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It has been pointed out repeatedly in the literature that the methods of 
integral geometry (a mathematical theory founded by Wilhelm Blaschke 
and considerably extended by several mathematicians) provide highly suitable 
means for the solution of problems concerning "geometrical probabilities" 
[2; 6; 12; 15]. The possibilities for the application of these integral geometric 
results to the evaluation of probabilities, satisfying certain conditions of 
invariance with respect to a group of transformations which acts on the 
probability space, are obviously not yet exhausted. In this article, such 
applications are presented. First, some concepts and notation are introduced 
(§1). In the next section we derive some integral geometric relations (§ 2). 
These results are generalizations of known systems of formulae and they are 
valid in the ^-dimensional Euclidean space. In § 3, we determine mean-value 
formulae for the fundamental characteristics of point-sets, generated by 
randomly placed convex bodies. In particular, the rotational mean values of 
the fundamental characteristics of a zonotope (and of a parallelotope) with 
given lengths of its edges are investigated (§ 4). Finally, in § 5 we deal with 
the probability laws for certain agglomerations of planes, distributed at 
random in the ^-dimensional Euclidean space. The results in this section 
are the ^-dimensional extensions of some formulae in the special case k = 3, 
which have been developed by Hadwiger and myself in an earlier paper [11]. 

In the present work, some elementary knowledge of integral geometry is 
assumed to be known; in particular, we do not explain the concept of integral 
geometric densities. Details of invariant measures of sets of geometrical 
figures may be found in the introductory texts [1; 6; 8; 15]. 

1. Basic concepts and notation. In order to be able to give precise 
statements about probabilities related to geometrical objects, we have to 
make some assumptions about the class of geometrical entities taken into 
consideration. Usually it is necessary to impose certain conditions on the form 
of these point-sets. Such a class of sets, which is especially suitable for integral 
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geometric calculations, is the class of convex bodies of the ^-dimensional 
Euclidean space S%k. In the following, we introduce some concepts and symbols 
of the theory of convex bodies. 

First we define by the relations ( l ) - (3) some sets of auxiliary numbers, 
which we shall use quite frequently: 

fc/2 

(1) œk: = , . v, volume of the ^-dimensional unit ball 
1 \K J L ~\~ Ï) 

[k = 0 , 1 , 2 , . . . ] , 

(2) ck: = —: coi. . . cojc, complete integral over the group of rotations in 0H 

[k= 1 , 2 , . . . ] , 

(3) c « : = ( * ) ^ = ^ - ^ [ t = l , . . . , * ] , c o . = l [A = 1 , 2 , . . . ] . 
\l/ COi . . . CO* 

A convex body is by definition a compact, convex point-set in g%k. We 
represent by sék the class of all convex bodies of Sftk, by x(A) the functional 
on sék, which assigns the value 0 to the empty set and the value 1 to every 
other element of S$k (characteristic of Euler-Poincaré, see [7]), by Et an 
i-dimensional plane (linear subspace) of 3%k [i = 0, 1, . . . , fe], by Kr^

k) a 
closed ^-dimensional ball of radius r (for k = 0 and any r ^ 0, Kr^

k) 

degenerates, by definition, to a point), and by Z an arbitrarily chosen point 
of S$k, which serves as an origin of £%k. 

It is well known that convex bodies may be generated from other convex 
bodies by certain geometric operations. For instance, it is easy to verify that 

(4) A, B G s#k - • A C\ B G s/k, 

(5) A,B €s/*->AXB € sék. 

Here the signs C\ and X stand for the set-theoretic formation of the intersection 
and the Minkowski addition, respectively. The Minkowski sum A X B of 
the sets A and B is by definition the union of all points, whose radius vector 
p with respect to Z can be represented by p = a + 6, where a is a radius 
vector of a point of A, and b is a radius vector of a point of B. Of course, 
A X B depends on the relative position of A and B with respect to Z. However, 
it is easy to prove that the convex sets, obtained for the different relative 
positions of A and B, can be mapped by translations into one another 
[8, pp. 13 ff., pp. 142 ff.]. The set Ar: = A X Kr^{Z) is conventionally called 
the "exterior parallel set of A in the distance r". AT consists of points of the 
union {U Kr

(k)(p): p Ç A}, where p indicates the centre of the ball. 
Analogously, we understand the ''interior parallel set of A in the distance r" 
to be the set A_r; = {{J p: Kr^

k)(p)C A}. It is well known that if A G s/k, 
then A_r G s/k. 

