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Here we evaluate the skin coefficient of friction for steady turbulent radial wall jets across
smooth and rough surfaces. Although the Colebrook equation has been used successfully
for many decades to evaluate friction factors for flows through smooth and rough pipes,
how roughness affects the skin friction coefficient for steady turbulent radial wall jets
remains unclear. Here we explore a Colebrook-type equation for skin friction coefficients
associated with single-phase turbulent radial wall jets arising from orthogonally impinging
circular jets. The fully iterative solution, based on well-established concepts of turbulent
wall-bounded flow, is presented along with a power-law approximation and a non-iterative
approximation for the friction coefficient derived therefrom. We find the skin coefficient
of friction defined on the peak radial velocity to be a function of position over rough but
not smooth surfaces in contrast to pipe friction factors that remain independent of axial
position. These results follow expected trends, explain prior heterogeneity in power-law
expressions for the skin friction coefficient and have significant implications for the
industrial use of jets in mixing vessels.
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1. Introduction

Radial wall jets play an essential role in many scientific and engineering endeavours, from
modern electronics and medicine to mining and nuclear waste processing. For example,
radial wall jets launch vertical-take-off aircraft, govern the flow of sprays in diesel engines,
suspend and mobilize solids from settled beds and remove particles in computer chip
manufacturing (Glauert 1956; Phares, Smedley & Flagan 2000; Pease, Bamberger &
Minette 2015). Radial wall jets form as circular jets (fully developed or developing from
potential cores) impinge on surfaces (Glauert 1956; Bakke 1957; Bradshaw & Love 1961;
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Figure 1. (a) Essential features of the radial wall jet formed by normal impingement of a circular jet including
the impingement region with Gaussian pressure profile (short dash) and the wall jet region (the focus of this
article) highlighted. The nozzle velocity and diameter are U, and d,, respectively. (b) The velocity profile
in the wall region with elevation scaled on the outer jet thickness, n, versus the local velocity scaled on the
peak velocity, f;, from figures 2, 4 and 7 of Poreh et al. (1967); figure 14 of Beltaos (1976); figure 3 of Rao
(1980); figure 8 of Krishnan & Mohseni (2010); and figure 11-2 of Rajaratnam (1976). The solid black curve
corresponds to Verhoff’s (1963) theoretical approximation (2.43), and the dashed black curve corresponds to
the empirical Weibull distribution reported by Loureiro & Silva Freire (their (2.7)) (2012). The peak velocity
occurs at n =0.237 4 0.064.

Tsuei 1962; Heskestad 1966; Poreh, Tsuei & Cermak 1967; Beltaos & Rajaratnam 1974;
Beltaos 1976; Rajaratnam 1976; Ozdemir & Whitelaw 1992; Loureiro & Silva Freire 2012;
Banyassady 2015; Wu, Banyassady & Piomelli 2016; van Hout, Rinsky & Grobman 2018;
Ronnberg & Duwig 2021). At the point of impingement, Beltaos (1976) and Bradshaw &
Love (1961) show that the local pressure develops an approximately Gaussian distribution
at the wall, with the peak pressure at the point of impingement (see figure 1a). The elevated
pressure at this point drives a transverse velocity, which directs flow radially outward.
This flow may be initially laminar with a peak velocity near the wall and approximately
Gaussian decay from the wall (Kobus, Leister & Westrich 1979). As this velocity profile
progresses radially, a no-slip boundary condition leads to the development of a distinctive
velocity profile (figure 1b) that rises sharply near the wall and then more gradually
attenuates away from the wall. When the inertial forces of the jet exceed the viscous
forces of the fluid, this boundary layer generates vortices such that the radial wall jet
becomes turbulent a short distance from the point of impingement (Phares et al. 2000).
The dynamics of this impingement region has been studied in some detail, including
the influence of surface roughness (Abramovich 1963; Kobus et al. 1979; Rajaratnam &
Mazurek 2005; Wu et al. 2016; van Hout et al. 2018; Ronnberg & Duwig 2021). However,
the friction developed by the fully turbulent radial wall jet outside of the entrance region
where the pressure gradient has vanished is the focus of this article.

Despite decades of investigation, general agreement on the expression for the friction
coefficient for turbulent radial wall jets outside of the impingement region remains
elusive. This is due in part to the selection of power-law expressions to represent friction
factor expressions based on the pioneering work of Prandtl, von Kdrmdn and Glauert
(Colebrook 1939; Glauert 1956). Although engineering expressions for friction factors
for pipe flow quickly migrated to logarithmic expressions based on the ‘law of the wall’,
skin coefficients of friction for radial wall jets persist in using power-law expressions
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(Colebrook 1939). For example, Poreh et al. (1967) express the skin coefficient of
friction as ¢y = 0.06(u,8,n/ p)~03 (r/H)_O'lf’, where u,, is the maximum velocity, &,, is
a characteristic length scale, v is the kinematic viscosity, r is the radius and H is the
standoff distance between the nozzle and the impinged upon surface. Bradshaw & Gee
(1962) give the skin coefficient of friction as ¢f ~ (1 6p,/ p) 0182, Alternatively, Beltaos
(1976) first reports both ¢y = 0.328Re;0'3 for 72 000 < Re, <325 000, where Re, is the
nozzle Reynolds number (their (24)) and ¢f =0.0126 for 31 800 <Re, <55 300 (their

(25)) before summarizing c; = 0.098Re, 15 (their (26)). Rajaratnam (1976) proposes
o = 0.238Re0_0'54 (see his figure 11-17) based on the work of Tsuei (1962). Similarly,

Dawson & Trass (1966) suggest the skin coefficient is proportional to (u,6,,/ )02 or
Re;o'zo. The range of power-law exponents and coefficients is striking, suggesting that
additional factors not previously considered play a vital role, and none of these expressions
accounts for surface roughness often characteristic of practical or engineered surfaces.

