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ON THE MAPPING THEOREM FOR 
LUSTERNIK-SCHNIRELMANN CATEGORY II 

YVES FÉLIX AND JEAN-MICHEL LEMAIRE 

0. Introduction. Let X and Y be 1-connected spaces having the 
homotopy type of cw-complexes. 

Definition 0.1. A continuous map f.X —> 7 is iï-split if Of .SIX —» S2Y 
admits a retraction up to homotopy. 

In [6] we prove the following "mapping theorem": 

THEOREM 0.1. (a) Iff is Q-split, then cat(Jf) ^ cat(7); 
(b) IfiT*(f) is split injective and QY has the homotopy type of a product of 

Eilenberg-MacLane spaces, then f is iï-split. 

This result applies to the case when X and Y are rational or tame spaces 
because the loop space of such a space has the homotopy type of a weak 
product of Eilenberg-MacLane spaces: actually the proof of this statement 
in the tame case given in [6] is incomplete and we therefore give another 
one in an appendix to this paper. 

Other examples of 0-split maps have been given by H. Scheerer [9], who 
kindly pointed out that our argument for tame spaces did not suffice. 

Also in [6] we define the Tr-category of a space as either the category of 
its 'V-taming" or as the infimum of the categories of all spaces having the 
same tame homotopy type. Unfortunately these two definitions are not 
equivalent: for instance the three-sphere has category 1 while its 3-taming 
(which by definition has the same tame homotopy type!) is K(Z, 3) whose 
category is infinite. Indeed the category of a non contractible tame space 
"of finite type" is always infinite (Theorem 2.1 below). This justifies a new 
treatment of the tame case, which constitutes the first part of this paper; 
in the second we discuss an extension of the mapping theorem to 
non-simply connected spaces. 

1. L.-S.-category of tame spaces. Let us first recall a few definitions. 
Denote Rk the ring Z[ l /2 , . . . , 1//] with / = [ ( & + 3)/2]. Let r be an 
integer i^3. A map f.X ~^> Y between (r — l)-connected spaces is called 
an r-tame equivalence if and only if TTr+k(f) ® Rk is an isomorphism for all 
k. An (r — l)-connected space Jfis called r-tame if *nr+k{X) is a i^-module 

Received September 24, 1987 and in revised form May 10, 1988. The research of the first 
author is supported by FNRS, and the second by CNRS. This research project was partially 
supported by a NATO grant. 

1389 

https://doi.org/10.4153/CJM-1988-062-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-062-0


1390 Y. FÉLIX AND J.-M. LEMAIRE 

for all k. A space Xis called of finite tame type, or for short a f.t.t. space, if 
TTr+k(X) 0 Rk is a finitely generated i^-module for each k. We assume 
once and for all that all spaces we consider have the homotopy type of 
cw-complexes and have a non-degenerate base-point when needed. 

Every (r — l)-connected space X (of finite type) admits an "r-taming" 
a.X —» X*p (of finite tame type) unique up to homotopy equivalence [3], 
and a map is an r-tame equivalence if and only if its r-taming is a 
homotopy equivalence. 

Let A (X; Rk) denote the cokernel of the Hurewicz map 

hq:iTq(X) ®Rk-> Hq(X; Rk); 

the following proposition gives a useful criterion for r-tame equiva­
lences: 

PROPOSITION 1.1 [Berlin]. Let f.X —> Y be a map between (r — 1)-
connected f.t.t. spaces', then the following statements are equivalent: 

(a) / is an r-tame equivalence. 
(b) For all k ^ 0, 

HrJrk{X\ Rk) -* Hr+k(Y; Rk) 

is an isomorphism and 

4 - + * + i ( ^ Rk) ~* Ar+k+\(Y> Rk) 

is surjective. 
If moreover X is an r-tame space, (a) is equivalent to 
(c) For all k ^ 0 and finitely generated Rk-modules if£9 the map 

Hr+k(Y; ifÇ) -» Hr"rk(X; HÇ) 

is an isomorphism and the map 

is injectivefor all finite Rétorsion modules ZTk, where Pk is the set of primes p 
such that \lp G Rk+\\Rk. 