The fundamental characteristics (Minkowskische Quermassintegrale) are 
often used to describe properties of convex bodies. They comprise a scale of 
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k + 1 non-negative numbers, assigned uniquely to every convex set. These 
numbers may be defined in the following way using the abbrevations (1) 
and (3): 

(6) Wt(A): = ca-i j X(A H £4) dEt [i = 0, 1, . . . ,k - 1], 

Wk(A): = vkX(A). 

In the first relation, the integration of Et is extended over all possible positions 
of Et in &k. Note, however, that X(A C\ Et) = 0 if A Pi Et = 0. The 
differential dEu the so-called "kinematic density of £ / ' , indicates how, in 
fact, the process of integration has to be carried out. (We have dEt = dEt dËu 

where dEt is the point density (volume element) in a plane Ek-.i totally 
orthogonal to Eu and dEt denotes the density with respect to the group of 
rotations (for details see [8, pp. 227, 240]). The fundamental characteristics 
are of special importance since, for every A £ s/k, the following relations 
hold: 

(7) W0(A) = V(A), kW,{A) = F(A), kW*-M) = N{A). 

Here V(A) denotes the volume, F (A) the surface area, and N(A) the norm 
of A. For the dimensions k = 1, 2, and 3, the functions W% are related to 
well-known geometrical quantities which we quote from [8, p. 210]: 

(a) k = 1 (A: linear segment): W0(A) = V(A) = s (A), 
length of segment, Wi(A) = coix(A), 

(b) k = 2 (A: planar convex body): W0(A) = f(A), planar area, 
2Wi(A) = 1(A) length of circumference, W2(A) = œ2x(A), 

(c) k = 3 (A: 3-dimensional convex body): Wo(A) = V(A), volume, 
3Wi(A) = F (A) surface area, 

3W2(A) = M (A) integral of mean curvature, Wz(A) = co3x(^)-

It may be useful to remark that most of the results derived in what follows 
remain valid for many sets which are not convex. With suitable modifications, 
our investigations could also be carried out within the class of so-called 
"normal bodies", which contains the elements of sék\ see [10]. 

Finally, we explain two other notations: By (x .!\,xn) we mean the multi­
nomial coefficient 

I ft \ fi^ 
L , : = v ~ i — ^ n tw» x" = °> integers; X0 + . . . + \n = n], 
\Ao, • • • , Aw/ Aoi • • • Ani 

Furthermore, we call the function 

(9) Rk(xi, . . . , xn) : = X) xvl...xvk 
v\<V2<...<vn 

[xt e 0t [i = 1, . . . ,n], vu . . . , vk Ç {1, . . . , n}] 

(8) 
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the "symmetric polynomial of degree k in the variables x / \ In particular, 
definition (9) implies that 

n 

Ro(xh . . . , xn) : = 1, Ri(xh . . . , xn) =J2 xu 

and 
n 

~K-n\Xlj • • • i Xn) = J_ J[ Xf. 

2. Multiple kinematic and rotational integrals. For our purpose we 
need a generalization of the following two systems of formulae which are of 
great importance for the theory of integral geometry: 

(10) WMo, A,] = fw,(A0 H A1) dA1 = ^ - 2 ) D^W^{Ao)WMi) 

[it = 0 , 1 , . . . , * ; ^ o , ^ i G J**\, withPx,M = 

(11) #,[4,X4i] = Jwii(AoXA1)dÂ1 

co# x=o \ A / 

\M = 0,1 i ; 4 4 i 6 ^ * ] . 

