iteratively

e32-2 Johann Moritz Reumschüssel et al.

https://doi.org/10.1017/dce.2024.29 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.29


varying the injection configuration through an evolutionary algorithm. Evolutionary algorithms are a
well-known machine learning technique, which are known for robust detection of global minima. This
robustness comes at the price of many function calls, required until convergence (Eiben et al., 2003).

A method that is more sample-efficient is Bayesian optimization (BO), which uses probabilistic
surrogate models to find optima in the design space. In BO, surrogate models are usually determined
from the available data using Gaussian process regression (GPR, also known as Kriging (Krige, 1951;
Rasmussen andWilliams, 2006)). BO is used in various areas where function calls are time-consuming or
expensive, such as optimizing policies for robot navigation (Martinez-Cantin et al., 2007) or the tuning of
hyperparameters of large neural networks (Snoek et al., 2012). See Shahriari et al. (2016) for an extensive
review.We adopted BO for experimental combustor optimizationwith respect to emissions of nitric oxides
(NOx) (Reumschüssel et al., 2022b). Our work, in which a combustor with automatically variable fuel
injection was used, confirmed that the method is very well suited for experimental optimization since it
converges after only a few experimental measurements. In that study, full-loadGToperationwas simulated
in the test rig and a design that leads to minimal NOx emissions was identified automatically. Despite the
high efficiency of the method, the determined optimal design proved to be insufficient in terms of flame
stabilization under different operating conditions. Under full-load operation, limiting the emission of NOx

is a critical design goal. However, in part-load operation, where the combustor operates at a lower global
equivalence ratio, flame stability is usually a greater problem. To simultaneously consider NOx emissions,
flame stabilization and other potential design goals within a data-driven framework, multi-objective
optimization methods could be employed. Although several viable methods using BO for multi-objective
problems have been proposed, for example, by Bradford et al. (2018) and Daulton et al. (2021), their
application in the context of experimental combustor design presents particular challenges. This is because
evaluating different design objectives requires testing under different experimental conditions. Since it is
time-consuming to change the operating mode of the test rig, evaluating each design candidate against all
objectives sequentially in an automated optimization loop is impractical. Therefore, instead of seeking to
identify optimal designs from iterative tests in which sampling is guided by data-based surrogate models
(which is the concept of BO), we first employ an automated routine to train the surrogate models of the
combustion system in different operating points, which we then combine for a posteriori multi-objective
optimization. We applied this approach to consider the trade-off between NOx emissions under full-load
and part-load flame stabilization in a previous study (Reumschüssel et al., 2024b). In this study, we
generalize the methodology. We present a data-driven method that allows different operating points and
different design criteria to be considered within a surrogate-model based optimization, allowing a sample-
efficient, multi-objective design process for safe and flexible operation.

Successively, three surrogate models are trained that map the combustor design to different objectives
under different operating conditions. Namely, we train one model for NOx emissions in conditions that
mimic full-load GToperation, a second model for extinction limits under part-load operation, and a third
model that predicts thermoacoustic oscillations in a third operating point. We present training strategies
for the models that require aminimal number of experimental data points. Themodels allow cost-efficient
and quantitatively precise prediction of design objectives for all burner designs within the design space.
After training, they can be combined and used for multi-objective optimization. In this way, our
methodology addresses the intricate task of experimental GT burner design for load flexibility in an
automated, efficient, and precise manner.

The remainder of this article has the following structure. First, we introduce the experimental test rig
and the variable combustion system that allows automated testing of different combustor designs. Then,
the strategy for the sample-efficient training of the surrogate models is presented. The subsequent results
section first describes the training of the threemodels before combining them to demonstrate how they can
be used for multi-objective burner optimization.

2. Experimental setup

The proposed approach is applied to design the pilot injection unit of an industrial swirl combustor utilized
in theMGT6000GT. In that turbine, six of these combustors are arranged in a ring around the shaft to form
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the combustion system. During full-load operation, the combustors operate at approximately 14 bar with a
heat input of approximately 4 MW each, which corresponds to roughly 300 kW under atmospheric test
conditions. For the present study, the swirl combustor is installed in a test rig that allows to operate the
combustor in its original dimensions under atmospheric pressure. The test rig is equippedwith a preheated
air supply and provides visual access to the flame through a quartz glass combustion chamber of inner
radiusRg = 112mm.Machine-equivalent load conditions are simulated by adapting the volumetric airflow
rate, the inlet air temperature and the global equivalence ratio to the corresponding values from the gas
turbine. This also implies a machine-equivalent momentum ratio between injected fuel and main flow,
such that mixing properties similar to those under pressure can be expected. An overview of the setup is
shown in Figure 1. The test rig is equipped with a variety of sensors for monitoring and measurements.
The ones relevant for this study are mentioned hereafter. The time-averaged flame shape is captured from
UV images. To detect the main reaction zone of the flame, the camera is therefore equipped with a band-
pass filter, transmitting light around the wavelength range of active OH* radicals. These are known to be
emitted in heat-releasing reactions within the flame and thus serve as an indication for the location of heat
release (Guethe et al., 2012). Assuming rotational symmetry of the time-averaged distribution of OH*
emission, the line-of sight integrated intensity captured by the camera is deconvoluted to a planar
distribution across the flame IOH∗ by using an inverse Abel transform (Abel, 1826; Moeck et al.,
2013). To assess heat release fluctuations bq, the integral intensity of OH* chemiluminescence IOH∗ was
recorded using a photomultiplier tube at a sampling rate of 1 kHz. Denoting fluctuations withc:ð Þ and time-
averaged quantities by :ð Þ, this reads

bq=q�bIOH∗=IOH∗ : (1)

It should be mentioned at this point that both sides of Eq. (1) are only equal if fluctuations in
equivalence ratio can be excluded (Schuermans et al., 2010). This is not the case here, which is why
the fluctuations of IOH∗ only serve as a qualitative indicator for ranking different designs against each
other. To analyze the composition of combustion products, a portion of the exhaust gas is directed to a gas
analysis system. Within this system, carbon monoxide levels are quantified through infrared spectros-
copy, while the assessment of NOx and NO2 is conducted via wet analysis employing a chemilumines-
cence detector. Furthermore, the presence of unburned hydrocarbons (UHCs) in the exhaust gas is
determined using a flame ionization detector. Finally, the gas temperature in the exhaust pipe is monitored
with several thermocouples.