Glauert’s seminal article on radial wall jets suggests that one reason for the discrepancy
may arise from approximating the velocity profile near the wall using Blasius’ one-seventh
power-law approximation (Blasius 1912; Glauert 1956). Glauert acknowledges that ‘“This
power-law expression is easier to apply... than is the logarithmic relation which is
theoretically more acceptable’ (p. 634). Yet, the logarithmic law with accommodations
for surface roughness has yet to be applied to radial wall jets. Indeed, Loureiro & Silva
Freire (2012) summarize the sparse analysis of radial wall jets across nominally smooth
surfaces to find sets of law of the wall parameters to be surprisingly heterogeneous.
These expressions were not converted into expressions for skin coefficients of friction,
leaving the best expression for smooth surfaces unclear and the role of surface roughness
completely unexplored. Building on Glauert’s power-law analysis, Verhoff combined a
complementary error function with a one-seventh power law to provide a single and
simple expression for the velocity profile of wall jets (Verhoff 1963). However Rajaratnam
(1967) finds that the one-seventh power law does not strictly hold in the development
of planar wall jets (formed by wide slot or circular nozzles instead of circular jet
impingement), similar to Clauser’s assertion of power-law exponents that range over
1/10-1/3 and Barenblatt & Goldenfeld’s assertion of a power-law exponent of 3/(2In(Re)),
both for pipe flow (Clauser 1956; Barenblatt & Goldenfeld 1995). This is important
because industrial scale vessels where radial jets drive mixing are not ideally smooth
but constructed of practical materials with a finite roughness and may roughen over time
with use. The ‘gold standard’ for friction factor analyses for pipe flow has been the
Colebrook equation (Colebrook 1939). This equation was developed to asymptotically
and smoothly approximate the pipe friction factor for both smooth and rough surfaces.
Recent developments by Afzal et al., provide simple, continuous and accurate expressions
for turbulent flow over smooth, rough and transitional surfaces benchmarked against both
Nikuradse’s classical data and Princeton superpipe experiments, suggesting a compelling
opportunity to revisit and complete this classic jet physics problem (Nikuradse 1933;
Zagarola, Perry & Smits 1997; Afzal, Seena & Bushra 2013).

In the remainder of this article, we first derive the velocity profiles for fully turbulent
radial wall jet equations from conservation of momentum and mass for single-phase jets.
We then combine the inner and outer portion of the velocity profile from which expressions
for the skin coefficient of friction arise naturally. The fully iterative solution (2.35), based
on the well-established asymptotic concepts of turbulent wall-bounded flow in agreement
with Afzal et al. (2013) and in line with Colebrook (1939), is presented along with a
power-law approximation and a non-iterative approximation for the friction coefficient
(Serghides 1984).
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2. Materials and methods

This derivation has three parts. First, we derive the near-wall velocity profile comparing
the logarithmic portion with the velocity expressions of Colebrook (1939) and Afzal et al.
(2013) and briefly review the derivation of the outer portion of the velocity profile. Second,
we determine the skin coefficients of friction for radial wall jets. Third, we generate
power-law and non-iterative approximations of the skin coefficients of friction from the
logarithmic expression and explore the implications thereof for velocity profiles over
smooth and nearly smooth surfaces as a means of comparing with the prior work of others.

2.1. The inner velocity profile
Conservation of momentum after Reynolds averaging leads to

av
p(E—l—v-Vv):—Vgo—i—V < (T+Th), (2.1)
where p is the fluid density, v is the velocity vector, ¢ is time, ¢ is the dynamic pressure,
7 is the deviatoric stress tensor and 7’ is the turbulent Reynolds stress tensor (not a
transpose). For steady-state axisymmetric flow in cylindrical coordinates (r, z, €), the two
components are

av av 9P 19
Y (Ura—rr + Uza—zr> =% + Z(Tzr + 1)+ ;E[r(rrr + 7)1 (2.2a)
and
v v dp 0 19
p (vra—rz + v, a;) =% + Z(rZZ + 1)+ ;E[F(T’Z + 171, (2.2b)

where v, and v, are the r and z components of the velocity, respectively. We may scale r
ond,, zon B,d,, v, on U,, v;on B,U,, ¢ on ,qu/(ﬂrzdo), 7, and 7,;, on nU,/(B-d,) and
7, and T, on uU,/d,, where d, is the nozzle diameter, U, is the nozzle velocity, 8, is
the radial jet spread or arctangent of the angle that the radial wall jet makes with respect
to the wall and p is the dynamic viscosity. Scaling then returns

v 10
Zaa_vzr) = _8;‘0 + (Tzr +7 ) + lgr ?_[r(frr +7 )]» (2.3a)

pie, (755 +7 7

_ av _dv 0 _ 3
:B;LReo (Ura_;Z + Uz_z) = _;‘j + ,Br 97 (TZZ + .L.th) + IBr - ’"(Trz +7 )] (2.3b)

where Re, = pd,U,/;t+ and overbars indicate scaled quantities. Removing ,Brz terms
(,8,2 <« 1) but preserving ﬂ2R60 terms leaves