Relation (10) is called the "principal theorem of integral geometry" and is 
due to Blaschke and Santalô [8, p. 244]. It reveals an interesting relationship 
between the integrals of the fundamental characteristics of the intersection 
of A0 and A\ and the fundamental characteristics of these bodies. Note that 
these integrals are extended over all possible positions of A\ in ̂ * , while 
A0 remains fixed, and therefore the result does not depend on the position of 
4̂o in 3%k. dAi denotes the kinematic density of Ai. In a similar way, (11) 

expresses a connection between the rotational integrals of the fundamental 
characteristics of a convex body generated by Minkowski addition, and the 
fundamental characteristics of the involved bodies [8, p. 231]. In this case, 
the integration extends over all rotations of Ai around Z with fixed A0. 
dA i designates the rotational density of A i. 

In order to obtain suitable generalizations of (10) and (11), we now allow, 
not only one, but several movable convex bodies to participate in the formation 
of the integrals. We therefore study the multiple integrals: 

W»[Ao, Al9 . . . , An] = f . . . j W,(A0 r^Alr\...r\An)dAl... dAn 

[M = 0, 1, . . . , *; n = 1, 2, . . . ; A0, Au . . . , An Ç s/k], 

i^Mo XA1X...XAn]=j...J WM* X i i X . . . X 4 ) ^ l i . . . dAn 

[fji = 0, 1, ...,k;n = 1,2, . . . ;A0,A1, . . . , An G sf*l 

\ / C0\ C0K_„ C0„_\ 

https://doi.org/10.4153/CJM-1970-018-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-018-4


GEOMETRIC INTEGRALS 155 

Using (10) and (11), we obtain the recursive formulae 

(12) W,[Ao,A1 An) 

= — E DXl„WXl(AiW^dAo,A2, 
«it Xi=0 

(13) W,\A* XA1X...XAn] 

= c» g A - A W k _ X i { A l ) ^ + X i [ A o XA.X...X An]. 

Repeated application of (12) and (13) leads to the explicit representations: 

WMO,Alt...,An] = feY ±* (nA.^-Ofr i w^^,)) 
i 

with o"i = 22 p̂> o"o = 0, 

and, after some simple transformations, we have: 

(14) 1TMO,AI ^»] = ( - Y z * K(\0,...,\t;rif[WxMi) 
\Vk/ Xo X„ i=0 

with 

(15) Z ( X „ , . . . , X B ; M ) = ( ,
 M )-^-fl^^ 

and 

(16) -JT.UO XA1X...XAn] = fe-Y if» ( * " \ ) f [ W W 4 (). 
\Wjfc/ Xo x„ \ A o , . . . , Aw / isaQ 

The X)* m (14) and (16) is used to indicate that addition is extended over 
all ordered (n + 1)-tuples (Xo, . . . , Xw) of non-negative integers satisfying 
the additional condition 5Z?=i ^* = 5. As we see, it is also possible to represent 
the multiple kinematic and rotational integrals by the fundamental 
characteristics of the involved convex bodies. (14) and (16) are generalizations 
of (10) and (11) since we obtain the latter relations from the former by 
putting n = 1. In the special case k — 3, a derivation of (14) has been given 
by Santalô [14, pp. 32 ff.]. The corresponding formula for k = 2 may be 
found in [1, § 23; 13, pp. 231 ff.]. Finally, we would mention that (14) and 
(16) assume special simple forms in the following cases: 

Wo[A0,Al9...9An] = ck
nfl V(At), 

i=0 

Wk[Ao X Â! X . . . X An] = «*c»" [At ^ 0, • = 0, 1 , . . . , »], 

-T*_iUo X A1 X . . . X An] = C t " è W>-i(At). 

