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Abstract
While there are always differences in children’s input, it is unclear how often these
differences impact language development – that is, are DEVELOPMENTALLY MEANINGFUL –
and why they do (or do not) do so. We describe a new approach using computational
cognitivemodeling that links children’s input to predicted language development outcomes,
and can identify if input differences are potentially developmentallymeaningful.We use this
approach to investigate if there is developmentally-meaningful input variation across socio-
economic status (SES) with respect to the complex syntactic knowledge called syntactic
islands. We focus on four island types with available data about the target linguistic
behavior. Despite several measurable input differences for syntactic island input across
SES, our model predicts this variation not to be developmentally meaningful: it predicts no
differences in the syntactic island knowledge that can be learned from that input.We discuss
implications for language development variability across SES.
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1. Introduction

1.1. Identifying if input differences are developmentally meaningful

There is a lot of naturally-occurring variation in children’s input, including how long
children are talked to every day, which people talk to them (e.g., adults, other children), what
environments they experience language interaction in (e.g., home, daycare, school), and
what people talk to them about, among many other types of variation. Importantly, not all
this input variation is DEVELOPMENTALLY MEANINGFUL – that is, not all input variation impacts
language development in a way that causes different trajectories (e.g., measurable delays
in knowledge development) or different knowledge to develop (e.g., dialectal variation).
So, while input differences may appear, the input is not different when it comes to
©The Author(s), 2022. Published by Cambridge University Press. This is anOpenAccess article, distributed under the terms
of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
re-use, distribution and reproduction, provided the original article is properly cited.

Journal of Child Language (2024), 51, 800–833
doi:10.1017/S0305000922000514

https://doi.org/10.1017/S0305000922000514 Published online by Cambridge University Press

https://orcid.org/0000-0001-6987-6092
mailto:lpearl@uci.edu
mailto:ajbates@uci.edu
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/S0305000922000514
https://doi.org/10.1017/S0305000922000514


supporting language development. However, some input variation does indeed impact
language development – this variation is then developmentally meaningful.

For instance, developmentally-meaningful input deficits would lead to language
development delays. As a concrete example, we have evidence that language development
delays appear across socio-economic status (SES), with lower-SES children behind their
higher-SES peers for different components of language development (e.g., vocabulary
development: Hart & Risley, 1995; Hoff, 2003; language processing: Fernald, Marchman,
& Weisleder, 2013). Importantly, variation in children’s input can often predict later
language development (Hart & Risley, 1995; Huttenlocher, Vasilyeva, Cymerman, &
Levine, 2002; Huttenlocher, Waterfall, Vasilyeva, Vevea, & Hedges, 2010; Rowe, 2012;
Weisleder & Fernald, 2013; Hirsh-Pasek, Adamson, Bakeman, Owen, Golinkoff, Pace,
Yust, & Suma, 2015; Schwab & Lew-Williams, 2016), suggesting a causal link between
observed input variation and language development variation, including the observed
language development delays across SES.

Still, when we identify developmental delays that may be linked to variation in
children’s input, it is often unclear which of the known delays may be caused (at least
in part) by which specific input differences, and why. Certainly, there are observed
differences in total input quantity as well as the composition of the input across SES
(though input differences also exist within SES: Blum, 2015; Sperry, D. E., Sperry, L. L., &
Miller, 2018). For instance, when it comes to total input quantity at the word level, some
studies have found that lower-SES children may encounter significantly fewer words of
caregiver speech than their higher-SES peers (Hart & Risley, 1995; Schwab & Lew-
Williams, 2016). For input composition, differences across SES have been observed at
the lexical and foundational syntactic levels (Huttenlocher et al., 2010; Rowe, 2012; Rowe,
Leech, & Cabrera, 2017). These differences include the relative frequency of word types,
word tokens, and rare words, the diversity of syntactic constructions, and the relative
frequency of decontexualized utterances like explanations (Oh, we can’t put them in the
bus because the bus is full of blocks), pretend (I’ll save you from the wicked sister), and
narrations (He is going to look in your nose and your throat and your ears).