The swirl combustion system under investigation is shown in Figure 2. The schematic shows the
combustor as it is installed in the atmospheric test rig. The airflow, indicated by black arrows in the figure
is fed through radial swirl generators. In the gas turbine, the airflow is directed along the outside of the

Figure 1. Test rig for combustion tests under atmospheric pressure with variable burner system.
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combustion chamber walls prior to entering the chamber. To mimic the flow conditions from the can-
combustor assembly while providing visual access to the flame through the quartz combustion chamber
the test rig features a special air distribution system. Engine-equivalent inflow conditions are generated by
air preheating and circumferential distribution of the airflow around the swirlers. Themain fuel line injects
natural gas within the swirl vanes. As shown in a previous study, this injection stage generates a high
degree of premixing which leads to a uniform stoichiometry at the flame front and contributes only
moderately to NOx formations (Reumschüssel et al., 2021). The combustion system includes a secondary
fuel line, referred to as the pilot fuel line, which enhances operational flexibility. The pilot injects fuel
toward the center of the burner and into the central recirculation zone near the root of the flame, resulting
in local enrichment (Reumschüssel et al., 2021). For orientation, the cylindrical coordinate system shown
in Figure 2 is introduced, in which z describes the axial coordinate in the main flow direction and r is the
radial coordinate.

In order to carry out data-driven combustor development, the investigated burner is equipped
with a special, highly variable pilot fuel injection system, which was manufactured using
selective laser melting. The custom piloting unit is referred to as the Automatized Experimental
Optimization Pilot (A). In the series (standard) version of the GTcombustor, the pilot is fed
from one plenum and controlled through a single fuel line. In contrast, the A allows variable fuel
injection, featuring a total of 61 injection locations, each connected to a separate fuel line with an
individual magnet valve. The fuel distribution system with individual valves and fuel lines is shown in
Figure 1. By controlling the 61 valves, the injectors can be opened and closed individually enabling a large
variety of possible injection schemes to be tested. The injection holes are arranged in four rings around the
symmetry axis of the burner, two rings with injection holes aligned perpendicular to the burner head plate,
Rings I and III, and two rings with injection holes inclined inward, Rings II and IVas shown in Figure 2.
Rings I, II, III, and IV have 16, 16, 15, and 14 injection holes, respectively, evenly distributed around the
circumference at different radial distances—the uneven number of injectors results from spatial con-
straints.

Figure 2. Schematic of the swirl combustor, including the AUTOPILOTwith 61 fuel injectors. Red arrows
indicate fuel flow and black arrows indicate airflow. Left: Side view of the combustion system, installed in
the atmospheric test rig. Right: Sectional view from downstream with AUTOPILOT highlighted. Circular
markers indicate injectors aligned perpendicular to the burner base plate and rectangular markers

represent inclined injectors.
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2.1. Design parameterization

To enable the automatic optimization of the burner design, it is imperative to define a set of describing
variables. In the present case, the potential design configurations arise from the opening and closing of the
61 fuel lines, connected to the A. The most comprehensive representation of the input space
would thus comprise 61 Boolean variables. To increase the efficiency of the optimization procedure, a
preselection is made by using a four-dimensional parameterization. To this end, four independent input
variables are defined, x= xI,xII,xIII,xIV½ �, corresponding to the number of open injectors on the four rings
and thus ranging from 0 and NI = 16, NII = 16, NIII = 15 and NIV = 14, respectively. Accordingly, the
design space Ωx is defined as follows

Ωx = x∈ℤ16 ×ℤ16 ×ℤ15 ×ℤ14 : x = xI,xII,xIII,xIV½ �,
XIV
i = I

xi ≥ 5

( )
, (2)

whereℤl is the set of integers between 0 and l and configurations with less than five open injectors in total
are excluded from the design space to keep the pressure loss across the pilot fuel line at a reasonable level.
The definition of Ωx comprises 69,360 possible combinations in total. The numbers of open injectors on
the four rings are distributed across the injector positions according to the following mapping.

f p : x! xI=O, ½xI=O�i,j = f
1, if j∈ round ð½1,2,…,xi�Ni

xi
Þ

0, otherwise
, i= I, ::, IV (3)

where xI=O
� �

i,j denotes whether the jth injector on Ring i is opened xI=O
� �

i,j = 1
� �

or closed xI=O
� �

i,j = 0
� �

with i counting from inside to outside and j counting circumferentially. This parameterization spans a
design space of configurations with approximately rotationally symmetric distributions, as these are
considered most relevant for technical use. Asymmetrical fuel injection schemes would lead to an
inhomogeneous temperature distribution and thus potentially to an excessive thermal load on the
components. This preselection significantly reduces the problem dimensionality and thus contributes
fundamentally to the sample-efficient feasibility of a global optimization approach for experimental tests.
Figure 3 shows the configuration of the AUTOPILOT for four exemplary burner designs x included in Ωx.
For the indicated values of x, the fuel lines connected to the injectors indicated in red are opened.

3. Methodology for surrogate model training

We intend to apply multi-objective optimization for GT combustor design addressing thermoacoustic
oscillationsbq, emissions of NOx cNOx , and the risk of flame extinction, rFE. In order to consider the various
target variables simultaneously without requiring sequential tests of individual candidate designs, we first
train surrogate models that allow the prediction of these quantities and upon which the design optimiza-
tion can be carried out a posteriori. The goal of the surrogate model training is to find mappings bf c xð Þ

Figure 3. Examples of burner designs that can be generated from the chosen design parameterization.
For the indicated values of bf xð Þ, the injectors marked in red are open.
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which minimize the maximum deviation between actual values bf xð Þ (as obtained from measurementsbf c xI=O
� �

of parameterized configurations xI=O = fp xð Þ) and predicted values bf xð Þ:bf cðxÞ= argminbf  max
x∈Ωx

∣bf ðxÞ� f ðxÞ∣, f ðxÞ= f cðf pðxÞÞ: (4)

The concept is summarized graphically in Figure 4. The surrogatemodels approximate the combination
of the parameterization function and the combustion experiments. Separate surrogate models are trained to
predict the three target quantities, which can subsequently be used for a multi-objective design study,bfNOx : x! cNOx , bf FE : x! rFE, bf TA : x!bq: (5)

The surrogate models are acquired by Gaussian Process Regression, which is a technique to generate
probabilistic predictions based on a set of training data. The selected approach for GPR-basedmodeling is
detailed below. To generate training data for GPR, we use two different methods to sample designs for
experimental tests. In the first method, all design samples are selected upfront according to a specific
sampling plan. Subsequently, GPR is performed once on the complete dataset. This approach requires
minimal computational overhead, but bears the risk of excessive measurement effort as the number of
training points has to be estimated in advance. For the second sampling method, we were inspired by
BO. Therein two steps are repeated iteratively. First, a GPR step is performed to approximate the latent
function to be optimized based on the available measurement data. This involves adopting the model
parameters to the data as will be described below. The second step is the selection of the nextmeasurement
points based on the GPR prediction. For this purpose, an acquisition function is used as a sampling
criterion, the choice of which is also discussed below. In contrast to the first method, the second method
requires more computational effort for the individual regression steps, but allows the monitoring of a
convergence metric, so that only a minimum number of training samples is tested.

