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p-Adic quotient sets: Linear recurrence
sequences with reducible characteristic
polynomials

Deepa Antony and Rupam Barman

Abstract. Let (xn)n≥0 be a linear recurrence sequence of order k ≥ 2 satisfying

xn = a1 xn−1 + a2 xn−2 + ⋅ ⋅ ⋅ + ak xn−k

for all integers n ≥ k, where a1 , . . . , ak , x0 , . . . , xk−1 ∈ Z, with ak ≠ 0. In 2017, Sanna posed an open
question to classify primes p for which the quotient set of (xn)n≥0 is dense in Qp . In a recent paper,
we showed that if the characteristic polynomial of the recurrence sequence has a root ±α, where
α is a Pisot number and if p is a prime such that the characteristic polynomial of the recurrence
sequence is irreducible inQp , then the quotient set of (xn)n≥0 is dense inQp . In this article, we answer
the problem for certain linear recurrence sequences whose characteristic polynomials are reducible
over Q.

1 Introduction and statement of results

For a set of integers A, the set R(A) = {a/b ∶ a, b ∈ A, b ≠ 0} is called the ratio set or
quotient set of A. Many authors have studied the denseness of ratio sets of different
subsets of N in the positive real numbers. See, for example, [4–7, 12, 14–18, 24, 25,
28, 29]. An analogous study has also been done for algebraic number fields, see for
example [9, 27].

For a prime p, let Qp denote the field of p-adic numbers. In recent years, the
denseness of ratio sets in Qp have been studied by several authors, see for example
[1, 3, 8, 10, 11, 19–21, 26]. Let (Fn)n≥0 be the sequence of Fibonacci numbers, defined
by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for all integers n ≥ 2. In [11], Garcia and Luca
showed that the ratio set of Fibonacci numbers is dense in Qp for all primes p. Later,
Sanna [26, Theorem 1.2] showed that, for any k ≥ 2 and any prime p, the ratio set of
the k-generalized Fibonacci numbers is dense in Qp and made the following open
question.

Question 1.1 [26, Question 1.3] Let (Sn)n≥0 be a linear recurrence sequence of order
k ≥ 2 satisfying

Sn = a1Sn−1 + a2Sn−2 + ⋅ ⋅ ⋅ + ak Sn−k ,
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for all integers n ≥ k, where a1 , . . . , ak , S0 , . . . , Sk−1 ∈ Z, with ak ≠ 0. For which prime
numbers p is the quotient set of (Sn)n≥0 dense in Qp?

In [10], Garcia et al. solved the problem partially for second-order recurrences.
Later, in [2], we considered kth-order recurrence sequences for which ak = 1 and
initial values S0 = ⋯ = Sk−2 = 0, Sk−1 = 1. We showed that if the characteristic poly-
nomial of the recurrence sequence has a root ±α, where α is a Pisot number and if
p is a prime such that the characteristic polynomial of the recurrence sequence is
irreducible in Qp , then the quotient set of (xn)n≥0 is dense in Qp . In this article,
our objective is to study the denseness of quotient sets of linear recurrence sequences
whose characteristic polynomials are reducible over Q. Also, we extend [2, Theorem
1.9], which gives condition for the denseness of ratio sets of second order linear
recurrence sequences (xn)n≥0 whose characteristic polynomials are of the form (x −
a)2, to kth order linear recurrence sequences with characteristic polynomials of the
form (x − a)k in the case when the initial values are given as x0 = x1 = ⋅ ⋅ ⋅ = xk−2 = 0,
xk−1 = 1.

In our first theorem, we consider recurrence sequences having characteristic
polynomials whose roots are all distinct.