Again, what is often unclear is whether a specific measurable input difference matters
for developing a specific component of language. For instance, there are components that
do not appear to be delayed across SES, despite the input differences (e.g., some types of
complex syntactic knowledge: de Villiers, Roeper, Bland-Stewart, & Pearson, 2008;
Vasilyeva, Waterfall, & Huttenlocher, 2008) – that is, some aspects of language develop-
ment remain constant despite contextual variability that surfaces as measurable input
differences (Hoff, 2006). Moreover, there are many components where we simply do not
know if there are developmental delays across SES, despite known input variation.

From an intervention perspective, if we believe an input-based language delay is
occurring, it is important to understand what aspect of the input has the disparity so
that interventions can target that aspect – that is, not only is it useful to know that a
developmentally-meaningful input difference exists, but it is useful to know exactly what
part of the input is in fact impacting the development of specific language knowledge and
why. So, being able to causally link children’s input to their developing language
knowledge is valuable, because this link allows us to predict if a measurable input
difference will potentially cause a difference in language development.

One way to make this causal link between children’s input and their developing
knowledge, often measured via some observable behavior, is to use computational
cognitive modeling (e.g., Dickson, Pearl, & Futrell, 2022; Pearl, 2021; Pearl & Sprouse,
2013, 2015, 2019, 2021; Scontras & Pearl, 2021). A computational cognitive model aimed
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at explaining some component of language development can concretely implement a
specific learning theory that describes how the input is used by children to update their
hypotheses about language over time; children’s language knowledge is then reflected in
their observable language behavior. In this way, computational cognitive modeling
connects theories of language development, empirical data on children’s input, and child
behavioral experiments. Thus, a computational cognitive model allows us to test explicit
hypotheses about the language knowledge that could be derived from the information
available in children’s experience (Hoff, 2006). In other words, a computational cognitive
model can test hypotheses about what particular aspects of the inputmaymatter andwhy.
More specifically, we can use a computational cognitive model to predict if a measurable
input difference will matter for the development of a specific component of language
knowledge – that is, when a difference is predicted to be developmentally meaningful, and
why it is predicted to be developmentally meaningful.

This computational cognitive modeling approach complements a standard way that
relies on correlation to determine if a measurable input difference is developmentally
meaningful: observe some input difference, observe language development outcomes, and
then see if the observed input difference is correlated with any observed outcome
difference. If so, the language input difference MIGHT cause the language development
outcome difference. In this case, targeting the input difference for intervention may lead
to improved language development outcomes (e.g., input-based interventions allowing
lower-SES students to improve their language comprehension: Huttenlocher et al., 2002).
If input-based intervention is indeed effective, this is support that the language input
difference caused the observed language outcome difference, and was therefore develop-
mentally meaningful. However, WHY that input disparity caused the language develop-
ment outcome difference is still unknown. Moreover, carefully designing, implementing,
and evaluating such interventions can often be costly in terms of both time and resources.
Computational cognitive modeling can offer a way to predict beforehand if an input
difference is likely to cause a language development difference, and so help inform the
design of intervention-based approaches that assess if an input difference is develop-
mentally meaningful.

Importantly, because a computational cognitivemodel describes exactly how the input
can cause the predicted knowledge to develop, the model can also determine if an
observed input difference is predicted NOT to be developmentally meaningful – that is,
the model can identify contextual variation surfacing in children’s input that is predicted
not to impact language development (Hoff, 2006). In this case, we would expect an input-
based intervention targeting that aspect of the input to be ineffective at improving
children’s development of the language knowledge that depends on that input aspect.

