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Abstract. Let µp be the distribution of a random variable on the interval [0, 1),
each digit of whose binary expansion is 0 or 1 with probability p or 1 − p. Thus
µp = ∗∞

n=1(pδ0 + (1 − p)δ 1
2n

). We show that for any Borel subsets E, F of [0, 1) we have

λ(E + F) ≥ µp(E)αµq(F)β,

where 0 < α, β < 1 with α log a + β log b = log 2 and a = [max{p, 1 − p}]−1,
b = [max{q, 1 − q}]−1. Here λ = µ1/2 denotes Lebesgue measure.

1. Introduction. We define the sum set E + F of subsets E, F of [0, 1) by

E + F = {x + y (mod 1)|x ∈ E, y ∈ F}.

For many years, the measure of algebraic sums of sets has been of interest to
mathematicians. (See for example [4], [5], [6] and [7].) This is because the sum of
“thin” sets can be “thick”. In fact, in 1947, Marshall Hall, Jr. [4] proved that under
certain condition, the sum of two Cantor-type set contains an interval.

It took a surprisingly long time to establish precise measure estimates. After
contributions by Haydon, Talagrand, Hall and Woodall, the basic symmetric results
for the Lebesgue singular measure ν on the Cantor middle-third set were established
independently by Brown and Moran [2] and Hajela and Seymour [5]. This result states
that, for Borel sets E and F , we have

λ(E + F) ≥ ν(E)αν(F)α,

where α = log 3/ log 4.
The first named author set up some analytic inequalities in [1] and we developed

these further to establish several inequalities for the Lebesgue measure of sum sets
where the summands are non-null with respect to singular measures which are
uniformly distributed over a set of numbers missing certain digits in their base 3
or base 4 expansions. An account of these can be found in the University of Adelaide
Ph.D. thesis of the second named author [8]. These results include the basic asymmetric
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version of the Cantor middle-third case. Namely

λ(E + F) ≥ ν(E)αν(F)β,

provided that α + β ≥ log 3
log 2 , 3(α−1 + β−1) ≤ 8 and α, β ≥ log 3

log 2 − 1.
In this paper we establish the basic result for the case in which the singular measures

are determined by coin-tossing. For 0 < p < 1, we let

µp = ∞∗
n=1

(
pδ0 + (1 − p)δ 1

2n

)
,

where δx is the probability measure concentrated on the point x. Note that µp is the
distribution of the random variable, the n-th digit of whose binary expansion is 0 with
probability p and 1 with probability 1 − p.

Brown and Williamson [3] studied sum sets and coin-tossing showing that some
n-fold sum of any Borel set with positive µp measure must have positive Lebesgue
measure. The main result of [3] is as follows.

THEOREM. (Brown and Williamson). Let a = [max{p, 1 − p}]−1. Suppose that
a ≥ 21/n and α = log 2/n log a. Suppose that E1, E2, . . . , En are Borel subsets of [0, 1].
Then

λ(E1 + E2 + · · · + En) ≥ µp(E1)αµ(E2)α · · · µp(En)α.

The technique used to prove the Brown-Williamson theorem is to reduce the
measure theoretical problem to a combinatorial problem. Notice that in the above
theorem, they consider the same measure µp and the same value of α for all subsets Ei.
The natural generalization is to consider different measures µpi and different values of
αi for each subset Ei.

In this paper we consider the Lebesgue measure of a sum set E + F of two subsets
E, F with E and F having positive µp and µq measures respectively, where in general
p �= q. We set up the basic result of the type

λ(E + F) ≥ µp(E)αµq(F)β,

where in general α �= β. We follow the pattern of proof of the above Brown-Williamson
theorem in [3] to reduce the measure theoretical problem to a counting problem and
obtain the related combinatorial result.

We state our main results in Section 2. The proofs will be given in Sections 3 and
4. In Section 5, we consider the size of sum sets in terms of a general coin-tossing
measure µr, (0 < r < 1), rather than only using the specific one λ = µ1/2.