The loop space on an r-connected r-tame f.t.t. space has the homotopy 
type of a weak product of Eilenberg-MacLane spaces (see the Appendix), 
thus Theorem 0.1 above implies the following 

PROPOSITION 1.2. Let X and Y be r-connected spaces and let f.X—> Y be a 
map such that ir*(f) is split infective. If Y is r-tame of finite tame type, then 
cat(X) ^ cat(7). 

We use this result to show that ordinary L.-S.-category is irrelevant for 
tame spaces of finite tame type: 

THEOREM 1.3. Every non-contractible r-connected r-tame f.t.t. space type 
has infinite category. 
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Proof. Let X be such a space; since it is both non-contractible 
and r-tame of finite tame type, we can choose a prime p and an integer 
n < 2p — 3 such that: 

(1) for all m > n, irr^m(X) is /^-divisible 
(2) irr+n(X) contains a summand isomorphic to Rn or Z/psZ for some s. 
Let us denote X(t) the /-connected Postnikov fibre of X as usual. Since 

TT*(X(r + n) ) is /?-divisible, 

# + ( X ( r + m>; Z//?Z) = 0, 

and therefore 

H*(X(r + /i - 1>; Z//?Z) = H*(K(7Tr+n(X), r + /i); Z//?Z) 

by the Serre spectral sequence, and the latter has infinite cup-length. Thus 
cat(X(r + « — 1) ) = oo and by 1.1, cat(Jf) = oo. 

We now introduce a new definition for the "tame" category for which 
we can prove a mapping theorem. 

Let X be a space and y be a subspace of X. Let 

Tn+\X9 Y) = { (x0, * ! , . . . , xn) e ^ + 1 ; 3i e {0, . . . , * } , * , - e 7 } . 

Then ^ ( Z ) = Tn(X, *) is the usual fat wedge; let us recall that cat(X) < 
« if and only if the «-fold diagonal X —> Xn factors through Tn(X) up to 
homotopy. Let us also observe that while the r-taming commutes with 
products, it does not commute with wedges or fat wedges. 

Definition 1.4. The r-tame category Tcat^(X) of an (r — l)-connected 
space X is the least integer n (or oo if there is no such integer) such that the 
r-taming of the diagonal map 

X$>-*(Xn+lp = (Jf(;))w+1 

factors through the r-taming of the inclusion of the fat wedge 

y:(Tn+lXp -+{Xn + xp. 

One of course expects that r-tame category is invariant under r-tame 
equivalences; we first show that r-tame equivalences behave well with 
respect to cofibrations: actually, this essentially amounts to saying that 
the category of r-connected f.t.t. spaces, together with the usual cofibra­
tions as "cofibrations" and the r-tame equivalences as "weak equiva­
lences", make up a cofibration category in the sense of H. J. Baues (cf. 
[Berlin], Ch. I, or Baues's forthcoming book); since this is not the cofibra­
tion category explicitly considered in [3] or [Berlin], but the subcategory of 
fibrant objects (namely the r-tame spaces), we include a proof of this 
lemma. 

LEMMA 1.5. Let 

https://doi.org/10.4153/CJM-1988-062-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-062-0


1392 Y. FÉLIX AND J.-M. LEMAIRE 

Z • £ 

be apushout square, in which X, Y, Z are f.t.t. spaces, h is a cofibration andf 
is an r-tame equivalence. Then q is an r-tame equivalence. 

Proof. If Y is r-tame the lemma follows from Proposition 1.1 (c) and 
diagram chasing in the cohomology exact sequences of the cofibrations 
h and k'. If Y is not r-tame, we consider the pushout of g and the r-taming 
a of Y: 

h 

Since Yf' is r-tame and the composite of the two squares is a pushout, s is 
an r-tame equivalence; Proposition 1.1 (b) and diagram chasing in the 
homology exact sequences of a and y8 show that ft is an r-tame 
equivalence, and so is g. 

PROPOSITION 1.6. If f.X —> Y is an r-tame equivalence between 
(r — X)-connected iXX. spaces, then so is the induced map Tn(f): Tn(X) —> 
Tn(Y) between the fat wedges. 