The last result may be deduced directly from the well-known linearity of the 
norm with respect to Minkowski addition. 
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3. Mean-value formulae for randomly generated sets. Given the 
convex bodies Ai [i = 0, . . . , n], the fundamental characteristics of the sets 
A0 H Ai P\ . . . Pi An and A0 X Ax X . . . X An depend only on the position 
of the generating; convex bodies At. Using (14) and (16), we readily obtain 
statements about the mean values, W^AQ C\ AI C\ . . . C\ An) and 
W^iAo X Ai X . . . X An), of the fundamental characteristics 

Wtl(A0r\A1(^ ...r\An) and WMo X i i X . . . X An). 

In a typical probabilistic application, we assume the convex bodies 
At [i = 1, . . . , n] to be in random position in 3%k. The fundamental charac­
teristic of Pl?=o Ai may then be interpreted as random variables. In the 
following, we calculate the expectations of these random variables, having 
restricted the formation of the mean to all positions of the A t which satisfy 
some condition with simple intuitive interpretation. As is usually done when 
problems about geometrical probabilities occur, we assume the positions taken 
into consideration to be equivalent in the probabilistic sense. (For an axiomatic 
foundation of the group-invariant probability theory, see [9].) 

Under the assumption that Ao(^\Ai^0[i= 1, . . . , n] and that the 
position of A 0 is kept fixed, we obtain the following formulae for the means 
of the fundamental characteristics of r\™=0Ai: 

(17) Wt(A<>nA1n...niAn) 

_ / . . . / w,(A0 r\ A1r\...r\An)dA1...dAn 

= <*?W*\A 

fi ïX[A,r\Ai]dAi 

Mi ^ . ] ( n ^ . . ^ < ] ) '• 

Provided that the fundamental characteristics of the generating sets A t are 
known, the right-hand side of (17) can easily be evaluated. 

Example. (For similar problems and their practical applications, see 
[12, pp. 109 ff.].) In the case k = 1, JJL = 0, the convex bodies are linear segments. 
We denote their lengths by Si and assume that these values are positive. 

Ai = 5„ Wo(St) = Si (Si > 0) [i = 0, 1, . . . , n]. 

From (17) it follows that the mean length of the intersection H?=i Si 
(determined under equivalent consideration of all cases Si P\ S0 F^ 0 
[i = 1, . . . , n\) is 

(i8) wlhA)=ihshs[û(i+^V-
This shows that S increases monotonically with increasing length of the 
segments Si [i = 1, . . . , n\. This is also true for s0 if n = 1. In the case 
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n = 2, however, s assumes its maximum for So = -\Z(siS2), provided that Si 
and s2 are kept fixed. More generally, we find that, for n ^ 2, s reaches its 
absolute maximum with respect to s0 when s0 satisfies the equation 

n 

So~l = E !>o + Si]-1. 
i=l 

Formula (17) may be used to solve many similar problems. We limit 
ourselves to pointing out that the expression ^k~

lWk{Cu.=i At) may be 
interpreted as the probability that the common intersection of the n convex 
bodies A t hitting A0 is not empty. This follows immediately from (17). 

(19) Pr\A0nAt ^ 0 [i= l,...,n]-+QAt9*0J = œ^W^ QAt) • 

Applying (19) to our previously mentioned example, we see that 

(20) Pr(So H S, 5* 0 [i = 1, . . . , » ] - > Ô 5* ^ 0J 

= fl(so + siT
1tL-1fls). 

t = l 27=0 \ i=0 / 

In another approach to the problem of finding meaningful mean values, we 
may take into consideration only those positions with fï?=o A t ^ 0. Instead 
of (17), we then obtain the modified values 

J . . . J ^ ( H Al)dA1...dAn 

(17') w*(A0r\A1r\...r\An) = v;-° ^ 
J . . . / x ( QQAiJdA1...dAn 

= c o ^ ^ o , . . . , An](irk[Ao, . • . , 4»])-1 . 

This system of formulae is only of interest for n 9e k; since n = k yields the 
trivial result Wk* = co*. 