2. Main results

THEOREM 1. Let a = [max{p, 1 − p}]−1, b = [max{q, 1 − q}]−1, where 0 < p, q < 1.
Let 0 < α, β ≤ 1 with

α log a + β log b = log 2.

Then for any Borel subsets E, F of [0, 1] one has

λ(E + F) ≥ µp(E)αµq(E)β. (1)
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To prove Theorem 1, we need the following combinatorial result. To shorten our
notation, we shall use (u, v) to denote max{u, v} from now on.

THEOREM 2. Let p, q, α, β be the same as in Theorem 1. Then, for any 0 ≤ x, y ≤ 1,
we have([

x
p

]α [
y
q

]β

,

[
1 − x
1 − p

]α [
1 − y
1 − q

]β
)

+
([

x
p

]α [
1 − y
1 − q

]β

,

[
1 − x
1 − p

]α [
y
q

]β
)

≥ 2.

(2)

The proof of the results above will be given in Sections 3 and 4. In Section 3
we convert the measure theoretical inequality (1) to the combinatorial inequality (2).
Theorem 2 will be proved in Section 4.

3. Reduction process. The aim of this section is to show that in order to prove
Theorem 1, it is sufficient to prove Theorem 2. In this section, when we consider the
numbers u, v as elements of [0, 1), by u + v we mean u + v(mod 1).

Since µp and µq are regular, we may assume that E and F are closed. In fact, for
any Borel subsets A, B and given ε > 0, there exist closed Aε ⊆ A and Bε ⊆ B such
that µp(Aε) ≥ (1 − ε)µp(A) and µq(Bε) ≥ (1 − ε)µq(B). If Theorem 1 holds for closed
subsets then

λ(A + B) ≥ λ(Aε + Bε) ≥ µp(Aε)αµq(Bε)β

≥ (1 − ε)α+βµp(A)αµq(B)β.

Let

Sn =
{

n∑
i=1

εi

2i
|εi = 0, 1

}
.

Define probability measures µ
(n)
p , µ

(n)
q on Sn by

µ(n)
p = n∗

k=1

(
pδ0 + (1 − p)δ 1

2k

)
and

µ(n)
q = n∗

k=1

(
qδ0 + (1 − q)δ 1

2k

)
.

Assume that E and F are closed subsets of [0, 1). It is easy to see that E + F is also
closed. Define

An =
{

n∑
k=1

εk

2k
|there exist x ∈ E, with x =

∞∑
k=1

εk

2k
, εk = 0 or 1

}
,

and

Bn =
{

n∑
k=1

εk

2k
|there exist x ∈ F , with x =

∞∑
k=1

εk

2k
, εk = 0 or 1

}
.
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Let En = An + [0, 1
2n ] and Fn = Bn + [0, 1

2n ]. We have the following facts.

E =
∞⋂

n=1

En and F =
∞⋂

n=1

Fn. (3)

µ(n)
p (An) = µp(En) and µ(n)

q (Bn) = µq(Fn). (4)

It is easy to see that

E + F =
∞⋂

n=1

(En + Fn). (5)

From (3), (4) and (5) we obtain

λ(E + F) = lim
n→∞ λ(En + Fn),

µp(E) = lim
n→∞ µp(En) = lim

n→∞ µ(n)
p (An)

and

µq(F) = lim
n→∞ µq(Fn) = lim

n→∞ µ(n)
q (Bn).

If we can show that

λ(En + Fn) ≥ µ(n)
p (An)αµ(n)

q (Bn)β,

then we obtain

λ(E + F) = lim
n→∞ λ(En + Fn) ≥ µp(E)αµq(F)β.

However

En + Fn ⊇ An + Bn +
[

0,
1
2n

]

and

lim
n→∞ λ

(
An + Bn +

[
0,

1
2n

])
= lim

n→∞ λ(n)(An + Bn),

where λ(n) is the measure which assigns mass 1
2n to each member of Sn.