Theorem 1.2 Let (xn)n≥0 be a linear recurrence of order k ≥ 2 satisfying

xn = b1xn−1 + b2xn−2 + ⋅ ⋅ ⋅ + bk xn−k ,

for all integers n ≥ k, where b1 , . . . , bk , x0 , . . . , xk−1 ∈ Z, with bk ≠ 0 and x0 , x1 , . . . ,
xk−1 not all zeros. Suppose that the characteristic polynomial of (xn)n≥0 is given by

(x − a1)(x − a2) . . . (x − ak),

where a i ∈ Z, a i ≠ a j for 1 ≤ i ≠ j ≤ k, and gcd(a i , a j) = 1 for all i ≠ j. Let p be a prime
such that p ∤ a1a2⋯ak . If x0 = 0, then the quotient set of (xn)n≥0 is dense in Qp.

Example 1.3 Suppose that p1 , p2, and p3 are distinct primes. Let (xn)n≥0 be a linear
recurrence sequence defined by the recurrence relation

xn = (p1 + p2 + p3)xn−1 − (p1 p2 + p1 p3 + p2 p3)xn−2 + (p1 p2 p3)xn−3

for n ≥ 3, where x0 = 0, and x1 and x2 are any integers not both zero. The characteristic
polynomial is equal to (x − p1)(x − p2)(x − p3). Hence, by Theorem 1.2, the quotient
set of (xn)n≥0 is dense in Qp for all primes p ≠ p1 , p2 , p3.

In the following theorem, we consider kth order linear recurrence sequences whose
characteristic polynomials have exactly two equal roots.

Theorem 1.4 Let (xn)n≥0 be a linear recurrence of order k ≥ 3 satisfying

xn = b1xn−1 + b2xn−2 + ⋅ ⋅ ⋅ + bk xn−k ,

for all integers n ≥ k, where b1 , . . . , bk , x0 , . . . , xk−1 ∈ Z, with bk ≠ 0. Suppose that the
characteristic polynomial of (xn)n≥0 is given by

(x − a1)2(x − a2)(x − a3) . . . (x − ak−1),
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p-Adic quotient sets: Linear recurrence sequences 3

where a i ∈ Z, a i ≠ a j for 1 ≤ i ≠ j ≤ k − 1, and x0 = x1 = ⋅ ⋅ ⋅ = xk−2 = 0, xk−1 = 1. Let p
be a prime such that p ∤ a1a2⋯ak−1. If a i /≡ a j (mod p) for all i ≠ j, then the quotient
set of (xn)n≥0 is dense in Qp.

Example 1.5 Given an integer a, let (xn)n≥0 be a linear recurrence sequence defined
by the recurrence relation

xn = 4axn−1 − 5a2xn−2 + 2a3xn−3

for n ≥ 3, where x0 = x1 = 0 and x2 = 1. The characteristic polynomial is equal to
(x − a)2(x − 2a). By Theorem 1.4, the quotient set of (xn)n≥0 is dense in Qp for all
primes p ∤ 2a.

Theorem 1.6 Let (xn)n≥0 be a linear recurrence of order k ≥ 2 satisfying

xn = b1xn−1 + b2xn−2 + ⋅ ⋅ ⋅ + bk xn−k ,

for all integers n ≥ k, where b1 , . . . , bk , x0 , . . . , xk−1 ∈ Z, with bk ≠ 0. Suppose that the
characteristic polynomial of (xn)n≥0 is given by (x − a)k , where a ∈ Z, and x0 = x1 =
⋅ ⋅ ⋅ = xk−2 = 0, xk−1 = 1. If p is a prime such that p ∤ a, then the quotient set of (xn)n≥0
is dense in Qp.

Remark 1.7 Let a ∈ Z. Consider the kth order linear recurrence sequence (xn)n≥0
generated by the recurrence relation

xn = (k
1
)axn−1 − (k

2
)a2xn−2 + ⋅ ⋅ ⋅ + (−1)k−1(k

k
)ak xn−k

for n ≥ k, where x0 = ⋅ ⋅ ⋅ = xk−2 = 0, xk−1 = 1. Then, the quotient set of (xn)n≥0 is dense
in Qp for all primes p not dividing a. This generalizes [2, Theorem 1.9] for the case
k = 2.