1.2. Input differences for syntactic island knowledge

Here, we harness this computational cognitive modeling approach to identify if input
differences across SES for certain aspects of complex syntax are predicted to impact
development of that knowledge and so be developmentally meaningful. We focus on a
certain type of complex syntactic knowledge called SYNTACTIC ISLANDS that concerns wh-
dependencies, such aswh-questions (e.g., the acceptableWhodid Lily think the pretty kitty
was for? vs. the far less acceptableWho did Lily think the kitty for was pretty?). In syntactic
theory (Chomsky, 1965, 1973; Ross, 1967), syntactic islands are structures that interfere
with wh-dependencies, so that wh-dependencies crossing them are far less acceptable
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(sometimes called “ungrammatical”). Knowledge of syntactic islands thus allows speakers
to judge which wh-dependencies in their language are more vs. (far) less acceptable; that
is, even if speakers have never heard a particularwh-dependency before, they can use their
knowledge of syntactic islands to judge how acceptable it is. This ability to judge
dependency acceptability means that speakers with knowledge of syntactic islands have
internalized something quite sophisticated about the syntax of wh-dependencies: not
simply how to understand the wh-dependencies that occur in their language, but also
(i) how acceptable different wh-dependencies are, and (ii) which ones are far less
acceptable (and therefore unlikely to occur) because those wh-dependencies cross syn-
tactic islands. From a developmental perspective, we can then investigate how children
come to have this knowledge about syntactic islands, and more specifically, how chil-
dren’s input influences that language development.

We first briefly review what is currently known about the development of wh-
dependency knowledge, particularly with respect to syntactic islands. We then discuss
syntactic island knowledge inmore detail, and describe the particular syntactic islands we
focus on; we selected these islands due to the available empirical data on the behavior that
signals successful knowledge development (specifically, judgment data from adults and
children). We then review a computational cognitive model for learning syntactic islands
that specifies how the input causes the relevant knowledge to develop (Pearl & Sprouse,
2013); this model implements a specific learning theory for how children use their input
to acquire knowledge of syntactic islands. The learning theory implemented in the model
specifies that the relevant aspect of children’s input involveswh-dependencies, which rely
on “wh-words” likewhat andwho in English (among others).We additionally summarize
priormodeling results by Pearl and Sprouse (2013) where themodel learned from higher-
SES child input and successfully demonstrated knowledge of four syntactic islands, as
evidenced by the acceptability judgment patterns it predicted. We hypothesize that
children across SES would use the same learning process to learn about syntactic islands
from their input, as specified by the learning theory implemented in the computational
cognitive model. With this hypothesis in hand, we then use the same computational
cognitive model to investigate the impact of input variation across SES for learning about
syntactic islands.

We begin by looking at the distributions of wh-dependencies in American English
child-directed speech (CDS) between higher-SES and lower-SES populations. We first
provide a descriptive corpus analysis comparing higher-SES to lower-SES input. We then
assess total input quantity differences by deriving realistic estimates of the total quantity
of wh-dependencies that higher-SES vs. lower-SES children would hear by age four; age
four is when children across SES seem to demonstrate some knowledge about one of the
syntactic island types we investigate (de Villiers et al., 2008). This input quantity
assessment highlights what can potentially be a significant difference in total quantity
of wh-dependencies that children hear across SES by age four.

With realistic estimates of the input data to higher-SES and lower-SES children, we
then provide a computational cognitivemodeling analysis of the input composition, using
themodel of Pearl and Sprouse (2013). Themodel predicts the syntactic island knowledge
that higher-SES and lower-SES children would be able to acquire on the basis of theirwh-
dependency input by age four, as evidenced by the acceptability judgment patterns they
would generate for a variety of wh-dependencies.

Our computational cognitive modeling analysis predicts that the lower-SES input
supports the development of knowledge about the four syntactic islands we investigate by
age four just as well as the higher-SES input does. This is true despite the differences in
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both total quantity and the distributions of wh-dependencies. Our results thus suggest
that the input variation across SES is not developmentally meaningful by age four; that is,
the input for learning about these four syntactic islands does not fundamentally differ
across SES. This result accords with known developmental evidence for one type of
syntactic island, and predicts additional developmental similarities for the other three
types we investigate here.