Relation (16) is also useful for calculations of expectations. Especially 
interesting are the results obtained by extending the integration over all 
relative positions of Au . . . , An (similar types of expectations are discussed 
in [4]). In order to avoid degenerate cases, we assume in the following that 
none of the considered sets is empty. Under this restriction, we obtain: 

(21) f ^ o X i i X . . . XAn) 

= j •••fWfl(AoXA1X . . . XAn)dÂ!...dÂn 

j ...f x(AoXA!X . . . XAn)dÂi...dÂn 

œk^»(AoX...XAn) 1 i{/ 
- ^k(A0X...XAn) -Ck»ir,[AoXAlX...XAn]. 
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Because of (16), this is equivalent to 

(2i') WM* x A, x ... x An) = X> £* Lk~\)fl w^M>)-
Uk Xo,...,Xn \Ao> • • • , An/ v=0 

In particular, we find for \x — k and ju = k — 1 the simple representations: 

Wk(A0XA1X ...XAn) = co„ 

ir,_i(4o X A1 X . . . X An) = £ ^ _ i 0 4 , ) . 

The results discussed in this section may serve to yield statements of a purely 
geometrical nature. A simple consequence of (17') and (21) is, for instance, 
that it is possible to arrange n + 1 convex bodies with prescribed fundamental 
characteristics W^Ai) in such a way in &k that 

wl HA) ^ w*( h A) 

and 

W»{A* X i4i X . . . X An) ^ W.iAo X 4 i X . . . X An), 

respectively. 
Inequalities of similar form have often been applied with success (see for 

instance [2]). 
It may be helpful sometimes to know estimates in simple form for the 

mean values. One way to obtain suitable inequalities is to take advantage of 
the inequalities of Minkowski which indicate limits for the fundamental 
characteristics. For Av 9e 0 and A„ = 0, 1, . . . k, the following relations hold 
(see [8, p. 278]): 

^ c a - x , ) / * ^ , / * ^ ) <g T7*_x,(i4,) ^ u^'Wt-MA,). 

If we substitute this, for instance, in (21') we obtain the double inequality: 

<*r 2* ( *_ \ ) n v"-/k(Ar) ^ WMO x . . . x An), 
Xo X„ \ A o , • • • , An/ v=0 

W,(Ao X...XAn)^ ^-ik-") 2 * ( * ~ \ )wk^(A„). 
X0,...,Xn \ A 0 , • • • , An/ 

Finally, we would like to mention that, by a well-known procedure [5], it is 
possible to obtain from (14) mean-value formulae related to a lattice of 
convex point-sets. 

4. Rotational means of the fundamental characteristics of a 
zonotope. A zonotope in &k may be represented by n linear segments in 
the following way; 

T = Si X . . . X Sn (see [3, p. 323]). 
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For fixed lengths St of the segments Su the quantities W^{T) depend only on 
the directions of the generating edges. The expectation W^T) with respect 
to all combinations of directions is, according to (21) and (21'), given by: 

W,{T) = W,{S1 X . . . X Sn) = - 4 = r ^ [ S i X & X . . . X 5 J 

A short calculation shows that 
= -ii g* ( *"\)nwws.) 

°>}c Xi X„ \Ai, . . . , An/ i=l 

(22) Wk(S{) = «*, Wt-iiSt) = ^ st, W,(St) = 0 [v = 0 * - 2]. 

Therefore, we obtain: 

W„(T) = 0 [0gp<k-n], 

(23) 

^ ( D = ( ^ ~ / ) ! r _ t - i V - „ ( * i , • • • , sn) [M ̂  * - n and 0 ^ /, ^ £]. 

The polynomials R^^isx, . . . , sn), appearing in this formula, are the functions 
defined by (9). In the special case n = k, the zonotope is sometimes called 
parallelotope [8, p. 16]. (23) shows, for instance, that the rotational mean 
V(T) of a ^-dimensional parallelotope with lengths of edges st [i = 1, . . . , k] 
differs only by a multiplicative constant g(k) from the volume of the 
corresponding orthogonal parallelotope having edges of the same length st. 
Note that g{k) depends exclusively on k. We see that 

Wo(T) = V(T) = g(k)} Rk(sl9 ...,sk)= g(k) n st. 

