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1. Near-rings from group objects

In some categories, there are structures that look very much like groups, and they
usually are. These structures are called group-objects and were first studied by
Eckmann and Hilton (1). If our category <£ has an object T such that hom(X, T)=
{tx}, a singleton, for each object X e O b 1 ? , T is called a terminal object. Our category
<# must have products; i.e. for Au...,AnE. Ob C6, there is an object Ax x • • • x An G
Ob <€ and morphisms p, :AiX ••• xAn-*Aj so that if / , : X - » A , i = 1 ,2 , . . . ,n,
are morphisms of <#, then there is a unique morphism [fl,...,fn]:X-*Al'x • • • xAn

such that p,°[/i, . . . , / „ ] = /; for i = 1 ,2 , . . . , « .
In the case where At = A2 = A, and ft = f2 = I A, we call A = [1^, lA] the diagonal

map.
If our category •# has a terminal object T and products, there is a chance that it

may have group-objects. By a group-object, we mean a quadruple (G, n, /A, a) where
G G Ob <#, 7T G hom(G x G, G) is a morphism analogous to the "binary operation,"
fiEhom(T, G) suggests the "identity," and a G hom(G, G) abstracts "inverses." To
make a successful analogy, the following diagrams must be commutative.

7TXlC

GxGxG GxG

(associativity)

GxG G

TxG. Gxr

(identity)

(inverses)
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16 JAMES R. CLAY

In the above diagrams, f x g: A x B -> A' x B' means / x g = [f ° pA, f °pB]-
If G is a group object, then hom(X, G) is a genuine group, with the correct +. The

best way to see this + is from the following diagram.

hom(X, G) x hom(X, G) = hom(X, GxG) hom(JV, G)

(f,g) TT°[f,g]

Define / + g = TT ° [f, g], 0 = ^ ° tx, and -f = a°f. Then (hom(X, /4), +) is a group.
N o w suppose / , g E h o m ( X , G) and hEhom(Y,X). Then (f + g)°h =

TI °\S,g\° h = IT ° [f ° h, g ° h] = (/ ° h) + (g ° h). (See the next commutative diagram.)
So o is right distributive over + and therefore (End G, +,«) is a near-ring, and each
(hom(X, G), +) is a left (End G) group. Now hom(-, G) is a functor from "# to the
category of left (End G) groups.

In the category of groups, the group objects are the abelian groups. In the
category of sets if, the category of groups % and the category of abelian groups si, it
turns out that / + g = IT ° [f, g] is exactly pointwise addition of functions. In this paper,
we shall see examples where this is not the case, so our + is a natural and real
generalization. Since the pointwise addition of two endomorphisms is not necessarily
an endomorphism, we shall see that this definition of + is exactly what is needed.

2. The fibred product near-ring

Let A be a fixed object in a concrete category c€. From A and <€ one constructs a
new category ^(A) whose objects are pairs (X, TJ) where X is an object of <£ and
77: X -> A is an epimorphism. A morphism / £ hom((X, 17), (Y, e)) is morphism from <#
with the additional property that € ° f = TJ. That is, we want the following diagram to
be commutative.

It is direct to show that <#(A) is a category and that (A, lA) is a terminal object. We
shall now see that products exists in <<?(A); this product is called the fibred product.
Let (X,, TJ,), (^2, Vi) be two objects of <£(A). (We identify each object X 6 « with its
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NEAR-RINGS AND NEAR-RING MOLULES 17

set.) The product of (Xu TJI) and (X2, TJ2) is ((X, x AX2, rf),pup2) where

X, x AX2 = {(*,, x2)\vi(xi) = vi(x2)},

is defined by TJ(X,, x2) = TJ,(JC,)(= rj2{x2)),

and

p, :X,x.4X2

is defined by p,(*i, x2) = x,.
It is direct to see that this is a product for
Note that hom((X, 17), (A, lA)) = {TJ}, so /(*.„>= 17. Also [/, g ] : V ->• A", x ,,X2 is given

by [/, g](y) = (/(y), *(y)), and A: X -» X x 4 X is given by A(JC) = (x, x).
If ((G, y), IT, /M, a) is a group object of ^(A), the endomorphism near-ring