2 v, _ Jdv, P
B Re, | vy o7 + v, e = T + —(rzr + rzr) (2.4a)
and
0

Therefore, the pressure is very nearly constant vertically, after a Gaussian entrance
region (Beltaos 1976), and the radial component of momentum includes viscous terms
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that persist. In the next section, integration of (2.4a) over z from the wall would find the
radial pressure gradient multiplied by infinity unless the dynamic pressure is set to zero
consistent with both Gaussian decay and the traditional argument of isobaric wall jets
(Beltaos 1976; Rajaratnam 1976). Then without scaling,

Bvr+ ov, 8( 1) 2.5)

Vp— v,— =—(t 7,.). .
PO gy TPV T g T B

This is the starting point for the outer jet analysis. To determine the terms that persist
near the wall, we rescale the velocities on the wall friction velocity, u,,, with (v, v;) =
(uywv;", uyBrvl), lengths on the boundary layer thickness 8, with (r, 2) = (8,r", 8,8,27),

and shear stresses as (T, 7)) = (uuw/(B:8,))(t,t, 7)), so that
vl vt 0
BZRe, (vﬁ Py v;“ﬁ) = az—+(r;+rg,+), (2.6)

where Re, =4d,u,/v, v is the kinematic viscosity and &, =v/u,, so that Re, =1. The
magnitude of the term on the left is then small (87 < 1), leaving

d
d_z(fzr + thr) =0, (2.7)

with scaling removed as the starting point for the inner analysis.
Integrating over z yields

Ty + T = Ty, (2.8)

where the needed constant of integration is defined as t,,, the shear stress at the wall.
Although 7,, is practically constant as a function of z near the wall, this integration step
does not prohibit 7,, from varying radially. Selecting t,, for the integration constant is
justified for a smooth wall (z=0), because the Reynolds stress vanishes due to viscous
damping so that the wall stress is identified precisely with the viscous stress in traditional
form (Reichardt 1951; van Driest 1956). The implication here is compelling because
this is precisely the same expression as is obtained for pipe flow in the vicinity of the
pipe wall (where the wake correction remains negligible), establishing an immediate
synergy between the two geometries as anticipated by the universality of the ‘law of the
wall’. Implementing the Newtonian constitutive equation for the shear stress and Prandtl’s
mixing length hypothesis yields

dv, | dv,
dz | dz’

where [ is Prandtl’s mixing length. As described by van Driest (1956), Prandtl’s mixing
length in the vicinity of a rough surface may be expressed as

Z 60z
l=xz|1l—exp ~ 63 + exp e/ | (2.10)
v

with « as von Karman’s universal constant

dv
Ty = —0 ?

& (2.9)

Kk = ——— =~ 0.407, (2.11)
4\/510g10e

as given by Colebrook’s derivation (1939) though many subsequent authors have treated it
as an empirical variable to be determined experimentally, k is the dimensional roughness,
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and the wall friction velocity is defined as u,, = (7,,/ p)1/2. Alternative expressions for the
mixing length are available (Grifoll & Giralt, 2000). Algebraically isolating the velocity
gradient (positive definite in the vicinity of the wall) with substitution returns

v, T8, 4+ /8,2 412
e . dz, 2.12)
Uy 0 21
or in terms of wall variables (v;" = v,/uy, 27 = z/B,8,, and k* = k/B,8,)
2
R \/1 + 4,3,2K2z+2[1 — exp (—,3,%) + exp (— gg;;)]
v = / - 7t (213)
0 2ﬂriczz+2[l — exp <—,Br%> + exp (— ggﬁ)]

See Scheichl & Kluwick (2013) for an alternative approach to the law of the wall. This
equation provides the near-wall velocity profile for both smooth and rough surfaces. The
limit as z becomes large but not larger than the peak in figure 2 (where [ >> §, so that the
argument of square root above becomes a perfect square) is insightful. Here

vy 1 [*dz 1

RN e (2.14)
w, KJ; 2 kK 2

where the constant z; (essentially a slip length) must account for both the viscous damping
and the influence of roughness. (A no-slip boundary condition strictly holds at the
surface, but because the log law does not include the viscous sublayer a slip layer-like
approximation becomes necessary.) For rough and roughened surfaces Colebrook (1939)

asserts

ko1
2=z + b, (2.15)

based on the impressively precise experimental work of Nikuradse (1933). Afzal et al.
expand the expression to represent the transition region between smooth and rough pipes
for turbulent flow as

21 = ady + Bh(1 — e /200, (2.16)
with a van Driest-type expression with & =e~“%=0.107 and g = e 87 = 0.0314 from

B=5.5 and By =8.5, which close to the values of 1/10 and 1/33 given by Colebrook
(Colebrook 1939; Afzal et al. 2013). Substitution yields