The factor g(k) is given by 

( 2 4 ) gW " kh»f-1 " **[r(i(* - i ) + i ) ]" ' 

For k = 1, 2, 3, this quantity assumes the values 

g(l) = 1, g(2) = 2/TT, g(3) = TT/8. 

5. Probabilities for agglomerations in the ^-dimensional Euclidean 
space. In this section we derive probabilistic statements concerning 
agglomerations of planes (linear subspaces) which all intersect a given convex 
set. Such questions have been studied in [11] in the special case S%z. In the 
following, some of these problems are investigated for a Euclidean space 
with arbitrary dimension k. 

We assume that B £ s/* and B j* 0. We let £,<*>, . . . , £,<»> denote n 
arbitrary /-dimensional planes in 3%k, subjected to the restriction that they 
have a point in common with B, so that Et

(i) Pi B ^ 0 [i = 1, . . . , n]. 
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Provided that the expression 

Pl: = inf (*; 3 £,<*>: Kt™ C B, £,(*> H £,<*> ^ 0 [» = 1, . . . , n]) 
[* = 1 ,2 , . . . ; /= 1,...,*] 

exists, we denote the so-defined number by pt and call it ''agglomeration 
radius of the planes Ei{i) with respect t o 5 " . It is important to note that, by 
characterizing ph we require only that a ball Kt^

k\ with the specified properties, 
exists; in particular, we do not prescribe the position of Kt

(k) within B. The 
quantity pi may be considered as a measure for the local density of the planes 
within B, and hence comparatively small values of pi indicate special bundling 
effects. 

We now assume the positions of the planes Ei{i) in eft* (except for the 
conditional restriction Ei(i) P\ B ^ 0) to be random in the sense of the 
theory of geometrical probabilities. This implies that the construction of the 
underlying measure for the possibilities of position of the E^l) has to be 
based on the kinematic densities dE^. When pt exists and does not exceed 
r, where r is a fixed number in the interval [0, rB] {rB is the radius of the 
greatest ball contained in B), we say that the planes Ei{i) are bundled by a 
ball of radius r with respect to B. We devote the end of this article to the 
proof that the probability for the occurrence of this event is given by: 

Pr(p* g r) = Pr(£, ( i ) C\ B * 0 [i = 1, . . . , n] 

- > 3 Kr
(k) CB-.EÎ» n i r

w ^ 0 [i= 1 , . . . , » ] ) , 

(n— T)k—nl\ \(ff<*tWt(B)nj 1-Q(r;k,n,l,B) 

(25) 
with 

Q(r; k, n, I, B) = J?^n(K<-x<» • • • , X,; *)[ ft (* t
 X<)]^x0(5- r)/°) 

[* = 1 , 2 , . . . ; / = 0,...,k;n = 1, 2,...;BÇ. sék,B ^ 0;O = r = rB}. 
S 

The ^ ~l] in (25) indicates that addition has to be extended over all 
{n + 1)-tuples of non-negative integers (X0, . . . , \n) with the properties 

n 

£ x« = * [Xi,..., x, ^ k - i] 
i=0 

(no further restriction is made about X0). The constants œk and K(\0, . . . , \n; k) 
are defined by (1) and (15). We notice that the agglomeration probabilities 
Pr(p* S r) are simple functions of the chosen level r, the numbers of dimension 
k and /, and the number n of planes taken into consideration. It is especially 
worthwhile to observe that the dependence on the set B appears only indirectly 
in the formula by means of the fundamental characteristics of B and B_r. 
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Some simple special cases of (25) are: 

/ = 0:Pr(Po g r ) 

= r -^[«t^o^)"]-1 É* ,(K(\o, ...,\n;k) Wu(B_y°) 

(agglomeration of points) 
Xo Xn1 

and 

/ = *: Pr(p* èr)= ^â=à =1 [0 £ r £ rB] 

(agglomeration of the total space). 