3.1. Gaussian process model for combustion experiments

Gaussian Process Regression (Rasmussen and Williams, 2006) is used to generate an approximation of
the functional relationship between burner design x and target quantities f : cNOx ,rFE,bq. As a result of the
burner design, the parameter vectors describing the burner design x lie on the discrete domainΩx. Yet, to
introduce a Gaussian process model for f, we first consider input vector x on the continuous equivalent of
Ωx that is referred to asΩ and then ensure that any function evaluations (i.e., experiments) are performed
exclusively on samples from the integer subdomain Ωx.

In GPR, Bayes’ conditional probability rule is used to predict function values based on some known
(measured) input–output data. GPR begins with a prior belief about the function that describes the data.
This prior is represented by a stochastic process, characterized by amean function μ xð Þ, which determines
the function shape of f considered most probable and a covariance function k x,x∗ð Þ that characterizes
deviations from the mean,

μ xð Þ=E f xð Þ½ �, (6)

k x,x∗ð Þ=E f xð Þ�μ xð Þð Þ f x∗ð Þ�μ x∗ð Þð Þ½ �: (7)

Figure 4. Interpretation of the combustion system as a function from injection configuration to measured
quantities and approximation through a surrogate model.
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Here, E is the expectation operator and x,x∗ ∈Ω. In general, knowledge about the function under
investigation that is available a priori of tests can be incorporated into the model through the choice of an
appropriate prior distribution. The prior mean function will influence the posterior function prediction,
particularly in regions of the parameter space where data are scarce, as, for example, explained by Garnett
(2023). For BO applications in which the mean also affects the sampling policy, a well-considered choice
can therefore enhance optimization performance (De Ath et al., 2020). As described below, in the present
case, the mean value is not considered in the sampling criterion, and the training data are sampled
throughout the design space. Therefore, and for the sake of simplicity, a constant mean value of zero is
employed,

μ xð Þ� 0: (8)

The prior covariance function determines joint probability of function realizations and thus encodes
assumptions about smoothness and characteristic shape of the function. In the present case, it can be
reasonably assumed that the fuel injection through the four different rings will have a similar effect on the
target variables under investigation. However, due to the differing distances to the flame front and
different positions in the main flow field, it can be postulated that these effects will scale differently with
the individual components of x. Furthermore, we aim to model the impact of the geometry and location of
the four fuel rings, rather than that of individual injectors, a paradigm which has already been integrated
into the design parameterization. Consequently, we impose a high degree of smoothness of f over the
number of injectors xI to xIV and select a kernel function of squared exponential type with one lengthscale
per coordinate, for which the covariance function reads

k x,x∗ð Þ= exp �
XN
b= 1

θ bð Þ x bð Þ �x∗ bð Þ
� �2 !

: (9)

Here, superscript bð Þ indicates the bth component of a vector and θ is a vector of hyperparameters
controlling the correlation in the corresponding directions. Furthermore, GPR permits the consideration
of measurement noise by defining the belief in measured function values through an observation model.
Within the considered measurement range, it can be reasonably assumed that no significant systematic
measurement error will be introduced by the employed measurement systems. Therefore, we simply
assume function realizations y (i.e., measurements) at location x to be corrupted by additive Gaussian
noise ϵ independent of measured value,

y= f xð Þþ ϵ, ϵ�N 0,σ2n
� �

: (10)

Here, z�N m,sð Þ denotes, that quantity z is normal distributed, with meanm and covariance s and σ2n is
the noise variance. Introducing process variance σ2f , this prior induces amultivariate Gaussian distribution
for any finite set of l noisy observations y= y1,…,yl½ �T at corresponding locations x1 to xl,

y�Nð0,σ2fKþσ2n1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
= :C

Þ, Kði,jÞ = kðxi,xjÞ: (11)

Here, 1 is the unit matrix of size l,K is the noise-free covariance matrix,C is the covariance matrix of
the noisy targets, and superscript i, jð Þ denotes the matrix entry in row i and column j.

The prior can be calibrated to available measurement data by adjusting the six hyperparameters of the
model, θ1 to θ4,σf and σn. This is done by maximizing the log marginal likelihood of observing the
measured values ym at the corresponding locations Xm

1, given θ,σx and σn,

logL ymjXm,θ,σ,σnð Þ= �1
2
yTmC

�1
m ym�1

2
log det Cmð Þð Þ�N

2
log 2πð Þ, (12)

1We use the compact notation Xm =

xm,1

xm,2

⋮

264
375 to summarize measurement samples on the discrete subdomain Ωx.
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whereCm is the covariance matrix of the noisy measurement targets, as introduced in Eq. (11). The terms
in this expression allow for an interpretation: The first term quantifies the data fit. In contrast, the second
term is independent of the measured values ym and penalizes the model complexity while the third term
represents a constant and does not affect the parameter choice. The parameter selection bymaximizing the
likelihood thus establishes a balance between model complexity and data fit (Rasmussen and Williams,
2006). It should be noted here that the adjustment of six parameters based on a fewmeasurement points is
not necessarily well conditioned. However, since the predictive capability of the surrogate models is
regularly checked in the proposed procedure, an adequate choice of parameters is ensured. In the
implementation used in this work, this auxiliary optimization task is handled by use of the Constrained
Optimization by Linear Approximation algorithm (Powell, 1998).

Upon the observation of function realizations, the prior distribution is updated to a posterior distri-
bution, which represents a refined estimate of the function in light of the acquired data. After the
parameters of the Gaussian process have been adjusted to the available measurement data, it can be used
for predictions of function valuesbf p at any unseen location in design space xp. Equation (11) implies that
the distribution of noisy targets y is again of Gaussian type. The joint distribution of a set of measured
training values that are subject to noise ym and some noise-free test value bf p, for which the covariance
function is Kp = σf k xp,xp

� �
= σf can therefore be written as

ymbf p
" #

�N 0,
Cm κpm
κTpm Kp

" # !
, (13)

where κpm = σ2f k xp,xm,1
� �

,k xp
�

,xm,2Þ,…
� �T

denotes the cross-covariance function between observations
and prediction (Garnett, 2023). The above form allows to apply Bayes’ rule to derive a closed expression
for the posterior, that is, the conditional probability of outputbf p at input x, given the measured values ym
for inputs Xm:

bf p∣ym xp
� ��N μp∣m,σ

2
p∣m

� �
, (14)

μp∣m xp
� �

= κTpmC
�1
m ym, (15)

σ2p∣m xp
� �

= σf �κTpmC
�1
m κpm: (16)

Equation (15) reflects how the prior mean (0 in the present case) is updated through observations y. It
yields the most likely function value at xp, μp∣m, which serves as a prediction from GPR and is used as
surrogatemodel output after sufficient data are sampled. Equation (16) in turn describes a data-augmented
variance function, which results from the prior covariance for xp, σf and an update term that depends on
the proximity of xp to the measurements in the training data. The variance σ2p∣m provides a degree of
predictive confidence, which will serve to select designs for experiments and efficiently refine the model,
as discussed below.