Note that a linear recurrence sequence generated by a relation of the above form
may not always have a dense quotient set in Qp . For example, consider the pth order
linear recurrence sequence (xn) generated by the recurrence relation

xn = (p
1
)axn−1 − (p

2
)a2xn−2 + ⋅ ⋅ ⋅ + (−1)p−1(p

p
)apxn−p

for n ≥ p, where the initial values x0 , . . . , xp−1 ∈ Z/{0} have the same p-adic valua-
tion. Then, the quotient set of (xn) is not dense inQp which follows from [2, Theorem
1.10].

In case of third- order recurrence sequences, we prove the following result where
we do not need to fix all the initial values.

Theorem 1.8 Let (xn)n≥0 be a third -order linear recurrence sequence given by

xn = b1xn−1 + b2xn−2 + b3xn−3 ,

for all integers n ≥ 3, where b1 , b2 , b3 , x0 , x1 , x2 ∈ Z, with b3 ≠ 0. Suppose that the char-
acteristic polynomial of (xn)n≥0 is given by (x − a)(x − b)(x − c), where a, b, c ∈Z.
Let p be a prime such that p ∤ abc. Then, the following hold.
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4 D. Antony and R. Barman

(a) Suppose that a = b = c. If p∣x0 and p ∤ 4ax1 − x2 − 3a2x0, then the quotient set
of (xn)n≥0 is dense in Qp . Moreover, if x0 = 0, then the quotient set of (xn)n≥0 is
dense in Qp if and only if 4ax1 ≠ x2.

(b) Suppose that a = c ≠ b. If p∣x0 and p ∤ (a − b) (x2 − x1(a + b) + x0ab), then the
quotient set of (xn)n≥0 is dense in Qp .

Example 1.9 Let a ∈ Z be such that p ∤ a, and let (xn)n≥0 be a linear recurrence
sequence defined by the recurrence relation

xn+1 = 3axn − 3a2xn−1 + a3xn−2

for n ≥ 2, where x0 = 0, and x1 and x2 are any integers satisfying gcd(4a, x2) = 1. Then,
by Theorem 1.8(a), the quotient set of (xn)n≥0 is dense in Qp .

2 Preliminaries

Let r be a nonzero rational number. Given a prime number p, r has a unique repre-
sentation of the form r = ±pk a/b, where k ∈ Z, a, b ∈ N and gcd(a, p) = gcd(p, b) =
gcd(a, b) = 1. The p-adic valuation of r is defined as νp(r) = k and its p-adic absolute
value is defined as ∥r∥p = p−k . By convention, νp(0) = ∞ and ∥0∥p = 0. The p-adic
metric on Q is d(x , y) = ∥x − y∥p . The field Qp of p-adic numbers is the completion
of Q with respect to the p-adic metric. The p-adic absolute value can be extended to
a finite normal extension K over Qp of degree n. For α ∈ K, define ∥α∥p as the nth
root of the determinant of the matrix of linear transformation from the vector space
K over Qp to itself defined by x ↦ αx for all x ∈ K. Also, νp(α) is the unique rational
number satisfying ∥α∥p = p−ν p(α). The ring of integers of K, denoted by O, is defined
as the set of all elements in K with p-adic absolute value less than or equal to one. A
function f ∶ O → O is called analytic if there exists a sequence (an)n≥0 in O such that

f (z) =
∞

∑
n=0

anzn

for all z ∈ O.
We recall definitions of p-adic exponential and logarithmic function. For a ∈ K

and r > 0, we denote D(a, r) ∶= {z ∈ K ∶ ∥z − a∥p < r}. Let ρ = p−1/(p−1).
For z ∈ D(0, ρ), the p-adic exponential function is defined as

expp(z) =
∞

∑
n=0

zn

n!
.

The derivative is given by exp′p(z) = expp(z). For D(1, ρ), the p-adic logarithmic
function is defined as

logp(z) =
∞

∑
n=1

(−1)n−1(z − 1)n

n
.

For z ∈ D(1, ρ), we have expp(logp(z)) = z. If K is unramified and p ≠ 2, then
D(0, ρ) = D(0, 1) and D(1, ρ) = D(1, 1). More properties of these functions can be
found in [13].
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Next, we state a result for analytic functions which will be used in the proofs of our
theorems.