The distribution (25) may be used in practical experiments in order to help 
decide whether the hypothesis that the planes are distributed uniformly at 
random in 3%k is reasonable or not. 

Proof of (25). Since the ideas of the reasoning essentially follow the pattern 
of the deduction in the previously investigated case k = 3, we give only the 
main steps of the proof and refer to [11] for further details. In order to be 
able to apply the results (10) and (14) for the evaluation of the required 
agglomeration probabilities, we have to represent the relevant random events 
as intersections of suitably chosen convex bodies. This can be done in the 
following way (the symbol ~ is used to denote congruence) : 

Ao — B_ri AQ = B, 

(26) 
= \\mA(R) [i = 1, . . . ,n] 

22->oo 

Ai*~El = lim,4*(2?) 

[i = 1 , . . . ,n] 

\ with A*(R) = * * ( 0 

,* n A0* * 0-* n AI^Q) . 

with A (R) =KB
a) XKr

(k) 

A simple argument shows that 

(27) Pr(Pl^r) = Pr[At* 

Therefore 

Pr(p/ ^ r) 
f.../ x(A0r\A1(R) n . . . n An{R)) M^R) ... dAn(R) 

[f x(Ao*r\A*(R))dA*(R)T 
= lim ' 

R-ÏOO 

(28) or 

Pr(p; ^ r) = lim ~n M.. ^-TUTvr ZL »r {-WAB,KB
W]Y 

Thus, using (6) and (26), we have found an expression for Pr(pj ^ r) in 
terms of the multiple kinematic integrals discussed in § 2. In order to actually 
be able to take the limit R —» oo, we need explicit expressions for the 
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^-dimensional fundamental characteristics of KBW and KR
{1) X Kr^\ A 

standard calculation leads to the auxiliary formulae 

(29) W,{KR'l)) = \\l) \k-l)C2»R^ [lX-k~ 
10 [y, <k -

(30) ^ " ' X ^ ' ) = g XT(k m")("k+-i) 

<*k 

°>n+m-(k-l) 

We now substitute these data in (10) and (14), and hence reach the following 
representation for the numerator and denominator of (28): 

ar^tlB-r, KR
(l) X K™ KR

(l) X Kr
(k)] 

" { ( f ) " 1 - ^k-)>-1)k-nl • ( t*ik-l] K(Xo, . . . , X»; *) 
W / wk / \xo x„ 

X [ Û C ~l X i ) ] ^ o ( £ - > X o ) i ^ + o{Rnl) [R - co ], 

^ - " ( ^ [ 5 , i ^ » ] ) " = (wk-
1cko)l^lWl{B))nRnl + o ^ ) [i? -> co ]. 

From this, we obtain (25) by forming the quotient and taking the limit as 
prescribed in (28). 

For practical applications, the agglomeration probabilities related to the 
one-dimensional, two-dimensional, and three-dimensional case may be 
especially useful. For k = 3, one obtains from (25) the results derived in [11]. 
We conclude this article by giving a survey of the results in the cases k = 1 
and k = 2. 

The case k = 1. I = 0: agglomeration of points in S%\ 

B = S, Wo(B) = s, W1(B) = ^ , C(B) = 4 T T X ( £ ) , 

(3D Pr(po ^ r) = ^f^ [nV(B_r) + ^ à r] . 

Therefore the probability that n points chosen at random in a segment of 
length s lie in a segment of length / is 

(32) (i _ *)0* + «Q""1
 [t £s]. 

Similar formulae and their connection to the Poisson distribution are compiled 
in [16]. 
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The case k = 2. / = 0: agglomeration of points in S%2\ 

Wo(B) =f(B), W^B) = \l(B), Wt(B) = \C(B), C(B) = 4*x(B)t 

(33) Pr(P0 ^ r) = Jj^f Wf{B-T) + nl{B_T)r + ÎC(3_>2]. 

I = 1: agglomeration of straight lines in 3%2: 

(34) Pr(Pl £ r) = 1KB)}' 
(j)f(B-T) + (j)l(B-r)r + *C(5_r)r2] . 
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