) k
vy = — 1 [a—” + ’3—(1 — ek/265v)] , (2.17a)
K Z z
or in wall variables,
1 o BkT +
e B —e Ak 2.17b
Ur p n |:ﬂrz+ + Z+ ( € ) 9 ( )

which may be compared with the velocity profiles of (2.13) (compare lines in figure 2 from
(2.17) with curves from (2.13) that overlap in the large z* limit). Comparing data with the
curves suggests that the relative roughness, k™, decreases further away from the jet axis,
the cause of which was not discussed by Poreh et al. (1967) but is commensurate with the
analysis below.
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Figure 2. Velocity divided by wall friction velocity, wu/u,, versus elevation divided by boundary layer
thickness, zT, for kT =0.01 (blue long dash), 3 (red short dash), 15 (green dotted) and 60 (brown alternating
dash) using both numerical integration of (2.13) (thick curves) and the logarithmic approximation of (2.17)
(linear on the log linear plot). Experimental data from figure 10 of Poreh et al. (1967) for r = 18 (diamonds),
30 (triangles), 42 (squares) and 66 inches (circles).

2.2. The outer velocity profile
We now multiply (2.5) by r and integrate over z without the scaling

o v o v * 9
f PV r— dz + / pvr— dz = / r—(ty + ) dz. (2.18)
0 or 0 9z 0 0z

Integration by parts with the help of continuity,

arv.  drv; _o. (2.19)
ar a9z
returns
4 oor V2 dz + rpvue | = r(zy, + 1) |5° (2.20)
ar J, oV, 4z PV Vrlg = I(Tzr AR .

The second term on the left vanishes because v, vanishes at the surface due to a no-slip
boundary condition and attenuates far from the surface. The shear stress from the jet must
vanish far from the wall, and the shear stress near the wall must become the wall shear
stress leaving only

o

i prvtdz = —rt,, (2.21a)
0
or with constant density,
d e.¢]
P rv% dz = —rufv, (2.21b)
0

because u,, = (t,,/p)'/? is the wall friction velocity or wall shear velocity. This equation

shows that momentum is preserved except as lost to the wall. Complete solution requires
either an expression for v, or 7,,. The solution below selects the latter and determines an
expression for the skin coefficient of friction.
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A limiting case may be insightful. Consider a radial jet in quiescent media (entering
momentum only from a primary circular jet) so that (2.21a) may be integrated as
r

o bl

27 / prv’dz = = pU2d*y, — 27 / Trdr, (2.22)
0 4 do/2

where the first term on the right represents the momentum from the single circular jet and

the factor

8 dy/2 2
= —— virdr, 2.23

w=ag ), 22
accounts for radial variations in the velocity profile emerging from the nozzle with v,
representing the axial velocity of the primary jet as a function of radius within the nozzle.
For ideal plug flow, ¥, = 1. Equation (2.22) may be simplified by asserting similarity
with v, = v, (r)fr(n,), where the local peak velocity at any radial position, v,, , may be
expressed as

hUyd
Unyr = — r“ 2, (2.24)

with A, as the velocity decay coefficient, and 1, =z/§, assuming the virtual origin of
the radial wall jet to be approximately negligible (see figures 11-14 of Rajaratnam),
where §, = B,r is the characteristic thickness of the jet in the absence of a virtual origin
correction. A skin coefficient of friction may be defined in the Fanning form as

Ty = 5CFOVL (2.25)

(a Darcy form would have a leading coefficient of 1/8). Asserting the skin coefficient
of friction to be strictly constant (true for smooth surfaces as argued below) and the
velocity decay coefficient to be independent of radius to first order (an assertion to be
tested momentarily) returns the velocity decay coefficient

b= 2.26)
8B, o fFdn+4crln i

showing this coefficient to be marginally smaller with friction. However, for many (but
not all) cases, the correction associated with friction is usually second order (<1 %,
see figure 3b) such that the correction remains smaller than experimental uncertainty in
velocity measurement (Poreh ef al. 1967; Rajaratnam 1976). Neglecting the second term
in the denominator, the jet spread may be estimated from

__ W
Br= 5o

8hr fO fr dT]
when /4, is known from experiment. The dependence of the jet spread on angle

of impingement may then be estimated from (2.38) of Beltaos, who considered the
non-normal impingement of a jet on a flat plate to find

(2.27)

(2.28)

where ¢ is the acute angle between the centreline of the jet and the impinged upon plate
(Beltaos 1976). Substitution returns

B Yy sin ¢
Pr= 9.68(1 +cosd)® [ f2dn’
These two equations are used to reduce the information in table 3 of Beltaos for figure 3(a).
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Figure 3. (a) Skin coefficient of friction, c¢f, for rough surfaces versus the B,.hRe, product for k/§, =0
(bottom solid blue, smooth), 0.0001 (long dashed red), 0.001 (short dash green), 0.0l (dotted brown), 0.1
(short alternating dash purple), 0.3 (long alternating gold) and 1.0 (top alternating double dash bright green)
from (2.35). Data (blue circles) from table 3 of Beltaos (1976) with B, and A, from (2.28) and (2.29) with
Y¥p =1 and (red squares) figure 8 of Poreh et al. (1967) with h, = 1.1, B, =0.087 evaluated at r=H. Poreh
et al. indicate a 15 % uncertainty in shear stress measurement. (b) Relative uncertainty from the Serghides-like
approximation ((2.36) and (2.37)) at the same conditions (Serghides 1984).