(End((G, y)), +, °) is called a fibred product near-ring.
The remainder of the paper is concerned with determining the structure of (1)

group objects (G, y), (2) the fibred product near-rings End((G, y)), and (3)
End((G, g)) - groups hom((X, TJ), (G, y)). We do this first when •# is y, the category of
sets, and then when *# is % the category of groups.

3. The fibred product near-rings for if, the category of sets

Fix a set A. We'll first determine the group objects of 5^(/\).
Suppose ((G, y), IT, fi, a) is a group object of 5 (̂̂ 4). First look at p. for a moment.

Now /u. £ hom((v4, lA), (G, y)) and so y°n. = \A. Thus ^(a) E y"'(a) for each a E. A.
That is, /x selects exactly one element from each of the family {y'\a)\a E.A). We
shall return to y., but let us now turn our attention to v.

Since v G hom((G x AG, y), (G, y)), we have y ° TT = y. For (*,, x2) E G x ̂ G, one
has that y(xi) = y(x2). But this means that (X],x2)EG x AG if and only if xt,x2E
y~\a) for a = y(Jfi) = y(x2). This means that

GxAG= U[7" ' (a)xy" l(a)] .

Now y(JC|) = y(Ari,x2) = y(7r(jc,, JC2)) simply means that if AT|,X2E y~\a), then so is
TT(X,, JC2)E y"'(a). Hence TT defines a family of binary operations {ira\aE.A} where
7ra: y"'(a) x y"'(a)-» y"'(a). We have so far a family of systems {(y"'(a), 7ra, M(a))|a £
A} where ira is a binary operation on y~'(a) and ^.(a)E y~'(a). Let us now look at the
"identity diagram" for our group object.

We have

x = pc(a, x) = -IT o M x l c (a , *) =

and

AT = pG(x, a) = 77 o i c x M(x, a) =

Hence fu.(a) is an identity for (y"'(a), 7ra).
Looking at the "associative diagram" for n, we see that we must have TT ° TT X l c =

7r° l c X7r . Take (xu x2, xj E G x AG x AG. Then y(x,) = y(x2) = y(x3) = a and so
xu x2, x3 E y- '(a) . Hence TT ° TT x lc(x, , x2, x3) = 7r(7r(x,, x2), x3) = Tra(TTa(x,, x2), x3)
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18 JAMES R. CLAY

and

TT ° 1 C X TT(Xi, X2, XJ) = TTa(XU TTa(X2, Xj)).

We have just seen that each na is associative.
Turning our attention now to the "inverse diagram" for a, we must have TT ° a x

1G ° A = fi. ° t(G,y). H e r e t{G,y) = y. So

ir ° a x lG o A(x) = TT ° a x lG(x, x) = v(a(x), x)

and

M ° tiG,y)(x) = fi(y(x)) = /n(a)

where x G y~'(a). So we see that x G y~'(a) implies a(jc) G -/"'(a) and so

/x(a) = 77-(a(x), x) = va(a(x), x).
Since /x(a) is the identity of (y~\a), ira), we have that for each a E. A,
(y~'(a), 7ra, /x(a), a|y~'(a)) is a group with the restriction a to y~'(a), a\y~\a), giving
inverses with respect to ira and fj-(a).

This gives us half of the following

Theorem 1. The group objects ((G, y), TT, fi, a) of y(A) are essentially any family
{(y-\a),ira,n(a),aaj\aE.A} of groups where G = UaeA y~\a), /x(a)G y~\a), aa =
«|y~'(a); and TTa = ir\y~\a) x y'\a).