Theorem 2.1 [13, Hensel’s lemma] Let f ∶ O → O be analytic. Let b0 ∈ O be such that
∥ f (b0)∥p < 1 and ∥ f ′(b0)∥p = 1. Then there exists a unique b ∈ O such that f (b) = 0
and ∥b − b0∥p < ∥ f (b0)∥p.

Note that in [13], Gouvêa states Hensel’s lemma for polynomials with coefficients
in O. However, Hensel’s lemma is also true and follows similarly for functions given
by power series with coefficients in the ring O. We will only be considering K = Qp
throughout this article. The following results are useful in proving denseness of
quotient sets.

Theorem 2.2 [20, Corollary 1.3] Let f ∶Zp → Qp be an analytic function with a simple
zero in Zp . Then, R( f (N)) is dense in Qp .

Lemma 2.3 [10, Lemma 2.1] If S is dense in Qp, then for each finite value of the p-adic
valuation, there is an element of S with that valuation.

3 Proof of the theorems

In the proofs, we will use certain representation of the nth term of linear recurrence
sequence in terms of the roots of the characteristic polynomial. More details on such
representations can be found in [23].

Proof of Theorem 1.2 For n ≥ 0, the nth term of the sequence (xn) is given by

xn = c0an
1 + c1an

2 + ⋅ ⋅ ⋅ + ck−1an
k ,

where

C = [c0 c1 . . . ck−1]
t

is given by C = 1
det(A)adj(A) ⋅ X0, where

X0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x0
x1
⋮

xk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1
a1 a2 . . . ak
a2

1 a2
2 . . . a2

k
⋮ ⋮ ⋱ ⋮

ak−1
1 ak−1

2 . . . ak−1
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We define a function f as

f (z) ∶= det(A) [c0 expp (z logp ap−1
1 ) + ⋅ ⋅ ⋅ + ck−1 expp (z logp ap−1

k )] .

Since p ∤ a1a2 . . . ak , f is defined for all z ∈ Zp and f (n) = det(A)xn(p−1) for all
n ∈ Z≥0. Moreover, Z≥0 is dense in Zp . Therefore, f is an analytic function from Zp to
Zp . We have,

f (0) = det(A)(c0 + c1 + ⋅ ⋅ ⋅ + ck−1) = det(A)x0 = 0
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and

f ′(0) = det(A)(c0 logp ap−1
1 + c1 logp ap−1

2 + ⋅ ⋅ ⋅ + ck−1 logp ap−1
k ).

Suppose that f ′(0) = 0. Since gcd(a i , a j) = 1 for all i ≠ j, therefore, ap−1
1 , . . . , ap−1

k are
multiplicatively independent i.e, (ap−1

1 )u1(ap−1
2 )u2 . . . (ap−1

k )uk = 1 for some integers
u1 , u2 , . . . , uk only if u1 = u2 = ⋅ ⋅ ⋅ = uk = 0. Hence,

logp ap−1
1 , logp ap−1

2 , . . . , logp ap−1
k

are linearly independent over Z. Thus, if f ′(0) = 0 then c0 = c1 = ⋅ ⋅ ⋅ = ck−1 = 0 which
is not possible. Hence, f ′(0) is nonzero. Therefore, 0 is a simple zero of f in Zp .
By Theorem 2.2, R( f (N)) = R((xn(p−1))) is dense in Qp . Hence, the quotient set of
(xn)n≥0 is dense in Qp . ∎

Proof of Theorem 1.4 The nth term of the sequence is given by

xn = an
1 (c0 + c1n) + c2an

2 + c3an
3 + ⋅ ⋅ ⋅ + ck−1an

k−1

= an
1 (c0 + c1n + c2(a2a−1

1 )n + c3(a3a−1
1 )n + ⋅ ⋅ ⋅ + ck−1(ak−1a−1

1 )n),

where

C = [c0 c1 . . . ck−1]
t

is given by C = 1
det(A)adj(A) ⋅ X0, where

X0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 . . . 1
a1 a1 a2 . . . ak−1
a2