Proof. This should be a standard result in any cofibration category. The 
proposition is trivial for n = 1, and for n i? 1 one has 

Tn + \X) = (Tn(X) X X) U (Xn X *); 

we may assume that / is a closed cofibration, and the induction step 
follows from Lemma 1.5 applied to the following pushout diagrams: 

Tn(X) X X-

n 
»Tn(Y) X Y 

O 

Tn+\X) = Tn(X) X X U Xn X * • r n ( F ) X Y U Xn X * 

and 

Xn X * 

n 
Yn X * 

n 

Tn(Y) X Y U Xn X *- *Tn(Y) X Y U Yn X * = T" + l (F ) 
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COROLLARY 1.7. Within f.t.t. spaces, r-tame category is invariant under 
r-tame equivalences and one has: 

cat(X0) ^ Tc2X{r~X)(X) ^ Tcat(r)(JO ^ cat(X) 

where X0 is the rationalization of X. 

We can now state and prove a mapping theorem for r-tame category: 

THEOREM 1.8. Iff:X—> Y is a continuous map between r-connected f.t.t. 
spaces (r ^ 3) such that tnrjrk{f) 0 Rk is split injective for all k i^ 0, then 

Tcat(r)(X) ^ Tcat ( r )(7). 

Proof. We may assume that / is a fibration and that the spaces X and Y 
are r-tame. Let F be the fibre of/. Let us consider the following diagram, 
in which the squares are pullbacks: 

7 « + l 

Tn"rX(X, F)-

Tn+\(jy 

7/1+1 

- • X 

-«+1 

77+ 1 

- • ( r 
t 
(y>)V-

72+1 

We first claim that a! is an r-tame equivalence. It is well-known that the 
inclusion map 

J'Tn+\Y) rn+\ 

is (split) surjective on homotopy groups, because S2/' admits a section. 
Since the exact homotopy sequence splits, the fibre of 

\(1). 7 7 + 1 , 
UW:(T"^(Y)y \(z) fU+\ 

«+1 is the r-taming of the fibre of j , namely £lX*n , the join of n + 1 copies 
of SIX. Thus the fibre of the inclusion of Tn+x(X, F) into Xn+l (resp. of 
E -> X"+ 1) is ŒX*"+1 (resp. (SlX*n+]p). So we have a map of fixa­
tions: 

SIX] c H + 1 -r+1(x, F)-

(S2X: •*«+K(/-)_ - • £ • • 

w i + l 

77+1 

in which the left and right vertical maps are r-tame equivalences. We 
conclude by the five-lemma applied to the homotopy exact ladder after 
tensoring the upper row by Rk. 
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Let us now assume that Tcat ( r )(7) ^ n. Since Y is Marne, the diag­
onal map Y -> Y" + 1 factors through (Tn + ](Y) %\ and therefore the 
diagonal map X —» X" + 1 factors through the pullback space E, which 

(X, F). «+1 

X" + 1 through 
by the above argument has the r-tame homotopy type of V 
Thus we have got a factorization of the diagonal X 
(Tn + \X, F) fp. Now as in Theorem 1.2, / is Q-split and so i\F -> X is 
null-homotopic. Since we have assumed non-degenerate base-points, / is a 
cofibration by Str0m's lemma ( [10], [1] (0.17) B), and there exists <p:X^> X 
which is homotopic to the identity and such that <p(F) = *. Then 

<D = q> .A X' • H + l 

is homotopic to the identity and satisfies 

Q(Tn+l(X9F)) c Tn+\X). 

Applying the r-taming again yields a factorization of the diagonal 
wi+i n«+l / through ( T ^ X X ) )y!> and completes the proof. 

We conclude this section with a question: 

Question: Is the r-tame category of a space X always equal to the actual 
category of some space r-tame equivalent to XI 

2. Non simply-connected spaces. We begin with a rather immediate 
generalization of Theorem 0.1 to non simply-connected spaces: 

THEOREM 2.1. Let f:X —> Y be a continuous map between connected 
pointed spaces having the homotopy type of cw-complexes, such that: 

(1) TTx(f) is injective 
(2) the universal cover f:X —> Y of f is 0,-split 

then cat(X) ^ cat(Y). 