2.3. The friction coefficient

The friction coefficient may now be determined to complete the solution through provision
of a boundary layer thickness. As mentioned previously, the inner velocity solution is
remarkably similar to that derived for pipe flow by Colebrook (1939). However, here we
diverge from Colebrook in two meaningful ways. First, we define the skin coefficient of
friction, ¢f, following the work of Beltaos (1976) as given in (2.25). Second, whereas
Colebrook was able to determine a location in the pipe where the local velocity equalled
the mean velocity by integrating the well-developed equivalent of (2.5), we must determine
a point in the velocity profile by other means. Here we recognize the extensive data sets
accumulated by others over several prior decades. Reanalysis of their data in figure 1(b)
gives vV =Vy r at Npax = 2/8, = 0.237 £0.064. Averages and standard deviations are only
calculated for points where v,/v,, > 0.98. Substitution of this relationship into (2.17)
yields

Uy
Upr=——1n

(a8, + Bk(1 — e—k/%av))} . (2.30)
K

NmaxOr

Algebraic rearrangement with (2.11) then leaves

1 2 k/§ kRe /c
—— = —4logy 2 max + AL (1 —exp |:——f:|> ; (2.31)
N VNN Nmax/ B 26+/28,
where
1)
Re = Portmr. (2.32)
o

This has a similar form to the traditional Colebrook equation. However, all useful
experimental data correlate back to the nozzle Reynolds number instead of the local
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Reynolds number so that

U,d
REZﬂrhrp olo

= BrhRe,, (2.33)

in the absence of a virtual origin correction, from which

L — _4logy Ol\/z/nmax T k/d, (l —exp [_M]) ] (2.34)
ﬁ ,BrhrReoﬁ Nimax/ B 26\/55,«

Substituting values indicated (from below (2.16) o =0.107, g =0.0314, 7,;4x = 0.237)
returns

L=—4loglo[ 0638 & (1_exp[_MD] (2.35)

36.86,

This is the essential result given herein.

2.4. Non-iterative Serghides-like approximation

Because the original Colebrook equation and the expression evaluated herein are
transcendental, convenient expressions to facilitate calculations remain desirable. Here, we
select the approach developed by Serghides because it is readily implemented without the
need for iteration (Henrici 1964; Serghides 1984). Yet, (2.35) is also of the form x =f(x)
permitting a non-iterative approximation as

)
= (B—A)” (2.36)
o= C—2B+4) ° ‘
with
R 0638 .k ( kB.h,Re, 037
= —410 — €X S ) . a
10| 8 1 Rey  7.555, P17 36.8s,
0.6384 k kB.h.R
B = —4logy, n | — exp | — “PrirReo | 1 (2.37b)
B.hRe, | 7.555, 36.85,A
and
0.638B k kB,h,Re,
C=—4 1 — exp | —Prtrfteo 1) 1 237
. [ BRe, | 7555, ( P [ 36.85,B D] (237¢)

In the absence of the exponential in (2.35) and (2.37), other simplifications may be
available (Corless et al. 1996; Clamond 2009; Schlichting & Gersten 2016).
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2.5. Power-law approximation

As described in the introduction, much of the skin coefficient of friction data have been
plotted as a function of the nozzle Reynolds number in the form of

¢y = mRe)). (2.38)

Reformulating the results of (2.35) into the form of (2.38) provides an additional means of
validating (2.35). Taking the logarithm and derivative gives

p— dhne (2.39)
dInRe,

where m is taken as a constant independent of Re,. Implicit differentiation gives

2 ( 0.638 PrhrReo /C5 i exp [_ 8% BrhrReo 5 ])

_ BrhrReo joj 278 §2 36.8
"= Inx — 0.638  _ PBrhrReo /cf j2 _ k BriuReo S TN (2.40)
YINX =\ Bk Re, J& 78 52XP |75 368
with
0.638 k kB h,Re,  /cf
x= n | — exp |~ PrrReo VG T (2.41)
BrhiReq G 7.558, 36.85,

For smooth surfaces where k < §, (not a particularly restrictive condition because
8r > 6y)
B -2
"= n B Re, Jo + 145

This expression shows that the exponent is not really a constant but depends at least on
the Reynolds number, reminiscent of the exponent of Barenblatt & Goldenfeld (1995)
who suggest n = 3/(2In(Re)) for pipe flow based on incomplete similarity. The power-law
constant, m, is then determined from (2.38).