Now it will suffice to prove that, for all subsets A, B of Sn, we have

λ(n)(A + B) ≥ µ(n)
p (A)αµ(n)

q (B)β. (6)

We prove (6) by induction. For n = 1, we have λ(1)(A + B) = 1/2 if #(A) = #(B) =
1; or λ(1)(A + B) = 1 otherwise. We need to check only the first case. Now

µ(1)
p (A)αµ(1)

q (B)β ≤ 1
aαbβ

= 1
2
.
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Assume that (6) holds for some n. We show that it holds also for n + 1. In fact, for
arbitrary subsets A, B of Sn+1, we have

A + B =
[

(A0 + B0) ∪
(

A1 + B1 + 2
2n+1

)]

∪
[(

A0 + B1 + 1
2n+1

)
∪

(
A1 + B0 + 1

2n+1

)]
,

where

Ai =
{

n∑
k=1

εk

2k

∣∣∣∣∣
n+1∑
k=1

εk

2k
∈ A with εn+1 = i

}
,

Bi =
{

n∑
k=1

εk

2k

∣∣∣∣∣
n+1∑
k=1

εk

2k
∈ B with εn+1 = i

}
.

The two sets in square brackets are clearly disjoint so that

λ(n+1)(A + B) ≥ 1
2

(
λ(n)(A0 + B0), λ(n)(A1 + B1)

) + 1
2

(
λ(n)(A0 + B1), λ(n)(A1 + B0)

)
.

By induction,

λ(n)(Ai + Bj) ≥ µ(n)
p (Ai)αµ(n)

q (Bj)β.

On the other hand there exist 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 such that

µ(n)
p (A0) =1

p
µ(n+1)

p (A0) = x
p
µ(n+1)

p (A),

µ(n)
q (B0) =1

q
µ(n+1)

q (B0) = y
q
µ(n+1)

q (B).

It follows that

µ(n)
p (A1) =1 − x

1 − p
µ(n+1)

p (A),

µ(n)
q (B1) =1 − y

1 − q
µ(n+1)

q (B).

Therefore,

λ(n+1)(A + B) ≥ 1
2

{([
x
p

]α [
y
q

]β

,

[
1 − x
1 − p

]α [
1 − y
1 − q

]β
)

+
([

x
p

]α [
1 − y
1 − q

]β

,

[
1 − x
1 − p

]α [
y
q

]β
)}

· µ(n+1)
p (A)αµ(n+1)

q (B)β.

By Theorem 2, we have

λ(n+1)(A + B) ≥ µ(n+1)
p (A)αµ(n+1)

q (B)β,

and this completes the induction.
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Now it remains to prove Theorem 2 and this will be done in the next section.

4. Proof of Theorem 2. In this section, we prove Theorem 2. Without loss of
generality, we assume that x ≥ p, y ≥ q. Then (2) becomes[

x
p

]α [
y
q

]β

+
([

x
p

]α [
1 − y
1 − q

]β

,

[
1 − x
1 − p

]α [
y
q

]β
)

≥ 2.

For fixed p, q, α, and β, define

f (x, y) =
[

x
p

]α [
y
q

]β

+
[

x
p

]α [
1 − y
1 − q

]β

,

and

g(x, y) =
[

x
p

]α [
y
q

]β

+
[

1 − x
1 − p

]α [
y
q

]β

.

Then we have that f ′′
xx(x, y) < 0, f ′′

yy(x, y) < 0 and g′′
xx(x, y) < 0, g′′

yy(x, y) < 0 for 0 <

x, y < 1. By the concavity of f (1, y) and the facts that

f (1, q) = 2
pα

> 2

and

f (1, 1) = 1
pαqβ

≥ aαbβ = 2

we see that

f (1, y) ≥ 2 for all q ≤ y ≤ 1.

Obviously, for all q ≤ y ≤ 1 we have

g(p, y) = 2
(

y
q

)β

≥ 2.