The posterior predictive distribution (Eqs. 14–16) can be evaluated for any input x on the continuous
domainΩ. In the context of the study, however, we intend to use it to sample integer values x∈Ωx only,
as these are the only evaluable inputs for the combustion experiments. Approximations (e.g., rounding)
must therefore be applied to use the Gaussian process models for sampling. Garrido-Merchán and
Hernández-Lobato (2020) showed that simple rounding can cause the GPR-based sample selection to
get stuck and suggested an improvedmethodology in which they transform the inputs before computing
the covariance function. The approach is implemented in the utilized SMT software package and has
been applied here (Bouhlel et al., 2019). An example of the integer-based regression is also shown in
Figure 5.
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3.2. Sampling strategy for model training

The described method of GPR can generate a surrogate model based on a given training dataset. Two
sampling strategies are used to select designs for the training data. They are summarized graphically in
Figure 5.

3.2.1 Random sampling for computational-efficient surrogate model training
One approach is to randomly sample a fixed number of designs Nrs using Latin hypercube sampling
(LHS), measure the corresponding target values and then apply GPR to obtain a surrogate model.

Xn,rs =LHSΩx Nrsð Þ, (17)

where LHSΩx Nrsð Þ describes the operation of drawing Nrs samples from Ωx following the LHS method
described by McKay et al. (2000). This approach requires only one GPR step (i.e., parameter adoption
through maximization of the log marginal likelihood in Eq. (12)) to be performed, which saves
computational costs. A disadvantage, however, is that the number of samples required must be estimated
in advance. This means that there is a risk of unnecessarily high measurement effort. Accordingly, this
strategy is particularly suitable for variables for which the acquisition time is less than the time required for
a regression step so that the savings in computing time are likely to outweigh the disadvantage of
excessive measurements. In Figure 5, the random sampling method is illustrated using a one-dimensional
function with Nrs = 6 measurement samples selected at once.

The accuracy of the surrogate model trained this way can be tested by K-fold cross-validation.
Therefore, the set of training data is divided into K randomly chosen subsets of Nk samples each. A
surrogate model is trained K-times: K�1 subsets serve as training data, and the remaining set is used to
assess the model accuracy by calculating a mean deviation between prediction and validation data. The
overall relative model error ers of the surrogate model trained on the entire data bfK is estimated by
averaging over the K validation tests,

ers bfK� �
=
1
K

XK
k = 1

1
Nk

XNk

b= 1

by bð Þ
k �y bð Þ

k

y bð Þ
k

					
					, byk =bfK∖k Xkð Þ: (18)

Here,bfK∖k is a surrogate model trained on allK subsets except subset k and Xk,ykf g is the subset k used
for validation. As before, y lð Þ

k denotes the lth component of vector yk.

3.2.2 Uncertainty sampling for measurement-efficient surrogate model training
For expensive target functions, it is useful to perform a regression step (i.e., adopting the parameters
through maximization of the log marginal likelihood, Eq. (12)) after each measurement in order to extract

Figure 5. One-dimensional illustration of the two strategies used for sampling of training data.
Uncertainty sampling utilizes the GPR prediction, obtained from measurement data xm to select the

subsequent training sample xn at the location of highest σp∣m, while in random sampling all N rs samples
are determined beforehand.
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the maximum amount of information from the available data and use it to select the next measurement
sample. In this way, the number of measurements can be kept to a minimum. To select samples, surrogate
model predictions from GPR are used to form a sampling criterion, which is expressed in terms of an
acquisition function. The next point in search space to be evaluated xn,us is then determined by locating the
maximum of the acquisition function a xð Þ,

xn,us = argmax
x∈Ωx

 aðxÞ: (19)

In classical BO, the aim is to find an optimum of the unknown function within a minimal number of
function calls, which makes BO especially suitable for objective functions that are expensive to evaluate.
The strategy behind the choice of acquisition function is then to strike a balance between exploration and
exploitation. Here, exploration involves taking samples in areas of the search space where the function is
uncertain or poorly understood, while exploitation focuses on areas where low values can be expected
based on available knowledge. Various acquisition functions have proved highly effective to fulfill this
purpose like the expected improvement (Mockus, 1998; Jones et al., 1998) or the lower confident bound
(Srinivas et al., 2009), among many others (Forrester and Keane, 2009; Hennig and Schuler, 2012;
Blanchard and Sapsis, 2021).

Surrogate models generated during BO therefore generally only capture global trends throughout the
design space and are only quantitatively precise in promising areas where more samples are selected
during exploitation. This characteristic enables sample-efficient optimization with BO (Garnett, 2023). In
contrast to BO, for the purpose of this study, we do not aim to directly minimize an expensive objective
function. Instead, our goal is to train surrogate models by minimizing the deviation between the surrogate
model prediction and measured values of the target function, using as few measurements as possible,
Eq. (4). As the optimization is only carried out a posteriori in combination with other models, we cannot
select promising areas during the training process and thus require the surrogate models to be quantita-
tively precise throughout the design space. To train the surrogate models, the objective of the sampling
strategy is therefore completely geared toward exploration and the acquisition function is formed by the
prediction’s variance only,

a xð Þ= σ2p∣m xð Þ: (20)

This means that the method always tests the burner design for which the predictive uncertainty of the
surrogate model is greatest and subsequently adds it to the training set. The strategy is shown on the left in
Figure 5. Here, an unknown function (dashed line) that is evaluated at five points (blue markers) is
approximated using integer-based GPR. The prediction and uncertainty are shown as a solid line and a
gray shade, respectively. The next measurement point xn,us is selected at the point of highest uncertainty.

For sampling, the maximization task in Eq. (19) must be solved using the surrogate model from GPR.
In general, this can be done within another auxiliary optimization loop as evaluation of the GP posterior is
computationally cheap. In the present case, however, the number of designs x to consider is finite due to
the integer nature of the design space Ωx. Therefore, the acquisition function for all designs x in Ωx is
evaluated for sampling and the maximum is determined by direct comparison, which ensures that the
global maximum is selected.