The presence of a power-law expression presents an opportunity to refine Verhoff’s
(1963) approximation for the scaled velocity profile. In Verhoff’s seminal work, he
multiplies a 1/7th power law (similar to Glauert’s assumption) to ensure a no-slip boundary
condition with a complementary error function to ensure that the velocity distribution
vanishes far from the surface or wall subject to the constraints of f, =0.5 at =1 and a
peak at f. =1 at n =0.16539 to find

(2.42)

£+(n) = 1.4794n"Terfe(0.67753n), (243)

where erfc is the complementary error function (Glauert 1956; Verhoff 1963). One may
determine the velocity profile exponent from the skin coefficient exponent using the
approach of Glauert who asserts that the shear stress is both a constant and has the
same functional form when local variables replace average (or peak) variables. One may
show that the exponent on the near-wall velocity profile, u=ay”, may be expressed
as b=—n/(2+n), when the shear stress, t,, = pCf’ u? /2, and the skin coefficient of
friction, ¢f” = m'(uy/v)" with m’ and n as constants, are expressed in terms of a length y
above the surface and the exponent on this length scale is set to zero to keep the shear
stress constant, where primes indicate quantities specific to this dimensional analysis.
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For Blasius’ exponent of n=—1/4, b=1/7 as asserted by Glauert (Blasius 1912; Glauert
1956). Then we may approximate the velocity profile generally as

fr(n) = A~ T Merfe(By), (2.44)

to the extent that a power-law expression suffices. Here, A and B depend on S,h,Re,
and k/§, subject to the constraints of f,=0.5 at n=1 and a peak of f, =1 at n=nyux
determined from the derivative of (2.44).

3. Results and discussion

Although radial wall jets have been studied experimentally and theoretically for decades,
equations for the skin coefficient of friction specific to radial wall jets are limited to
power-law approximations that disagree regarding the value of the exponent and leading
coefficient and do not account explicitly for surface roughness. In contrast, expressions
for pipe and conduit friction factors that began as power-law expressions (e.g. Glauert’s
1/7th power law) have long since upgraded to expressions (e.g. the Colebrook equation)
that account explicitly for the law of the wall and surface roughness (Colebrook 1939;
Glauert 1956). Including the surface roughness is important to engineering applications
that involve radial wall jet flows over engineering-grade surfaces (instead of the nominally
smooth surfaces characteristic of tailored experiments) or particle beds (e.g. sandy
surfaces).

Although the mathematical development of an equation for the skin coefficient of
friction for radial wall jets above is quite similar to that of Colebrook for pipes, the jet
problem is inherently more intricate than pipe flow, because jet flow above the surface
or wall continues to change with radial distance from the circular jet axis (1939). In
well-developed pipe flow the one-dimensional axial velocity profile depends only on radial
(not axial) position in contrast to two-dimensional self-similar jet flow where radial and
vertical velocities depend on radial and vertical coordinates. Nevertheless, a Moody-type
diagram specific to radial wall jets that explicitly accounts for surface roughness has
been developed (see figure 3a). Equation (2.35) shows that the skin coefficient of friction
depends on two dimensionless groups. Similar to the traditional Colebrook equation for
pipe flow, one group represents relative roughness (k/6,) and the other (Re or B,h.Re,)
contains a Reynolds number that represents a balance between fluid inertia and viscous
forces.

When roughness is negligible (i.e. k/3, < 1), the skin coefficient of friction depends
primarily on the local Reynolds number (Re) or equivalently on the primary jet Reynolds
number (Re, = pU,d,/1t) augmented with a jet spread parameter (S,) that is related to the
arctangent of the jet growth angle and a velocity decay coefficient (%,) that is inversely
proportional to the square root of the jet spread parameter. The three-parameter product
forms a single dimensionless group (B,h,Re,) that governs alone when the boundary
layer exceeds surface roughness. Figure 3 shows that for these smooth surfaces the skin
coefficient of friction decreases monotonically as this dimensionless group increases.
Similar to the Colebrook equation for the pipe friction factor, the skin coefficient of friction
is independent of radial position for radial wall jets (outside of an initial impingement
region (figure 1a) discussed by Rajaratnam (1976) inter alia but not treated explicitly here).

However, when surface roughness is not negligible, the solution for the skin coefficient
of friction becomes more interesting. Generally, as k/§, increases, the skin coefficient
of friction increases similar to the findings of Nikuradse (1933) and Colebrook (1939).
Similar to the recent work of Afzal et al. (2013) we have included a van Driest-type
factor that explicitly accounts for the transition between smooth turbulent flow and rough
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Figure 4. Skin coefficient of friction, cf, as a function of radius from jet axis, r, scaled on jet spread, f,, and
relative roughness, k, for 8,.4,Re, = 1 x 107 (green short dash), 1 x 10° (blue solid) and 1 x 10> (red long
dash).

turbulent flow (van Driest 1956; Afzal et al. 2013). Neglecting this transition region
artificially preserves a monotonic drop in the skin coefficient of friction versus Reynolds
number, whereas including this region makes this function non-monotonic but more
accurate. In contrast, Colebrook’s seminal work did not account explicitly for the transition
region and has been widely adopted in part because neglecting the minimum in the pipe
friction factor characteristic of the transition region inherently provides a safety factor as
pump designers over supply energy to pumping systems (Colebrook 1939).

A surprising feature of the curves in figure 3(a) is that the surface roughness is compared
with the jet width that depends on radial position. In contrast to the pipe flows where the
diameter, the characteristic length scale of that flow, does not change with axial position
(with the exception of telescoping pipes), the jet width, §,, depends explicitly on the radial
distance from the primary circular jet axis, §, = B,r in the absence of a virtual origin
correction. This means that for flow over rough surfaces, in contrast to smooth surfaces,
there is not a single value of the skin coefficient of friction that governs radial wall jets but
a curve that depends on the distance from the primary jet axis (see figure 4). This finding
is commensurate with the scaled velocity profiles in figure 2 that show the scaled velocity
increases further away from the jet as the relative roughness decreases, the cause of which
was not described by Poreh et al. (1967) but is explained by (2.35).