Proof. Let (G, y) be an object of y(A). So y: G -* A is a surjection, and if
a G A, y~\a) #0 . Start with the family {y~\a)\a G A}, a partition on G. For each
a E.A, let ira be a binary operation on y'[(a) so that (y'l(a), Tra) is a group, and let
7T = UaG/t Tra. Then TT(JC, y) = z means that 7ra(x, y) = z for some a E.A where x, y, z G
y"'(a). Hence n:GxAG^>G and y ° TT = y, giving v G hom((G x AG, y), (G, y)). It is
direct to see that TT ° IT X 1 C = TT ° 1G x IT, SO the "associative diagram" is commutative.

Define /u.M-»G by setting fi(a) equal to the identity element of the group
(y-'(a), TTa). Since /tt(a) G y'\a), it follows that /i G hom(C4, lA), (G, y)). Now IT <> M x
lc(a, g) = 7r(/i(a), g) = 7ra(M(a). g) = 5 = Po(a, f), and similarly TT ° 1G x /n = pc , so the
"identity diagram" is commutative.

Finally, define a : G -» G by setting a(g), for g G y~'(a), equal to the inverse of g in
the group (g~'{a), ira). If g £ y " H then a(g)Ey~\a), so y ° a = y and a G
hom((G, y), (G, y)). Now

IT ° a X 1G o A(g) = 77 ° a X lG(g, g) = ir(a(g), g) = 7ra(a(g), g) = n(a) = /u ° y(g),

and so the "inverse diagram" is commutative. This completes the proof.
We now turn our attention to the structure of the endomorphism near-ring

(End((G, y)), +, °) of an arbitrary group object ((G, y), IT, /A, a).
It is immediate that / G End((G, y)) if and only if /(y"'(a)) C y~\a) for each a G A.

Hence / = U a e / , / f l where fa=f\y~\a). For /, h G End((G, y)), f + h = TT °[f,h], so
(/ + fc)(g) = 7r(/(g), /i(g)) = 7rfl(/o(g), /io(g)) = fa(g) + ha(g). This suggests
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NEAR-RINGS AND NEAR-RING MODULES 19

Theorem 2. End((G, y)) = 0 l*eA Map(y-'(a), y

Proof. The discussion above shows that the map /-»(/<,)„£/* is a bijection. Let +a

be defined on Map(y-'(a), y~\a)) by (fa + aha)(g) = ira(fa(g), ha(g)). Then one easily
gets f + h^(fa+aha)aeA = (fa)a£A + (ha)a(=A. Similarly, for gGy-'(a), (f°h)(g) =
f[h(g)]=fa(ha(g)) = (fa°ha)(g), so f°g^>(faoha)a<EA, and we have the isomorphism.

Similarly one gets

Theorem 3. hom((A', TJ), (G, y)) = © S* Map(Tj-'(a ), y~\a)), and

iffG End((G, y)), h £ hom((A-, TJ), (G, y)), f^(fa), and h^(ha),

then

/ o A e hom((A-, T,), (G, r)) and /o ft ̂ ( / f l o / , j G © X* Map(7,-'(a),

4. The fibred product near-rings, etc. for % the category of groups

Fix a group G. We'll first determine the group objects of
Suppose ((X, TJ), ir, ix, a) is a group object of ^(G). Let A = ker TJ and i:A-*Xbt

the insertion map. We must have fj. as the "identity morphism," so TJ %t = 1G. This is
exactly what is needed to say that

0 ^-U^^C »0

is split exact, thus X is isomorphic to a semidirect product Ax eG for some
homomorphism 0:G^>AutA, that (a, *) + (&, y) = (a + 0(Jt)(<>), x + y) defines the
operation in A x G for the group A x eG, and that fj.(g) = (0, g).

We shall now see that A must be abelian. Consider the "identity diagram." The
elements of Gx0X are (g, x) where -qx = g. That is, the elements of G x GX are
exactly the (TJX, X), X G X. Now />X(TJX, X) = x and TT °/i x 1G(TJX, JC) = 7r(fir}X,x).
Hence

n(fLT]X, X) = X.