Interestingly, our modeling analysis predicts that a syntactic building block involving
complementizer that (e.g., that in Who do you think that Lily likes?) is crucial for
successfully developing knowledge of two syntactic island types. This building block
comes from a different wh-dependency type in higher-SES CDS vs. lower-SES CDS,
which highlights that surface input composition differences may mask deeper input
composition similarities. We discuss limitations of our current findings, model predic-
tions that are testable with future work, and implications for variability in language
development across SES.

2. The development of wh-dependency knowledge across SES

Currently, less is known about the development of complex syntactic knowledge across
SES (especially with respect to wh-dependencies) than about the development of lexical
and foundational syntactic knowledge. Still, we do know about the development of some
wh-dependency knowledge and a little about the wh-dependency input.

For wh-dependency knowledge, higher-SES English-learning children at 20 months
seem to represent the full structure of wh-dependencies in wh-questions (e.g.,Which cat
did the dog bump?) and relative clauses (e.g., Show me the dog [who the cat bumped]),
rather than relying on vocabulary-based heuristics to understand these wh-dependencies
(Gagliardi, Mease, & Lidz, 2016; Perkins & Lidz, 2020; Seidl, Hollich, & Jusczyk, 2003).
Higher-SES children are also able to correctly repeat back well-formed wh-questions like
Who can Falkor save? and generate new well-formed wh-questions by two and a half to
three years old (Valian & Casey, 2003).

By age four, we see similar knowledge across SES about several aspects of wh-
dependencies (see de Villiers et al., 2008 for empirical data across SES, as well as a review
of prior empirical data from higher-SES children). This knowledge includes sensitivity to
preferred interpretations of certain wh-dependencies – that is, which interpretations are
more or less preferred because those interpretations depend on which wh-dependencies
are more or less preferred.

For instance, four-year-olds (like adults) can interpretwh-dependencies like “How did
the boy say he hurt himself?” with howmodifying the embedded clause verb hurt; so, the
wh-question can be interpreted as asking about how the boy hurt himself. Children as
young as four are also sensitive to the difference between the possible interpretations of
“How did the mom learn what to bake?” The preferred interpretation has howmodifying
the main clause verb learn (i.e., a possible answer is “from a recipe book”); the strongly
dispreferred interpretation has how modifying the embedded clause verb bake (i.e., a
possible answer would be “in a glass dish”).

As another example, four-year-olds across SES are sensitive to the difference between
the possible interpretations of “What is Jane drawing a monkey that is drinking milk
with?” The preferred interpretation has what linked to a position outside the relative
clause (“What is Jane drawing [a monkey that is drinking milk] with__what ?”), with a
possible answer of what Jane is drawing with (e.g., “a pencil”); the strongly dispreferred
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interpretation has what linked to a position inside the relative clause (“What is Jane
drawing [amonkey that is drinkingmilk with __what]?”), with a possible answer of what the
monkey is drinking with (e.g., “a straw”).

So, developmental outcomes by age four across SES are similar with respect to
preferred and dispreferred interpretations for certain wh-dependencies; these interpret-
ations rest on children being sensitive to how preferred (or dispreferred) the differentwh-
dependencies themselves are. These developmental outcome similarities suggest that
input differences across SES for these types of wh-dependency knowledge should not be
developmentally meaningful.

Still, we know much less about any input differences there might be for wh-depend-
encies, let alone how children’s input leads to the development of these types of wh-
dependency knowledge despite any input variation that might be present. More generally,
much remains unknown, including (i) the input variation present across SES for learning
about wh-dependencies, (ii) how the input scaffolds the development of this complex
syntactic knowledge, (iii) why any input variation present does not lead to different
developmental outcomes for certain wh-dependency knowledge across SES by certain
ages, and (iv) whether any input variation present is developmentally meaningful for
other types of wh-dependency preferences that have yet to be assessed in children
across SES.