As suggested in figure 1(a), solutions for radial wall jets are not valid within at least
the first nozzle diameter, suggesting that the largest value of the roughness dimensionless
group may be approximated as at most ~k/(S,d,). Thereafter, the relative roughness
inherently decreases inversely proportional to the distance from the primary jet axis. On
a Moody-type diagram (see figure 3a) this progression is represented by a vertically
downward path from ~k/(8,d,), holding B,.h,.Re, constant. Sufficiently far from the
jet axis, all values appear to be smooth asymptotically (see figure 4). In contrast, as
engineering surfaces age (particularly those exposed to hard particulate slurries) they tend
to become rougher, similar to the roughened pipes considered by Colebrook (1939). On a
Moody-type diagram this progression is represented by a vertically upward path from the
initial relative roughness to the final relative roughness, again holding 8,.4,Re, constant.

Similarly for flow over settled particle beds, the roughness may be determined by the
characteristic particle size as suggested by Nikuradse’s seminal experiments in which
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he glued sand particles to the internal diameter of pipes. Colebrook and Moody used
Nikuradse’s values to generate the well-known Moody diagram (Colebrook 1939). By
analogy then, as the particle size increases, k/§, also increases leading to larger skin
coefficients of friction. Although a full analysis of jet mobilization of particle beds remains
outside the scope of this article, this dependence of the skin coefficient of friction or shear
stress on /8, implies that the jet flow applies a larger shear stress over rough surfaces than
smooth surfaces.

Figure 3 also compares experimental data from the literature with the predictions from
theory. The agreement in figure 3(a) is reasonable for both data sets presented, particularly
in light of the ~15 % uncertainty in the shear stress measurement observed in Poreh
et al. (1967). Figure 3(b) also compares the iteratively solved values from (2.35) with the

non-iterative solution of (2.36) and (2.37). Over the usual range of interest (Re, > 10%),
the uncertainty in the non-iterative solution remains <1 %.

Variation in a skin coefficient of friction based on a local peak velocity, v, , shown
in figure 4 is surprising. Other definitions that define the skin coefficient in terms of the
nozzle velocity instead of the local peak velocity decay as 72 or >3, because the velocity
decays as a function of position (Poreh et al. 1967; Rajaratnam 1976). However, defining
the skin coefficient of friction based on the local peak velocity removes this variation so
that the skin coefficient would be expected to be constant (as it is for smooth surfaces).
Yet, figure 4 shows that including roughness introduces a meaningful dependence on
radial position. For example, for a radial wall jet issuing from a 4 inch nozzle traversing a
particle bed w =4 m long with k=310 pwm and g, = 0.09 starts at §,r/k ~ 30 and ends at
Brlk~1200. Over this range, figure 4 shows that the skin coefficient of friction drops
by a factor of three. Similar results are expected for old stainless steel (k=250 pwm).
Alternatively, the same water jet with a nozzle velocity of 8 m s~! traversing new stainless
steel with k=50 pm starts at 8,r/k ~ 180 and ends at 8,7/k ~7200. Over this range with
B/ Re, ~ 0.8 - 10°, figure 4 shows that the skin coefficient of friction drops by >30 %.
However, smooth surfaces asymptotically converge and eventually the skin coefficient of
friction again becomes a constant.

We also developed a power-law approximation to the skin coefficient of friction based
on the law of the wall expressions (2.35) as shown in figure 5. The power-law exponent is
the local tangent to any of the curves in figure 3(a). Unlike prior empirical approximations,
our approximation includes exponents, n, and coefficients, m, that depend on both 8,4,Re,
and k/5,. Comparison of our expressions with literature expressions finds approximate
agreement, explaining some of the variation among them. Remarkably, the classical
Blasius—Prandtl-Glauert expression ((2.31) of Poreh) performs surprisingly well (Glauert
1956; Poreh et al. 1967). Although power-law expressions are inherently limited, they may
be useful over narrow parameter ranges, recognizing that over rough surfaces and as a
function of position the power-law exponent and coefficient may also vary substantially,
attenuating their utility.

The power-law approximations also provide an opportunity to re-evaluate the velocity
profile approximation of Verhoff (1963) ((2.43) and (2.44)). Following the approach
of Glauert (1956), the exponent to the skin coefficient of friction is related to the
near-wall velocity exponent. For a skin friction coefficient exponent of —1/4, the velocity
increases with elevation to the 1/7th power. Figure 6 shows that the selection of 1/7
is Reynolds number specific (8.h,Re, ~ 10%). As the Reynolds number or the relative
roughness increase, this exponent shrinks (figure 6a) lowering the elevation of the peak in
velocity toward the wall (figure 6b). In essence the boundary layer thins and the inviscid
approximation of Phares et al. (2000) is recovered in the limit of very large jet Reynolds
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Figure 5. (a) Power-law exponent, n, versus the g.h,.Re, product for k/5, =0 (bottom solid blue, smooth),
0.0001 (long dashed red), 0.001 (short dash green), 0.01 (dotted brown), 0.1 (short alternating dash purple), 0.3
(long alternating gold) and 1.0 (top alternating double dash bright green). (b) Power-law constant, m, versus
the B,h,Re, product for the same values of k/5,. In both panels, the circles represent (26) of Beltaos (1976), the
squares represent (29) of Poreh ef al. and the diamond represents (31) of Poreh et al. (1967).
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Source Br
Rajaratnam (1976)* 0.087
Launder & Rodi (1983) 0.09 £ 0.005
Krishnan & Mohseni (2010)* 0.16-0.20
Poreh et al. (1967) 0.098(r/H)~0!
Beltaos (1976)" 0.077
Bradshaw & Love (1961) 0.0883
Loureiro & Silva Freire (2012)  0.010

Jit (1976) 0.079—-0.12

Table 1. Summary of jet spreads, .