Similarly one gets
v(x, firix) = x.

Recall (a, b) G X x C X if and only if 17a = r\b. For such an (a, b), (-fi.T]b, -fj.-qa).
(tL-qb, b)(=Xx GX.

But
(a, b) = (a, firia) + {-pn-qb, -firja) + {ix-qb, b),

so

ir(a, b) = ir(a, firfa) + w(-fj.rjb, —fj.-qa) + Tr(fi7jb, b)

= 0 + 7T(jiTJ^Tj(-fc), ^Tj(-fc)) + b

since 17a =
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20 JAMES R. CLAY

Suppose a,b G A = ker 17. Then

v(a,b) = a + b,
and

ir(a, b) = 7r[(a,

= ir[(a,0) + (0,0) + (0, b)].

= 7r[(a, 0) + (0, b)] = ir[(0, b) + (a, 0)]

= TT(0, b)+ir(a,0)

b, b) + n(a, nya) = b + a.

Hence A is abelian.
We'll now see that the "inverse morphism" a is defined by

Since hom((X, 17), (G, 1G)) = {77}, tx = 17. The commutativity of the "inverse
diagram" yields

= 7T o a x \x o [ l x , l

= 77 ° (ajc, x) = ax + fj.r)(—x) + JC.

Hence
a(x) = HT)(X) - x + IJLT){X).

We now have one half of

Theorem 4. The group objects of ^(G) are exactly the quadruples

((A x eG, v), IT, ix, a)

where A is abelian, the short exact sequence

0 *A—'-^AxeG G *0

is split, where i is the insertion map i(a) = (a, 0), where 17 %i = lc, where pig) = (0, g),
where v is defined by

ir(x, y) = x - fir](y) + y,

and where a is defined by

a(x) = fir)(x) -x + fir)(x).

Proof. To finish the proof of this theorem we need only show that split short
exact sequences

0 * A —U A x eG " ^ G * 0,

where A is abelian and fx(g) = (0, g), determine a group object ((A x eG, 17), TT, H, a) of
'S(G). We have already that (A x eG, rj) is an object of 'S(G) and that /i e
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NEAR-RINGS AND NEAR-RING MODULES 21

hom((G, 1G), (A xeG, TJ)). For 77 and a as defined in the theorem, we shall see that
they are morphisms of * (̂G) and that the appropriate diagrams are commutative.

First, consider a. If one lets x = (a, g), y = (b, h)e. A x eG and remembers that
T)(a,g) = g and fi(g) = (O, g), one can see that a:AxeG^AxeG is a group
homomorphism. Since -qa(x) = rffir](x)- T/(JC) + Tj/i.Tj(x) = TJ(JC), it follows that a is a
morphism of ^(G).

For 77, recall that ((a, g), (b, h)) £ (A x eG) x C(A x 9G) implies T/(a, g) = r](b, h), so
g = h. With this in mind and with a fair amount of careful computation, one sees that
IT is in fact a group homomorphism. To see that IT is a morphism of 'S(G), note that

T? o 7r((a, g), (b, h)) = T?[(a, g) - w(b, h) + (b, h)]

e(g)6(-h)(b),g) = g

= rj((a,g),(b,h)),
so 17 ° 77 = rj as desired.

We now take up the matter of commutativity of the various group object diagrams.
We'll first verify that 77 has the "associative property." Note that

77 o 77 x l(((a, g), (b, h)), (c, k)) = ir[ir((a, g), (b, h)), (c, k)]

= 77[(a + e(g)6(-h)(b), g), (c, k)]

= (a + 6(g)6(-h)(b) + 6(gM-k)(c), g)

= (a + b + c, g), since g = h = k.