The use of uncertainty sampling allows for a threshold-based convergence criterion by monitoring the
model accuracy during training. For this purpose, the relative training error eus is calculated in each step by
comparing the predicted value of the target function with the subsequently measured one,

eus bf n� �
=
byn� yn
yn

				 				, byn =bf n�1 xnð Þ: (21)

Here, bf n�1 is the surrogate model trained with training data available in iteration n�1 and xn,ynf g is
the tested design and corresponding measured value in iteration n. In practice, this error metric is
calculated in each iteration and the training is considered to be converged if eus falls below a predefined
threshold value ϵus in 10 consecutive iterations. After fulfillment of the convergence criterion, the
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accuracy of the models trained through uncertainty sampling is assessed on additional cross-validation
data xcv,i,ycv,i


 �Ncv

i = 1. Therefore, a relative cross-validation error ecv is estimated from comparison of the
measured data with predictions from the final surrogate model bf n,

ecv =
1
Ncv

XNcv

i = 1

bf n xcv,ið Þ� ycv,i
ycv,i

					
					: (22)

It should also bementioned that, in general, approaches are also possible that fall between the extremes
of only one regression step after all data are acquired (random sampling) and a regression step after each
measurement (uncertainty sampling). Methods for selecting batches of measurement samples have been
proposed in the context of BO, for example, by Nguyen et al. (2016) and Lyu et al. (2018). However, in
order to avoid the need to select additional hyperparameters in this article, the sampling procedure is
limited to the two methods mentioned above.

4. Results

The described method is used to train surrogate models for three target variables that are relevant for GT
combustor design. In the following, the training process of the three surrogate models is discussed before
we demonstrate how the models can be used for multi-objective design optimization.

4.1. Surrogate model training

4.1.1 NOx emissions under full-load-equivalent conditions — bfNOx : x! cNOx

The first design objective is to minimize NOx emissions under full-load operation. The formation of NOx

emissions is associated with the dissociation of stable N2, which is why these emissions are particularly
critical at high flame temperatures, as they occur at full load. To address this in the surrogate model
approach, the test rig is operated at full-load-equivalent conditions and the concentration of NOx in the
exhaust gas cNOx is measured for different burner design schemes. To be close to realistic engine operation
under full load, the pilot fuel ratio (PFR, share of total fuel flowing through the pilot line), is set to 10%.
The flame shape under these operating conditions is shown in Figure 6a for an exemplary pilot design. The
V-shaped swirl flame stabilizes in the shear layers and the outer recirculation zone, with the heat release
zone extending to the outer edge of the combustion chamber. It should be noted that NOx formation varies
with combustion chamber pressure, making direct transfer of atmospheric test values to GT conditions
challenging (Biagioli and Güthe, 2007). Nevertheless, it is a common strategy to use atmospheric tests to
assess burner designs for machine conditions (Sattelmayer et al., 1992). However, the extent to which the
surrogate models trained under atmospheric conditions are also suitable for ranking various pilot designs
in machine operation is not within the scope of this study. Instead, we emphasize at this point that the
methodology presented here is also applicable to build surrogate models from tests under pressure.

The change in NOx formation with the burner design is related to the temperature distribution in the
combustion chamber. A settling time of one minute after a design change is therefore found to be
necessary to allow transients to fade out. To obtain reproducible values, the measured concentration is
then averaged over a two minutes period such that a total evaluation time per measurement teval of three
minutes is required. In order tominimize the number of these extensive tests formodel training, the above-
described training method of uncertainty sampling (Section 3.2.2) is used after two measurements with
randomly chosen burner designs for initialization. Convergence of the training process is detected with a
threshold value ϵus of 5%which is obtained after 76 iterations, as shown in the learning curve in Figure 6b.
After the training process has converged, the model allows predictions for every possible burner design in
the design space. For further validation of the model and the training method, model predictions and
additional measurements are shown in Figure 6c. To enable visualization, the considered designs lie on
two two-dimensional slices through the four-dimensional design spaceΩx—in the plots, two components
of x are varied while the others are set to zero. The model accurately replicates the observed trends in the
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measured values, demonstrating a high quantitative agreement. The average relative validation error
between themeasured and predicted values ecv is 4:4% and the surrogate model can be considered reliable
for use in design optimization.

4.1.2 Risk of flame extinction and emissions of unburned hydrocarbons — bf FE : x! rFE
If the gas turbine is to be operated at part load, the fuel mass flow is reduced and a leaner global
equivalence ratio is attained.With reduced equivalence ratio, the combustion velocity is decreased and the
flame is in risk of being extinguished or blown out. Under these conditions, reliable operation can only be
ensured by an increased pilot fuel ratio and an appropriately designed pilot injection unit.

To investigate the influence of the pilot injection on the combustion process under part-load operation,
the operating parameters (volumetric airflow, equivalence ratio, and preheating temperature) are adjusted
to the respective conditions from the GT. The operating conditions adapted accordingly are expressed in
the following in terms of the relative load lr. Figure 7 shows the characteristics of the combustion process
for different burner designs and pilot fuel ratios. A series of OH* images at the top of the figure illustrates
the change in flame shape with load variation. The two plots below show emissions of unburned
hydrocarbons (top) and corresponding exhaust gas temperature (bottom) for a load variation for two
different burner designs and two different pilot fuel ratios. To be able to compare the exhaust gas
temperatures despite the different operating conditions, the values have been normalized to the respective
theoretic adiabatic flame temperature, Tad. The left end of each graph corresponds to the minimal relative
load at which the configuration could be operated, such that the length of the graphs indicates the width of
the operating window. It is evident that the burner design has a significant influence on the operating
window (and thus the risk of extinction at an operating point) and potentially enables operation with a
lower pilot fuel ratio. Furthermore, the graphs show that flame extinction is preceded by incomplete
combustion, which manifests by a strongly shortened flame and increased concentration of UHCs in the

Figure 6. Operating condition, model training and validation of the surrogate model mapping burner
design x to concentration of NOx in the exhaust gas.
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exhaust gas. The incomplete combustion and thus the proximity to the lean extinction limit is also
indicated by a reduced exhaust gas temperature, as shown in the bottom plot of Figure 7, which sharply
drops to below 0.5 Tad when approaching flame extinction. The proximity to the extinction limit and thus
the risk of flame extinction rFE can therefore be measured equally by the concentration of emissions of
UHCs and the exhaust gas temperature,

rFE � cUHC � Texh=Tadð Þ�1: (23)