*Vibrating low Re, jets. T They also give 8, = 0.06, 0.078 and 0.083 for oblique impingement at 15°, 30° and
45°, respectively.

numbers or relative roughness with the peak velocity and perfect slip at the wall and
Gaussian decay in velocity therefrom. The approach of the peak velocity toward the wall
as the nozzle Reynolds number increases is highlighted in figure 7(a) and shown to be
commensurate with prior findings of Poreh et al. (see their figure 3 based on experimental
work of Tsuei) (Tsuei 1962; Poreh ef al. 1967) and also Rajaratnam & Mazurek (2005; see
their figure 5). The other two parameters in the generalized Verhoff profiles (2.44) are also
highlighted in figure 6(c,d), showing that they too depend on the Reynolds number and
relative roughness. Figure 7(b) shows that variation in the jet spread is relatively modest,
commensurate with the variations cited in the literature (table 1). Indeed, variations in
the radial distribution of velocity within the jet nozzle and the velocity decay coefficient
play a larger role in the jet spread than do Reynolds numbers or relative roughnesses. We
caution, however, that these profiles in figures 6 and 7 only apply to smooth surfaces and
some transitionally rough surfaces but not to the fully rough regime.

The skin coefficient of friction appears to be remarkably independent of the standoff
distance, H, for the jet data reanalysed here. Both Poreh er al. (1967) and Rajaratnam
(1976) argue that the standoff distance is important within the impingement region (see
figure 1a). For the remainder of the wall jet, Poreh er al. argue the standoff distance to
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Figure 6. Scaled velocity profile parameters (a) exponent, b, (b) peak, 9;qy, and constants (c) A and (d) B
versus the B,.h,Re, product for k/5, =0 (bottom solid blue, smooth), 0.0001 (long dashed red), 0.001 (short
dash green), 0.01 (dotted brown), 0.1 (short alternating dash purple), 0.3 (long alternating gold) and 1.0 (top
alternating double dash bright green).
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Figure 7. (a) Radial velocity scaled on peak velocity, f,, and elevation scaled on jet width, n, for 8,4,Re, = 10*
(red short dash), 10° (blue solid) and 10° (green long dash) with /6, =0. (b) Jet spread, §,, from (2.27) and
(2.44) with h, =1.1 and ¥, =0.611 from Poreh et al. versus the B.h,Re, product for k/5, =0 (solid blue,
smooth), 0.0001 (long dashed red), 0.001 (short dash green), 0.01 (dotted brown), 0.1 (short alternating dash
purple), 0.3 (long alternating gold) and 1.0 (alternating double dash bright green).

be important as encapsulated in a ratio of the standoff distance to the nozzle diameter
to a small power based on a Buckingham Pi analysis, but the standoff distance was not
varied in their experiments (only diameter in the standoff-distance-to-diameter ratio was).
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In contrast, Rajaratnam’s subsequent Buckingham Pi analysis of additional data sets
including that of Poreh er al. argues the influence of the standoff distance to be essentially
negligible. In our analysis a dependence on the standoff distance would arise either
through the scaled elevation of the maximum in the radial velocity profile or through
the B,.h,Re, dimensionless group. Although the scaled elevation of the maximum in the
radial velocity profile in figure 1(b) shows some scatter, a definitive dependence on the
standoff distance across multiple data sets is not readily apparent. The jet spread and
velocity decay coefficients may be related to the standoff distance through a systematic
virtual origin correction, but this effect remains small (approximately 2 nozzle diameters
in Rajaratnam’s figures 11-14), suggesting that complete resolution of a second-order
influence of standoff distance if present must await more careful experimentation.

In summary, we have developed a general expression for the skin coefficient of friction
for steady turbulent radial wall jets across smooth and rough surfaces outside of the
nearfield impingement region, similar to the Colebrook equation that has been used
successfully to evaluate friction factors for flows through smooth and rough pipes for
decades. Such a general expression for the skin coefficient of friction has been lacking and
resolves inconsistencies across historical power-law expressions. The resulting expression
is consistent with both individual measures of the skin coefficient of friction and with
prior power-law expressions. Surprising, surface roughness introduces an additional radial
dependence that has been unanticipated. This advance has implications for estimating
turbulent radial wall jet performance across aging surfaces that become rough over years
in industrial service. For example, at the Hanford site, radial wall jets may be used to drive
mixing within vessels containing nuclear waste for an intended 40 year lifespan. As the
vessels age and surfaces become roughened over time, the skin coefficient of friction will
increase limiting mixing far from the impingement point. This expression provides a key
ingredient in the analysis of vessel mixing performance.
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