Next note that

77 o 1 x 77((a, g), ((b, h), (c, k))) = ir((a, g), 77«fo, h), (c, k)))

= (a + d(g)6(-h)(b + d(h)d(-k)(c)),g)

= (a + b + c, g), since g = h = k.
Hence, TT has the "associative property."

Next is fj. and the "identity property." For (g, (a, g)) €E G x C(A x eG)), an arbitrary
element,

77 ° /A x l(g, (a, g)) = n(fi(g), (a, g))

= 77((0, g), (a, g)) = (0 + 6(g )6{-g )(a), g)

= (a, g) = PAXec(S' (a. 8))'

so
77O/1 X l/,x8C = P/*x»G

Similarly one gets

•n"° UxjcXyu, = pAXaG

and so the "identity diagram" is commutative.
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22 JAMES R. CLAY

Finally, we consider the "inverse diagram" and the morphism a. For (a, g) G
AxeG,

v°axl AXeG o A(a, g) = 7r(a(a, g), (a, g))

= Tr(fjL7](a, g) - (a, g) + fj.rj(a, g), (a, g))

= TT((0, g) + (d(g)-\-a), -g) + (0, g), (a, g))

= 7r((-a, 0) + (0, g), (a, g)) = 7r((-a, g), (a, g))

= (-a, g) - fir)(a, g) + (a, g)

= (-a, g) + (0, -g) + (a, g) = (0, g)

and

, g) = n(v(a, g)) = (0, g).
Thus the "inverse diagram" is commutative and so this completes the proof.

We now turn our attention to determining the structure of the endomorphism
near-rings (End(A x eG, TJ), +, <>) for a group object ((.A x eG, TJ), TT, /M, a) of ^(G). For
/ G End(A x eG, TJ) we have TJ °f = TJ and consequently

g = Tj(a, g) = TJ ° /(a, g) = TJ(O, g) = g.

So we have

f(a,g) = (a,g).

Also, ker / C ker TJ = {(a, 0)|a G A}. Suppose

Then one gets that / G Hom(,4, A) directly.
Suppose /(0, g) = (fc(s), g). Then

/(a, g) = f[(a, 0) + (0, #)] = (/(a), 0) + (fc(g), g) = (/(a) + b(g), g).

Also,

(&(£ + g'h g + g') = /(0, g + g') = /(0, g) + /(0, g')

= (fc(g), g) + ( W , ^') = (fr(£) + 0(g)b(g'), g + g').

So t(g + g') = fc(g) + 6(g)b(g') and fc : G -» A is a crossed homorphism. From

= (/(a) + fc(s), g) + (/(a') + ft(g'), g')

= (/(a) + b(g) + 6(g)[l(a') + b(g')], g + g')

and

f(a + e(g)(a'), g + g') = (l(a + 8(g)(a') + b(g + g')), g + g')

we get
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and so

Hence / commutes with each 6(g) E 0(G) C Hom(A, A).
Let <€{A, G) = {/ E Hom{A, A)\l° 0(g) = 0(g) ° / for all g E G}. Then <€(A, G) is a

ring. If Ze(G, A) denotes all crossed homomorphisms from G to A with respect to 6,
then Ze(G, A) is a unitary <£(,4, G)-module.

One easily gets a bijection between End(A x eG, 17) and <€(A, G) x ^ (G , A). Let
/, / ' E End(A x eG, TJ) correspond to (/, b), (/', fc') E <£(A G) x Z»(G, A), respectively.
Now / + / ' = 770 [/,/'], so

(/ + /')(a, g) = 77 o [/, /'](fl, g) = ^(a, g), f'(a, g)]

= f(a,g)-(jiT,f'(a,g) + f'(a,g)

= (/(a) + b(g), g) - ftr,(l'(a) + b'(g), g) + (/'(a) + b'(g), g)

= (/(a) + b(g), 0) + (/'(a) + b'(g),g)

Hence / + / ' corresponds to (/ + l',b + b'). Similarly, / ° f'(a, g) = f(l'(a) + b'(g), g)

and so / » / ' corresponds to (/ °l',l °b' + b). We have therefore Theorem 5. The map

Theorem 5. 77ie map

F: £nd(A x eG, TJ) ̂  <g(A, G) x Z'e(G, A) defined by

F(f) = (/, b)

where f(a,g) = (l(a) + b(g),g), is a near-ring isomorphism onto the abstract affine
near-ring (<€(A, G) x Z'e(G, A), +, •).