Similarly we can show that

f (x, q) ≥ 2 and g(x, 1) ≥ 2,

for p ≤ x ≤ 1. For fixed x ∈ (p, 1), if we have a φ(x) with q ≤ φ(x) ≤ 1 such that

f (x, φ(x)) ≥ 2 and g(x, φ(x)) ≥ 2

then, by the concavity of f (x, y) and g(x, y) with respect to y, we can prove that

f (x, y) ≥ 2 for q ≤ y ≤ φ(x) (7)

and

g(x, y) ≥ 2 for φ(x) ≤ y ≤ 1. (8)

The combination of (7) and (8) will prove Theorem 2.
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Define a function µ(x) for p ≤ x ≤ 1 in the following way: let µ(x) = y0 if f (x, y0) =
2 and f (x, y) < 2 for y0 < y ≤ 1, and µ(x) = 1 otherwise. Since f (x, y) is concave with
respect to y and f (x, q) ≥ 2 for all p ≤ x ≤ 1, we see that µ(x) is well defined and we
have f (x, y) ≥ 2 for q ≤ y ≤ µ(x) and f (x, y) < 2 for µ(x) < y ≤ 1 in the case µ(x) < 1.

Similarly, define ν(x) = y0 if g(x, y0) = 2 and g(x, y) < 2 for q ≤ y < y0, and ν(x) =
q otherwise. Because of the concavity of g(x, y) with respect to y and the fact that
g(x, 1) ≥ 2 for p ≤ x ≤ 1, we know that ν(x) is well defined. Furthermore, we have
g(x, y) ≥ 2 for ν(x) ≤ y ≤ 1 and g(x, y) < 2 for q ≤ y < ν(x) in the case ν(x) > q.

If we have ν(x) ≤ µ(x) then we can define φ(x) to be any number in the interval
[ν(x), µ(x)].

We prove that we have ν(x) ≤ µ(x) for all p ≤ x ≤ 1. First notice that ν(1) ≤ 1 =
µ(1) and ν(p) = q ≤ µ(p). By the concavity of f (x, y) and g(x, y) with respect to x we
can see that µ(x) and ν(x) are non-decreasing and continuous. We take µ(x) as an
example.

Let x1 < x2. By definition, f (x1, y) ≥ 2 for q ≤ y ≤ µ(x1). Recall that we have
f (1, y) ≥ 2 for q ≤ y ≤ 1. Since x1 < x2 ≤ 1, by the concavity of f (x, y) with respect
to x, we have f (x2, y) ≥ 2 for q ≤ y ≤ µ(x1). Hence µ(x2) ≥ µ(x1). Therefore µ(x)
is non-decreasing. If µ is not continuous then, because it is non-decreasing, we have
µ(x0−) < µ(x0) or µ(x0) < µ(x0+) for some p ≤ x0 ≤ 1. In the first case, we claim that
for any µ(x0−) < y ≤ µ(x0) we have f (x0, y) = 2. In fact, by the definition of µ(x0),
it is clear that f (x0, y) ≥ 2, for µ(x0−) < y ≤ µ(x0). If, for some µ(x0−) < y0 ≤ µ(x0)
we have f (x0, y0) > 2, then, since f (x, y0) is continuous, we have limx↑x0 f (x, y0) =
f (x0, y0) > 2. Thus there exists x < x0 with f (x, y0) ≥ 2. Then, by definition, we must
have µ(x) ≥ y0 > µ(x0−), a contradiction. On the other hand, by the definition of
f (x, y), it is impossible that f (x0, y) is constant for y in an interval. Hence we must have
µ(x0−) = µ(x0). The second case is also impossible, since we have

2 ≤ lim
x↓x0

f (x, µ(x0+)) = f (x0, µ(x0+))

from which it follows that µ(x0) ≥ µ(x0+).
Assume that for some p < x < 1 we have µ(x) < ν(x). Let

s = inf{x : µ(x) < ν(x)}
and

t = sup{u : µ(x) < ν(x), s < x < u}.
By the continuity of f , g, µ and ν, we have the following facts:

µ(s) = ν(s), µ(t) = ν(t),

and for all s ≤ x ≤ t

f (x, µ(x)) = g(x, ν(x)) = 2.