1 2a2
1 a2

2 . . . a2
k−1

⋮ ⋮ ⋮ ⋱ ⋮
ak−1

1 (k − 1)ak−1
1 ak−1

2 . . . ak−1
k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We define an analytic function f ∶ Zp → Zp as

f (z) ∶= det(A) expp (z logp (a1)p−1)(c0 + c1z(p − 1) + c2 expp (z logp (a2a−1
1 )p−1)

+ ⋅ ⋅ ⋅ + ck−1 expp (z logp (ak−1a−1
1 )p−1)).

Then, f (n) = det(A)xn(p−1) for all n ∈ Z≥0. Also, we have

f (0) = det(A)(c0 + c2 + ⋅ ⋅ ⋅ + ck−1) = det(A)x0 = 0

and

f ′(0) = det(A)(c1(p − 1) + c2 logp (a2a−1
1 )p−1 + ⋅ ⋅ ⋅ + ck−1 logp (ak−1a−1

1 )p−1

+ (c0 + c2 + ⋅ ⋅ ⋅ + ck−1) logp (a1)p−1)
= det(A)(c1(p − 1) + c2 logp (a2a−1

1 )p−1 + ⋅ ⋅ ⋅ + ck−1 logp (ak−1a−1
1 )p−1).

We find that det(A)c1 = (−1)k+1 ∏1≤i< j≤(k−1)(a i − a j). By the hypothesis, we have p ∤
det(A)c1. Using the definition of logp(z), we obtain that p divides logp (a i a−1

1 )p−1

for 2 ≤ i ≤ k − 1. Therefore, p ∤ f ′(0) which implies f ′(0) is nonzero. Hence, 0 is a
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simple zero of f in Zp . By Theorem 2.2, R( f (N)) = R(xn(p−1)) is dense in Qp . Hence,
the quotient set of (xn)n≥0 is dense in Qp . ∎

Proof of Theorem 1.6 The nth term of the sequence is given by

xn = an(c0 + c1n + ⋅ ⋅ ⋅ + ck−1nk−1),

where

C = [c0 c1 . . . ck−1]
t

is given by C = 1
det(A)adj(A) ⋅ X0, where

X0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
a a a . . . a
a2 2a2 22a2 . . . 2k−1a2

⋮ ⋮ ⋮ ⋱ ⋮
ak−1 (k − 1)ak−1 (k − 1)2ak−1 . . . (k − 1)k−1ak−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We simplify C = 1
det(A)adj(A) ⋅ X0 and obtain

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1
c2
⋮

ck−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0
1 1 . . . 1
1 2 . . . 2k−1

⋮ ⋮ ⋱ ⋮
1 (k − 1) . . . (k − 1)k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
⋮

1/ak−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Next, we consider an analytic function f ∶ Zp → Zp defined as

f (z) ∶= det(A) expp (z logp (ap−1))(c0 + c1(p − 1)z + c2(p − 1)2z2+

+ ⋅ ⋅ ⋅ + ck−1(p − 1)k−1zk−1).

Let

h(z) ∶= expp (z logp (ap−1))

and

g(z) ∶= det(A)(c0 + c1(p − 1)z + c2(p − 1)2z2 + ⋅ ⋅ ⋅ + ck−1(p − 1)k−1zk−1).

We have ∥an∥p = 1 and h(n) = an(p−1) for all positive integers n. Hence, ∥h(z)∥p = 1
for all z ∈ Zp . Therefore, f (z) = 0 if and only if g(z) = 0 for some z ∈ Zp . We have,
g(0) = det(A)c0 = det(A)x0 = 0 and g′(0) = det(A)c1(p − 1). Using [22, Lemma
2.2], we find that

c1 =
(−1)k

ak−1(k − 1) .