Proof. If irx(f) is an isomorphism, one has the following commutative 
diagram: 

Since / is Œ-split, S admits a section up to homotopy and so does 8: 
therefore / is null-homotopic and cat(X) ^ cat(Y) by Lemma 2 of [6]. If 
irx(f) is injective, let p: Yf —» Y be the covering space which corresponds to 
the subgroup 7rx(f)(7Tx(X) ) of irx(Y). The map/factors &sf = pog where 
g:X —» Y' induces an isomorphism on irx\ since p is a covering space one 
has cat(Y') ^ cat(Y), and since irx(g) is an isomorphism and / = g, 
one has cat(X) ^ cat(Y')-
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Following Henn [7] we shall say that a space is almost rational if its 
universal cover is a rational space; from Theorem 2 we readily deduce: 

COROLLARY 2.2. Let X and Y be almost rational spaces andf'.X —> Y be a 
map such that ir^if) is injective', then cat(X) ^ cat(7). 

Remark 2.3. As in the 1-connected case, an almost rational associative 
//-space of finite type G has the homotopy type of a (weak) product of 
Eilenberg-MacLane spaces: indeed the Hurewicz map TT*(G) —» //*(G; Q) 
is injective in degrees ^ 2 by the Milnor-Moore theorem. Therefore 
//*(G; Q) —> H*(G; Q) is surjective, and since G is a product of Eilenberg-
MacLane spaces, p.G —> G admits a homotopy retraction a and 

(a9kx):G^G X K(vx{G\ 1) 

is a homotopy equivalence. This result is dual to Henn's, who showed that 
an almost rational co-//-space has the homotopy type of a wedge of circles 
and rational spheres of dimension ^ 2 . 

We now observe that the finiteness of the category of an almost rational 
space imposes a strong restriction on its fundamental group. 

PROPOSITION 2.4. The fundamental group of an almost rational space of 
finite category is torsion-free {i.e. contains no element =£ 1 of finite order). 

Proof Let X be an almost rational space of finite category and let X be 
its universal cover, which is a rational space. If ITX{X) is not torsion-free, it 
contains a cyclic group Cp of prime order p\ let 7 be the covering space of 
X such that irx(Y) = C . The space Y is almost rational with universal 
cover X. Since H (X; Z/pZ) = 0, the spectral sequence of the fibration 

X-*Y^K(Cp,l) 

shows that 

H*(Y, Z/pZ) = H*(Cp; Z/pZ) z> ZlpZ\$ux\. 

Therefore cat(F) is infinite, and so is cat(X) since Y is a covering space 
of X. 

In the particular case of K(m, l)'s, this result is a consequence of the fact 
that 

cat(#(77, 1) ) = coh.dim(Tr) [4]. 

As in the 1-connected case again, we can use the mapping theorem to 
obtain some results on the Gottlieb groups of an almost rational space of 
finite category. Recall that the Gottlieb subgroup Gp(X) of irp(X) is the 
set of classes of maps g:Sp —> X such that g V X:Sp V X —» X extends to 
Sp X X. In particular a Gottlieb element is central for the Whitehead 
product. 
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PROPOSITION 2.5. Let X be an almost rational space of category ^m. 
Then the Gottlieb subgroup G\(X) of TT\(X) is a torsion free abelian group 
of finite rank r, and one has 

r + 2 dimQ G2k+\(X) S m. 

Moreover, one has G2k(X) = 0 for all k = 1. 

Proof (cf [5, 8] ). Clearly GX(X) is abelian. Let gl9 g2, . . . , gs:S
] -> X 

represent Z-independent elements in GX{X), and gs+\, . . . , gv with 
gf-SnJ —» X, represent Q-linearly independent elements in G>](X). They 
define a map 

g:Sx V . . . V Sl V (Sw* + 1)0 V . . . V (Sn')o ~> * 

(where Snj)0 are rational odd spheres) which extends to the product of the 
s circles and the t — s rational spheres, which is an almost rational space; 
this extension is injective on homotopy groups by construction, and since 
the category of this product is /, one must have t ^ m by Corollary 2.2. 
The second statement is proven as in [5]. 