This insight is used to efficiently train a surrogate model that represents the ability of individual designs x
to avoid extinction. Unlike emission measurements, exhaust gas temperature responds rapidly to changes
of the fuel injection scheme and does not require a long settling ormeasurement time. The time required to
evaluate a single burner design teval is therefore around 10 seconds. The short evaluation time makes a
sophisticated iterative sampling search impractical, which is why the training data are acquired form
random sampling, as described in Section 3.2.1. The model is trained at a fixed operating point which is
representative of the width of the operating window. A relative load lr of 25% and a pilot fuel ratio of 45%
are selected for this purpose. This operating point has been chosen to ensure that the burner design has
sufficient influence on the exhaust gas temperature while the flame is not extinguished for any config-
uration so that the tests can be run in a fully automated manner. Additional evidence of the indicative
significance of the exhaust gas temperature under these conditions is provided at the bottom right of
Figure 7, in which the emission of UHC is plotted against the measured exhaust gas temperature for
various burner designs. The plot underlines that incomplete combustion (high UHC concentration) can be
detected by low exhaust gas temperature. We use Nrs = 600 measurement points to train the Gaussian
process surrogate model. Themodel’s accuracy is evaluated byK-fold cross validation, Eq. (18), whereK
is set to 10. The test revealed a validation error ers of 4:9%.We therefore conclude that the surrogatemodel
is able to rank burner designswith respect to the associated operatingwindowwith sufficient accuracy. As
an example, Figure 8 shows the predictions for the two slices through Ωx already depicted above. The
plots show a range of values between 0.4 and 0.6, which appears to correspond to conditions close to the
extinction limit and complete combustion based on a comparison with Figure 7. Furthermore, similar to
the NOx emissions shown in Figure 6c, both slices largely show an increase in exhaust gas temperature for

Figure 7. Influence of design and pilot fuel ratio on part-load combustion characteristics. Top: Time-
averaged, Abel deconvoluted flame images for x= ½0,0,0,14�, PFR= 45%. Bottom left: Concentration of

unburned hydrocarbons cUHC and exhaust gas temperatures Texh, normalized by adiabatic flame
temperature Tad. Graphs end where flame is extinguished. Bottom right: Exhaust temperature as a

function of UHC emission for different burner designs.
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more open injectors. This suggests that the goals of low NOx emissions under full load and complete
combustion in part-load operation are at least partially contradictory, so that careful consideration is
required in order to strike a balance.

4.1.3 Thermoacoustic oscillations — bf TA : x!bq
In addition to a wide operating window and low NOx emissions, many other design goals play a role in
burner development; one of them is thermoacoustic stability. The following section will therefore
demonstrate how the proposed approach can be extended to include the thermoacoustic behavior of
different burner designs.

It should be noted at this point that thermoacoustic stability does not only depend on the flame
properties that potentially change with operating pressure (Sabatino et al., 2018), but also on the
eigenfrequencies and thus the geometry of the combustion chamber. Thus, in order to obtain an
optimization result that is transferable to the GT, the acoustic boundary conditions in the test rig must
be adapted to those of the GT—either by modifying the geometry or by active control, as suggested by
Bothien et al. (2008). Another option would be to measure the flame response separately from the
chamber acoustics and optimize it in combination with amodel of the GTchamber acoustics, as suggested
by Reumschüssel et al. (2024a). However, within the scope of the present study, none of the above
measures were undertaken. Instead, we limit ourselves to the optimization of the thermoacoustic
oscillations in the test rig in order to investigate the applicability of the optimization method in this
context. We emphasize that the adjustment of the chamber geometry will not lead to any methodological
differences.

Thermoacoustic instability describes the coupling of the unsteady heat release and acoustic oscillations
in the combustion chamber, which degrades the performance of the system. One way to alter the flame’s
response to acoustic oscillation and thereby prevent such unsteady phenomena is to change the location of
fuel injection. To incorporate thermoacoustics as an objective into the combustor design, a surrogate
model is trained that maps the pilot injection schemes to heat release oscillation amplitudes in the flame.
The latter are quantified by measuring fluctuations of intensity of OH* chemiluminescense, IOH∗ by
means of the photomultiplier tube as described in Section 2.

In general, no operating range can be specified in which thermoacoustic fluctuations are most likely to
occur, as this is specific to the combustion system. To demonstrate how this objective can be incorporated
into the suggested surrogate model framework, the operating parameters of the test rig were therefore
adapted to conditions, where thermoacoustic fluctuations are particularly prominent. For this purpose, the

Figure 8. Predictions of exhaust gas temperature for two cuts through the four dimensional parameter
space; injection through Rings I and IV (left) and through Rings II and III (right).
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preheating temperature of the air was increased above the corresponding value for full load (lr � 110%)
and the pilot fuel ratio is set to 20%. After experimental acquisition, the IOH∗ signal is transformed into an
amplitude spectrum bIOH∗ fð Þ using a Fourier transform. The maximum of the spectrum between 50 and
500 Hz, normalized by the mean value acts as the target quantity. Figure 9 shows four time signal
examples for different burner designs and the corresponding amplitude spectra. The figure also shows a
histogram of the captured time signals. Although the signals associated with low amplitudes in the
spectrum show a normal distribution around the mean value, which can be associated with noise in a
(marginally) stable flame, the histogram for design x= 0,0,0,14½ � resembles the typical bimodal distri-
bution of limit cycle oscillations (Noiray andDenisov, 2016). It can therefore be concluded that the burner
design can switch the flame between weakly stable thermoacoustics and limit cycle oscillations at the
chosen operating point.

Repeatable and accurate detection of self-sustained flame oscillations is challenging, especially in the
marginally stable regime where oscillations are mainly driven by noise. A total measurement time teval of
20 seconds per design is therefore used for model training. The uncertainty sampling method was selected
for sampling with an accuracy threshold ϵus of 10%. Compared to the NOx model, the threshold has been
increased to account for the stochastic nature of the oscillations. The learning curve for the thermoacoustic
model is shown in Figure 10a. The difficulty of training a model for thermoacoustics can also be seen from
this graph. During training, the error reaches significantly higher values than for the NOx emissions (note
the logarithmic scale in Figure 10a) and the convergence criterion is only fulfilled after 178measurements.

As before, the surrogate model is validated with additional measurements, which were not included
during model training. Figure 10b shows the model predictions in the form of surfaces and validation
measurements using spheres. The varying distribution of the spheres in the diagram is indicative for the
partially random nature ofbIOH∗ . However, the surrogate model captures the main trends and the average
relative deviation betweenmeasurement and prediction ecv is 12:4% and therefore considered sufficiently
accurate.

4.1.4 Summary of surrogate model training
Before proceeding with a description of the surrogate models’ application to multi-objective design
optimization, a summary of the overall training process of the three models is provided. Table 1 therefore
lists the operating conditions for the experiments and the measurement effort required for the training.
Specifically, the physical quantities used as indicators for the design targets, the associated times required
for the evaluation of a single burner design and the number of designs used for model training are
specified. As explained above, the choice of sampling strategy for each of the objectives was made in
consideration of the evaluation time. The highest evaluation time per sample is required for the NOx tests.