We now determine the structure of the End(A x eG, Tj)-groups hom((X, e),
(A x eG, TJ)) for objects (X, e) in $(G), where X is an extension of an abelian B by G
realizing A. We may suppose that X has factor set / : G x G -» B, AT = B x [G,

and e(a,g) = g. Consider FE.hom((X,e),(AxeG,r))). Since TJ ° F = e, we have
F(a, g) = (a, g). From F(a,0) = (l(a),0) we get /EHom(B, A), and from F(O,g) =
(b(g), g), we get F(a, g) = (/(a) + b(g), g).

Now
(0, g')] = F(/(g, g'), g + g')

and
F(0, g) + F(0, g') = (fc(g), g) + (big1), g')

Consequently
0(g)b(g')-lof(g,g').
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We conclude that / ° / G B\(G, A), the coboundaries of G by A. Similar to the case
where X = A x eG, we see that / G <#(A, 0) where

<£(A, 0) = {/ G Hom(B, A)|0(g) ° / = / ° A(g) for all g G G},

a subgroup of Hom(B, A). The condition (*) implies that / belongs to the subgroup

A(f) = {/ G «(A, 0)|/ o / G B\(G, A)}.

For / G A(/), define

58(/ °/) = {b : G -+A\b(g + g') = b(g) + 6(g)b(g') -1 ° f(g, g')}

and

»(/)= U

We have

Lemma 6. 38(/) /s an abelian group, and

is a subgroup.

Proof._ Since Map(G, A) is an abelian group, one needs only to show that
b) - b2G 38(/) for arbitrary bu £2G 38(/). This follows immediately from the fact that
A(J) is a subgroup of <#(A, 0). Obviously 38(0) = Z'e(G, A) and is a subgroup.

Lemma 7. For b E 38(1 ° f), 9B(/ <» /) = 38(0) + fc.

Proof. For fe,G38(O), it is direct to show that bt + b G 38(/ ° f), so 38(0) + bC
38(/ o/). Likewise, if b2G 38(/»/), it follows that b2- b G 38(0), so fc2 = c + * for some
c G 38(0). Hence 38(/ ° / ) C 38(0) + b.

Lemma 8. 38((/, + /2) - / ) = &(/, ° / ) + 38(/2» / )

The proof is directL

Let n:38(/)-» S8(/)/38(O) be the natural map, and define h: A(/)^38(/)/S8(O) by
h(l) = 38(/ °/). Then (38(/), n) and (A(/), /i) are objects in ^(S8(/)/S8(O)), and we have
the following

Theorem 9. As a group,

hom((B x [G, e), (A x eG, v))

is isomorphic to the fibred product

(Alf),h)xmmo)(®(f),n)

and if FGEnd(A x 9G, 17) corresponds to (l,b) as in Theorem 5, and F' G
hom((S x [G, e), (A x eG, TJ)) corresponds to (/', b') as above, then F° F' corresponds
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to (/ °l',l°b' + b), which is, of course, analogous to the multiplication for an abstract
affine near-ring.

Proof. We already have F corresponding to

(/, b) G A(f) x &

The rest is direct using the above lemmas.
The author wishes to express his appreciation to Prof. A. Frohlich for stimulating

conversations concerning the subject matter of this paper. This paper is actually built
upon an example given in a seminar by A. Frohlich and the basic idea of near-rings from
group objects can be seen in Frohlich's early papers on near-rings.
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