Remark 2.6. For any connected cw-complex X of category m or less, 
since G*(X) c G*(X) and cat(X0) â cat(X) ^ cat(JT), one has 

2 dim 0 G2k + l(X) ®Q^m and VA: ^ 1, G2k(X) ® Q = 0. 
k^\ 

However, in contrast with the simply connected case, the first inequality 
in Proposition 2.5 does not obviously extend to non almost rational spaces 
because category does not behave well under "almost-rationalization": the 
latter is obtained by fibrewise localization of the universal cover 
fibration 

X -^ X-* K(<nx(X\ 1) 

into 

X0 -> X0 -> K(^(X)9 1). 

Unfortunately Proposition 2.4 above shows that one cannot have 
cat(X0) ^ cat(X) in general: indeed for instance cat(RP(2) ) = 2 while the 
argument in the proof of Proposition 1 shows that cat(RP(2)0) = oo. 

Thus we do not know whether the full inequality 

2 dimQ G2k+x{X) ® Q ^ cat(X) 

holds; we only can show: 

PROPOSITION 2.7. For any connected cw-complex of finite category m, one 
has 
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r a n k ^ (X)) ^ m 

(and hence 2 ^ 0 diniQ G2k+\(X) ® Q ^ 2m). 

Proof. Let g1? g2, • • • ? gy-'S1 -* ^ represent Z-independent elements in 
GAX) as above, and let h:(S )n -^ Xbe the extension of the map from the 

1 A 

wedge of circles defined by the g/s. Let X be the covering space of X 
corresponding to Zs c GX(X) c ^ (X) . In the fibre square: 

r k! 
K , " 

tf(Z5, 1) •*(*/„ 1) 

the projection A;' has a section. Therefore s = càt(K(Zs, 1) ) = cat(A) ^ 
cat(X) = m. 

Appendix. Let T*(r) be the ring system defined by Tr+k(r) = Rk for all 
k ^ 0. In [3], W. Dwyer has extended Quillen's theory to obtain an 
equivalence of homotopy categories between the homotopy category 
£f(r, T*(r) ) of ^-reduced r-tame spaces and the homotopy category 
DGL(r — 1, T*(r)) of "tame" (r — l)-reduced differential graded Lie 
algebras: let us denote 

\:<?(r, Tm(r) ) -> DGL(r - 1, T*(r) ) 

this equivalence and /x its quasi-inverse. 

PROPOSITION A.l. Let X be an r-connected r-tame space of finite type; 
then QéX has the homotopy type of a weak product of Eilenberg-Mac Lane 
spaces. 

Proof. Let (L, d) = X(X). L is a chain Lie Z-algebra whose homology is 
of finite type over the ring system T*(r). Let us consider the short exact 
sequence of chain Lie algebras: 

0 -> (s~lL, D) -> (s~xL 0 L, D) -> (L, d)-+0 

w i t h ^ " 1 ^ = Ln + X 

V/ e L, Dl = dl + s~xl [s~xl, /'] = 2~xs~x[l, /'] 

Ds~xl = -s~xdl [s~xls~xr] = 0. 

One easily checks that (s~xL © L, D) is acyclic. The above exact 
sequence is a fibration in DGL(r — 1, T*(r)) whose image under JU, is a 
fibration inSf(r, T*(r) ) the total space of which is contractible. Therefore 
(s'lL, D) is equivalent in Ho DGL(r - 1, T*(r) ) to \(QX). 
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Since s~ L is an abelian Lie algebra, i.e., a Z-complex, whose homol­
ogy is of finite type over the principal ring system s~lT*(r), there exist 
quasi-isomorphisms : 

(s~lL9 D) ^ C* ^ H*(s~]L, D) = @At 

where C* is s~]T*(r)-h£Q and Ai is the abelian Lie algebra which consists 
of the group Ai concentrated in degree /, endowed with the zero differen­
tial. Clearly enough 

n 

pHAi) ^ K(At, i) and ]u(©^) ~ lim I I K(Ai9 i) ^ QX. 
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