3. Syntactic islands

A key component of syntactic knowledge is the ability to have long-distance dependen-
cies, where there is a relationship between twowords that are not next to each other. Long-
distance dependencies, such as the wh-dependencies between the wh-word what and eat
in (1), can be arbitrarily long (Chomsky, 1965, 1973; Ross, 1967). In (1), we can see that
this wh-dependency can stretch across one, two, three, or four clauses. In each case, what
is understood as the thing Falkor ate, despite what not being next to eat.

(1) a. What did Falkor eat __what ?
b. What did Atreyu see Falkor eat __what?
c. What did the Childlike Empress say Atreyu saw Falkor eat __what?
d. What did Bastian hear the Childlike Empress say Atreyu saw Falkor

eat __what?

However, adult speakers find different wh-dependencies to be more or less acceptable
(sometimes referred to as “allowed” or “grammatical” vs. “disallowed” or “ungrammatical”),
with somewh-dependencies being far less acceptable than others. Asmentioned previously,
this marked decrease in acceptability has been attributed to specific syntactic structures,
called syntactic islands, that interfere with long-distance dependencies (Chomsky, 1965,
1973; Ross, 1967). Four example syntactic islands are in (2), with * indicating very low
acceptability and […] highlighting the proposed island structure that interferes with a wh-
dependency in English.

(2) a. Complex NP island
*What did Falkor make [the claim [that Atreyu fought __what]]?

b. Subject island
*What did Falkor think [[the joke about __what] was hilarious]?
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c. Whether island
*What did Falkor wonder [whether Atreyu bought __what]?

d. Adjunct island
*What did Falkor worry [if Atreyu buys __what]?

During language development, children must infer and internalize the knowledge that
allows the appropriate preferences for long-distance wh-dependencies. This knowledge
allows them to recognize that the questions in (2) are far less acceptable, while the
questions in (1) aremuchmore so.We note that this recognition is ameasurable behavior
of children’s internalized knowledge – that is, distinguishing more acceptable questions
like (1) from far less acceptable questions like (2) is one way to indicate knowledge of the
relevant syntactic islands (whatever form that knowledge may take).

4. Assessing knowledge of syntactic islands

Previous work assessing children’s knowledge of syntactic islands has focused on which
interpretations of wh-dependencies are preferred, rather than the relative acceptability
of the wh-dependencies directly (Coles-White, de Villiers, & Roeper, 2004; de Villiers,
Roeper, & Vainikka, 1990; de Villiers & Roeper, 1995; de Villiers & Pyers, 2002; de
Villiers et al., 2008; McDaniel, Chiu, & Maxfield, 1995; Otsu, 1981; Roeper & Seymour,
1994; Vainikka & Roeper, 1995). The idea was that it is easier to ask children if they
prefer a particular interpretation that relies on a certain wh-dependency (something
more similar to naturalistic communication) rather than asking children directly how
acceptable they find that wh-dependency (something more meta-linguistic that
requires reasoning about language forms). Suppose children disprefer a certain inter-
pretation (e.g., “What is Jane drawing a monkey that is drinking milk with?” with what
interpreted as “the straw”); this (dis)preference can be interpreted as children finding
the wh-dependency that the interpretation relies on (e.g., “What is Jane drawing
[a monkey that is drinking milk with __what]?”) less acceptable. So, this behavior can
then be interpreted as children knowing about the syntactic island that interferes with
that wh-dependency (e.g., a Complex NP island) – that is, when children disprefer a
particular interpretation, this indirectly indicates their knowledge of a particular
syntactic island: the syntactic island interfering with the wh-dependency that the
dispreferred interpretation relies on.