Thus, c1 ≠ 0 for all k ≥ 2. Therefore, 0 is a simple zero of f in Zp . By Theorem 2.2,
R( f (N)) = R(xn(p−1)) is dense in Qp , which yields that the quotient set of (xn)n≥0
is dense in Qp . ∎
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8 D. Antony and R. Barman

Proof of Theorem 1.8 We first prove part (a) of the theorem. For n ≥ 0, the nth
term of the sequence is given by the formula

xn = an(c0 + c1n + c2n2),

where

c0 = x0 ,

c1 =
4ax1 − x2 − 3a2x0

2a2 ,

c2 = x2 − 2ax1 + a2x0

2a2 .

We define a function f as

f (z) ∶= 2a2 expp(z logp ap−1)(c0 + c1(p − 1)z + c2(p − 1)2z2).

Since p ∤ a, f is defined for all z ∈ Zp and f (n) = 2a2xn(p−1) for all n ∈ Z≥0. Moreover,
Z≥0 is dense in Zp . Therefore, f is an analytic function from Zp to Zp . We have,

f (0) = 2a2c0 = 2a2x0 ≡ 0 (mod p)

and

f ′(0) ≡ 2a2c1(p − 1) = 2a2(4ax1 − x2 − 3a2x0)(p − 1) /≡ 0 (mod p).

Therefore, by Hensel’s lemma, f has a zero z0 in Zp such that z0 ≡ 0 (mod p). Since f
has a power series expansion with p-adic integral coefficients, we have f ′(z0) ≡ f ′(0)
(mod p). Hence, z0 is a simple zero of f in Zp . Therefore, by Theorem 2.2, R( f (N)) =
R((xn(p−1))) is dense in Qp . Hence, the quotient set of (xn)n≥0 is dense in Qp .

Next, if x0 = 0, then c0 = 0 and c1 = 4ax1−x2
2a2 . We have f (0) = 0. Suppose that

4ax1 ≠ x2. Then, f ′(0) ≠ 0 which implies that 0 is a simple zero of f. Therefore, by
Theorem 2.2, the quotient set of (xn)n≥0 is dense in Qp . Conversely, suppose that
4ax1 = x2. This gives c1 = 0, and hence xn = an c2n2. If c2 = 0, then xn = 0 for all n.
If c2 ≠ 0, then the quotient set of (xn)n≥0 is equal to the quotient set of {an n2 ∶ n ∈
Z≥0}. Since νp(an n2) = 2νp(n), the p-adic valuation of these elements is even for all
n ∈ Z>0. Therefore, by Lemma 2.3, the quotient set of (xn)n≥0 is not dense in Qp . This
completes the proof of part (a) of the theorem.

Next, we prove part (b) of the theorem. For n ≥ 0, the nth term of the sequence is
given by

xn = c0an + c1nan + c2bn = an(c0 + c1n + c2(ba−1)n),

where

c0 = b2x0 − 2abx0 − x2 + 2ax1

(b − a)2 ,

c1 =
x2 − x1(a + b) + x0ab

a(a − b) ,

c2 = x2 − 2ax1 + a2x0

(b − a)2 .
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Since p ∤ ab(a − b), we can define an analytic function f ∶ Zp → Zp as

f (z) ∶= expp(z logp ap−1)(c0 + c1z(p − 1) + c2 expp(z logp(ba−1)p−1)),

which satisfies the equation f (n) = xn(p−1) for all n ≥ 0. Now, we have

f (0) = c0 + c2 = x0 ≡ 0 (mod p)

and

f ′(0) = c1(p − 1) + c2 logp(ba−1)p−1 + (c0 + c2) logp ap−1 /≡ 0 (mod p).

Therefore, by Hensel’s lemma, f has a zero z0 in Zp such that z0 ≡ 0 (mod p). Since f
has a power series expansion with p-adic integral coefficients, we have f ′(z0) ≡ f ′(0)
(mod p). Hence, z0 is a simple zero of f in Zp . Therefore, by Theorem 2.2, R( f (N)) =
R(xn(p−1)) is dense in Qp . Hence, the quotient set of (xn)n≥0 is dense in Qp . ∎
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