Then, for s < x < t, we have

µ′(x) =
[

βp
2α

(
x
p

)1+α (
(1 − µ(x))β−1

(1 − q)β
− µ(x)β−1

qβ

)]−1
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and

ν ′(x) = αq
2β

(
ν(x)

q

)1+α (
(1 − x)α−1

(1 − p)α
− xα−1

pα

)
.

Since µ and ν are non-decreasing, we have µ′(x) ≥ 0 and ν ′(x) ≥ 0. Because 0 < α, β <

1, we see that ν ′(x) is a product of non-negative non-decreasing functions and so is
the reciprocal of µ′(x). Thus ν ′(x) is increasing and µ′(x) is decreasing, for s < x < t.
Since we have µ(x) ≥ ν(x) for x ≤ s and µ(x) < ν(x) for s < x < t, we must have
µ′(s+) < ν ′(s+). Then, by the discussion above, we should have

µ′(x) − ν ′(x) < 0

for s < x < t. But the fact that µ(s) = ν(s) and µ(t) = ν(t) implies that there exists
x0 ∈ (s, t) such that µ′(x0) − ν ′(x0) = 0. This contradiction implies that µ(x) < ν(x) is
impossible. Now we have shown that for all p ≤ x ≤ 1 we have µ(x) ≥ ν(x). The proof
is complete.

5. Generalization. In Theorem 1, we considered the size of sum sets in terms of
Lebesgue measure, λ = µ1/2. In this section, we use general coin-tossing measure µr to
replace Lebesgue measure. Then Theorem 1 can be generalized to the following form.

THEOREM 3. Let a = [max{p, 1 − p}]−1, b = [max{q, 1 − q}]−1 and c =
[min{r, 1 − r}]−1, where 0 < p, q, r < 1. If there exist 0 < α, β ≤ 1 such that

α log a + β log b = log c, (9)

then for any Borel subsets E, F of [0, 1] one has

µr(E + F) ≥ µp(E)αµq(E)β. (10)

Using a similar argument as in the proof of Theorem 1, we can convert the proof
of Theorem 3 to the proof of the following result.

THEOREM 4. Assume that p, q, r and α, β are the same as defined in Theorem 3.
Then for any 0 ≤ x, y ≤ 1 we have

r

([
x
p

]α [
y
q

]β

,

[
1 − x
1 − p

]α [
1 − y
1 − q

]β
)

+ (1 − r)

([
x
p

]α [
1 − y
1 − q

]β

,

[
1 − x
1 − p

]α [
y
q

]β
)

≥ 1.

(11)

Theorem 4 can be proved in the same way as Theorem 2. We need only change the
definitions of f (x, y) and g(x, y) there to

f (x, y) = r
[

x
p

]α [
y
q

]β

+ (1 − r)
[

x
p

]α [
1 − y
1 − q

]β

,
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and

g(x, y) = r
[

x
p

]α [
y
q

]β

+ (1 − r)
[

1 − x
1 − p

]α [
y
q

]β

.

All the arguments there remain valid with some minor changes.

REMARK. Although Theorem 3 generalizes Theorem 1, we have not gone very far.
Notice that the minimal possible value of c is 2, and from (9) we see that the larger the
value of c is, the smaller the range of a, b is. For example, if we let p = q = 1/3, then
Theorem 1 holds for any 0 < α, β < 1 with α + β = log 2/(log 3 − log 2) = 1.7095 · · · .
But for r = 1/3, we do not have 0 < α, β < 1 such that (α + β)(log 3 − log 2) = log 3.
This illustrates the limitation of the generalization. In fact, if (9) holds for some
0 < α, β < 1, we must have ab > c, so that in any circumstances, we have c < 4; that
is 1/4 < r < 3/4.
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