Figure 9. Data processing from OH* chemiluminescence signal captured by photomultiplier tube. Top:
Exemplary section of a normalized time signal and histogram. Bottom: Corresponding amplitude

spectrum for four different burner designs.

e32-16 Johann Moritz Reumschüssel et al.

https://doi.org/10.1017/dce.2024.29 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.29


Accordingly, uncertainty sampling was applied. This involved an additional computing time of about
10 seconds on a workstation for each evaluation. However, the method allowed to limit the number of
training samples to 76 such that the model could be trained within less than 4.5 hours in total. The model
for flame extinction is based onmeasurements of exhaust gas temperature, which can be rapidlymeasured
(teval = 10s). Therefore, random sampling was applied as a training strategy, in which 600 samples were
selected upfront for training. Despite the high number of samples, a total training time of 100 minutes
could be achieved, leading to a prediction accuracy similar to that of the NOxmodel. For thermoacoustic
oscillations, the evaluation time is 20s. Including the computing time of around 10 seconds for each step,
the model took around 1.5 hours to train. With a total amount of around 8 hours, the training of all models
could thus be realized within 1 day of automated tests.

Figure 10. Model training and validation of the surrogate model mapping burner design x to thermo-
acoustic oscillations bIOH∗ .

Table 1. Operating conditions and parameters of surrogate model training. Abbreviations us and rs
refer to uncertainty sampling and random sampling

Design target
Operating
cond., lr

Pilot fuel
ratio

Measured
quantity

Eval.
time per
x., teval

Sampling
strategy

No.
train.
samples

Validation
error

NOx emissions 100% 10% cNOx 3 min us 76 ecv = 4.4%
Flame extinction 25% 45% Texh 10 s rs 600 ers = 4.9%
Thermoac. oscillations �110% 20% bIOH∗ 20 s us 178 ecv = 12.4%
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4.2. Surrogate model-based analysis and optimization

With the surrogate models trained as described above, the individual pilot designs can be evaluated with
regard to NOx emissions, the width of the operating window, and the influence on the thermoacoustic heat
release oscillations, each under the respective most critical operating conditions. Thus, three target
parameters can be assigned to each pilot design x. The fast evaluation time of the models enables efficient
simultaneous consideration of the parameters. In the following, we first make use of the surrogate models
to gain some general insights into the combustor characteristics and the influence of the individual design
parameters. Subsequently, we discuss how a multi-objective combustor optimization can be conducted
using the surrogate models.

4.2.1. Influence of individual design parameters
To evaluate the influence of the four design parameters, that is, the number of opened fuel injectors on the
four rings, on the three target variables Figure 11 showsmodel predictions μp∣m with error bars indicating a
confidence interval of ± 2σp∣m. Each parameter xi is examined by considering designs for which all other
rings are closed (xk = 0 for k ≠ i) while the number of injectors on Ring i is varied. The left panel of
Figure 11 shows the predictions of NOx emissions. All four parameter variations indicate that more open
injectors lead to a higherNOx concentration in the exhaust gas. This trend ismost probably associatedwith
a reduced quality of mixing of the pilot fuel with the passing gas mixture prior to reaction, which increases
the emission of NOx. Fuel momentum and thus mixing quality are reduced by increasing the number of
open injectors while maintaining a constant total pilot flow. The rating between the four injector rings can
also be associated with fuel-air mixing. The injectors on Ring I introduce fuel at the furthest distance from
the flame front, which enables a high level of homogenization prior to the reaction leading to the lowest
NOx values. Injection through Ring IV results in the shortest mixing path lengths before the fuel reacts in
the flame front and thus also generates the highest NOx emissions. Despite their different radial
positioning, the emission values for the variation of xII and xIII are very similar. The angled injectors
on Ring III presumably play a role here, shortening the length of the mixing path. Overall, the NOxmodel
thus provides a quantitative means of analyzing the influence of the fuel momentum, the injector position,
and the injection angle on the emissions.

The aforementioned trends can be observed in a similar form for the part-load model. The corres-
ponding model predictions are shown in the center panel of Figure 11. Before analyzing the plot in detail,
it should be recalled that, in contrast to NOx emissions, high values of Texh are desirable as they correspond
to a most complete combustion and thus a low risk of extinction. With this in mind, it is quite obvious that
the two targets of low NOx emissions and secure part-load operation are contradicting. For an increasing
number of open injection nozzles, an increase in the exhaust gas temperature is predicted for most of the
parameter range of all four variations. The comparison of the four injector rings is also approximately
inverse to the rating of NOx emissions, with Ring IV offering the best performance, while injection
throughRing I appears to produce a flamewhich ismost susceptible to extinction. The contradiction to the
NOx emissions is presumably due to the fact that a less homogeneous fuel-air mixture leads to a richer

Figure 11. Surrogate model predictions (μp∣m) and 95% confidence interval ( ± 2σp∣m) of target values for
fuel injection through individual rings (xk = 0 for k ≠ i).
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local stoichiometry and thus to higher combustion temperatures. This increases the anchoring of the flame
and reduces the risk of extinguishing. However, unlike the NOx concentration, significantly different
values of exhaust gas temperature are predicted for Rings II and III at part load. This difference could be
explained by changes in flame shape at part load, which presumably result in different mixing path lengths
compared to full-load operation. In any case, the surrogate model allows for accurate prediction without
the need for further physical insight.

The predictions for thermoacoustic oscillations are shown in the right panel of Figure 11. Although
higher oscillations are mostly predicted for more open injectors, the comparison of the individual fuel
rings shows a significantly different characteristic than for the other two models. Oscillations above 10%
of the mean value (and therefore probably related to instability, see discussion of Figure 9) are only
predicted for fuel injection through Ring IV.

4.2.2. Design optimization through combined model analysis
The predictive capabilities of the surrogatemodels go beyond the variation of individual parameters. They
enable the quantitative forecast of the target variables for each design in the parameter space and thus
allow for multi-objective optimization. Several parameters can be taken into account in different ways.

One possible approach is aweighted optimizationwith respect to all three objectives predicted from the
surrogate models bfNOx ,bf FE,bfTA, for example, in the form

xp = argmin
x∈Ωx

bfNOx xð Þ�α1bf FE xð Þþα2bf TA xð Þ, α1,α2 ∈ℝþ: (24)

In this case, the optimum xp depends on the choice of the weights α1 and α2. The entirety of all optimal
designs for every possible combination of weights is contained in the set of Pareto-optimal designs Ωp,
which is commonly defined as the set of all non-dominated designs. Here, a design x1 is said to dominate
design x2 if it is superior or equal with regard to all target variables considered. We introduce the symbol
≻ to denote this relation in the context of surrogate-model based combustor design:

x1 ≻ x1 ⇔ bfNOx x1ð Þ≤bfNOx x2ð Þ, bf FE x1ð Þ≥bf FE x2ð Þ, bfTA x1ð Þ≤bf TA x2ð Þ: (25)

The set of Pareto-optimal designsΩp can then be defined as all designs x inΩx, for which no design xd
exists Ωx, that dominates x,

Ωp = fx∈Ωx : fxd ∈Ωx : xd ≠ x,xd ≻ xg=∅g: (26)

Here, ∅ denotes the empty set. The entirety of all target quantities associated with the Pareto-optimal
designs is referred to as the Pareto front P:

P = fYðxÞ : x∈Ωpg, YðxÞ= ½bfNOxðxÞ,bf FEðxÞ,bf TAðxÞ�: (27)

For three target variables, the optimization result in Eq. (24) depends on twoweighting factors and thus
the Pareto front can be approximated by a two-dimensional hyperplane in three-dimensional target space.
Figure 12 shows the predictions from the three surrogate models for all 69,360 designs comprised inΩx as
black markers. The axes in the diagram are orientated such that optimal configurations are found near the
rear corner. Because of the integer steps of the components of x,Ωx contains a finite number of designs, so
that the Pareto curve can be determined by direct comparison. Since the prediction process from the
surrogate models is computationally cheap, it is not necessary to apply an additional a posteriori
optimization routine to identify optima. The Pareto front considering all three target quantities consists
of 379 designs. The corresponding predictions P are marked with an orange outline in the three-
dimensional plot. To further visualize the Pareto front, a two-dimensional spline was fitted to P. It is
shown in the form of a blue surface in Figure 12 and represents a limit to the achievable performance.
Taking only two target variables into account results in a smaller set of Pareto-optimal designs. This is
shown on the projection planes in the figure. Here, the gray dots represent the target values for all possible
designs, corresponding to the black three-dimensional markers. The Pareto fronts under consideration of
the respective two variables are indicated by orange outlines.
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Depending on the extent to which the targets contradict each other, the Pareto front contains a large
number or only a few burner designs. For example, the burner designs for which low NOx emissions are
predicted also predominantly exhibit low flame oscillations, so that only four burners lie on the corres-
ponding Pareto front (bottom projection plane in Figure 12). Aiming for a high exhaust gas temperature
under part-load operation, on the other hand, contradicts the other two targets strongly. The Pareto fronts
therefore include more designs, and a weighting must be chosen for a final design selection (left/right
projection planes in Figure 12). Regardless of which target variables are to be considered, the surrogate
models can be used to efficiently identify Pareto-optimal designs.

Another option to use the surrogate models is for constrained optimization. If some of the target
variables do not need to be optimized, but instead are required to fulfill a certain threshold limit, the
corresponding surrogate model can be used to limit the parameter space accordingly. For GT burners, the
emission of NOx emissions is typically restricted legally. A fixed limit value must be adhered to during
full-load operation. In the following, we will therefore consider the Pareto optimization between the part-
load operation and thermoacoustic stability under the constraint of limited NOx emissions under full load,
yielding the following constrained optimization problem:

x = argmin
x∈Ωx

bfTA xð Þ�αbf FE xð Þ, bfNOx xð Þ< tNOx , α∈ℝþ, (28)

where tNOx denotes the constraining threshold. This scenario is of interest, as reduced pulsations increase
the service life of the components and load flexibility increases themachine’s range of application. From a
manufacturing point of view, both objectives should therefore be realized as thoroughly as possible while
fulfilling the legal restrictions for NOx emissions. Figure 13 shows the predicted values of flame
oscillations plotted against the corresponding predicted values of Texh=Tad. The colored markers indicate
Pareto-optimal configurations with respect to these two design goals, which are identified taking into
account different NOx emission constraints. The Pareto boundaries are additionally approximated by
dashed lines. The front without NOx constraints is shown in blue and corresponds to the one drawn on the
right projection plane of Figure 12. If the limit value for NOx emissions is tightened, this comes at the
expense of lower part-load flexibility, which is evident from the lower maximum achievable Texh values.
The selection algorithm increasingly sorts out designs that have a large number of open injectors on the

Figure 12. Model prediction for all designs in Ωx (scattered black markers) and Pareto front (orange).
Blue surface indicates three-dimensional Pareto front. Orange markers on projection planes show two-

dimensional Pareto fronts considering only corresponding two target quantities.

e32-20 Johann Moritz Reumschüssel et al.

https://doi.org/10.1017/dce.2024.29 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.29


inner rings, as exemplified in the figure. The achievable level of flame oscillations in the Pareto front is not
influenced by the threshold value. This is consistent with the finding in Figure 12 that for the investigated
combustion system, similar configurations result in a minimum of NOx emissions and a minimum of
thermoacoustic oscillations. Overall, this analysis shows another strength of the surrogate model-based
design approach: once the models have been trained and validated, the requirements for the machine can
be flexibly adapted during the design process. One possible application would be, for example, whenGTs
are developed for several countries in which different emission limits must be complied with,
requirement-specific designs can easily be identified without the need for new measurements.

5. Conclusions

We have proposed a data-driven approach to tackle the intricate engineering challenge of designing gas
turbine combustors for safe, stable and low-emission operation under various load conditions. This design
task is characterized by different targets, which have to be evaluated in complex measurements under
different operating conditions and thus in separate experiments. In order to account for these constraints,
the methodology is based on multiple, separately trained surrogate models that express the functional
relationship between the burner design and the target variable using probabilistic correlations. The
applicability of the method was demonstrated on full-scale atmospheric tests of an industrial burner.
However, the method could be equally advanced to automated high-pressure tests. We presented two
strategies for surrogate model training: random sampling, which minimizes computational effort but
carries the risk of excessive measurement effort, and uncertainty sampling, which minimizes the
measurement effort for training but entails a higher computational overhead. Depending on how much
the time and cost required to measure a target variable limits the number of measurements, one of the
strategies may be preferred. Specialized hardware, which was created using additive manufacturing,
enabled the training of the surrogate models to be carried out automatically. Three models were trained
representing design objectives under operating conditions where they are critical: one that predicts NOx

Figure 13. Surrogate model predictions for part-load performance and thermoacoustic oscillations. All
burner designs in Ωx are shown in gray dots and Pareto-optimal configurations under different levels of

constraint for maximum NOx emissions are marked in color.
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emissions under conditions that represent full-load operation of the GT, onemodel that predicts the ability
of different burner designs to prevent lean extinction in part-load operation, and a model that predicts
thermoacoustic oscillations under conditions, in which the system was found to be particularly suscep-
tible. All three targets can be mapped using the proposed methodology. In the present case, the training of
surrogate models that represent a design space comprising more than 69,000 possible burner designs
could be completed within 1 day of automated testing time. The models can be used flexibly in different
ways for multi-objective optimization. They can be employed to filter out designs from the large design
space that are optimal in terms of differently weighted combinations of objectives. We also showcased an
application in an a posteriori constrained optimization, in which one of the objectives limits the design
space while the others are optimized.

The utilization of such an automated approach enables the identification of optimal designs within the
design space, which is defined by the test geometry. This necessitates the a) choice of meaningful
measurement metrics to represent the design goals and b) creation of specialized hardware to efficiently
test different design variants. Although these two prerequisites must be created by experienced engineers,
the identification of optima can be carried out in a purely data-driven manner.
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