A more direct way to assess syntactic island knowledge is with the less-natural task of
directly judging how acceptable awh-dependency is (e.g., in the previous work of Sprouse,
Wagers, & Phillips, 2012). When the stimuli are carefully designed (as discussed below),
relative differences in judged acceptability can be used to compare the acceptability of
island-crossing wh-dependencies against the acceptability of wh-dependencies that do
not cross islands, yet are similar in other important ways to the island-crossing ones. The
key idea is that knowledge of the relevant syntactic island is signaled when the island-
crossing wh-dependency is still judged as far less acceptable (Sprouse et al., 2012). We
therefore follow Sprouse et al. (2012), and use acceptability judgment data to indicate
knowledge of syntactic islands, and follow Pearl and Sprouse (2013, 2015) in using these
acceptability judgment patterns as a measurable target state for development. In particu-
lar, following Pearl and Sprouse (2013), the computational cognitivemodel we implement
will attempt to predict the appropriate acceptability judgment patterns found by Sprouse
et al. (2012) that indicate knowledge of different syntactic islands.
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Sprouse et al. (2012) investigated the four islands from (2). A sample stimuli set for each
island type is shown in (3)-(6), where island structures are indicated with […]. These stimuli
were designed using a 2x2 factorial design, involving two factors deemed important for
judging acceptability:wh-dependency length (matrix vs. embedded) and absence/presence of
an island structure in the utterance (non-island vs. island). Each island stimuli set therefore
had fourwh-dependency types:matrixþnon-island, embeddedþnon-island,matrixþisland,
and embeddedþisland. The embeddedþisland stimulus in each case involved an island-
crossing wh-dependency, and so was supposed to be far less acceptable than the others.

(3) Sample Complex NP island stimuli
a. matrixþnon-island

Who __who claimed that Atreyu fought the goblin?
b. embeddedþnon-island

Who did Falkor claim that Atreyu fought __who?
c. matrixþisland:

Who __who made [the claim that Atreyu fought the goblin]?
d. embeddedþisland:

*Who did Falkor make [the claim that Atreyu fought __who]?

(4) Sample Subject island stimuli
a. matrixþnon-island:

Who __who thinks the joke is hilarious?
b. embeddedþnon-island:

What does Falkor think __what is hilarious?
c. matrixþisland:

Who __who thinks the joke about Atreyu is hilarious?
d. embeddedþisland:

*Who did Falkor think [[the joke about __who] was hilarious]?

(5) Sample Whether island stimuli
a. matrixþnon-island:

Who __who thinks Atreyu bought the medallion?
b. embeddedþnon-island:

What does Falkor think Atreyu bought __what?
c. matrixþisland:

Who __who wonders if Atreyu bought the medallion?
d. embeddedþisland:

*What did Falkor wonder [whether Atreyu bought __what]?

(6) Sample Adjunct island stimuli
a. matrixþnon-island:

Who __who thinks Atreyu bought the medallion?
b. embeddedþnon-island:

What does Falkor think that Atreyu bought __what?
c. matrixþisland:

Who __who worries if Atreyu bought the medallion?
d. embeddedþisland:

*What did Falkor worry [if Atreyu buys __what]?
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This design allows syntactic island knowledge to surface as a superadditive interaction of
acceptability judgments; this superadditivity appears as non-parallel lines in an inter-
action plot, such as those in Figure (6), which come from the judgments of higher-SES
adults tested by Sprouse et al. (2012). We briefly review the logic behind this interpret-
ation, as described in Sprouse et al. (2012).

For example, consider the Complex NP plot in the top row, where there are four
acceptability judgments, one for each of the stimuli in (3). The matrixþnon-island
dependency of (3a) has a certain acceptability score – this is the top-lefthand point.
There is a (slight) drop in acceptability when the matrixþisland dependency of (3c) is
judged in comparison to (3a) – this is the lower-lefthand point.We can interpret this as
the unacceptability associated with simply having an island structure in the utterance.
There is also a drop in acceptability when the embeddedþnon-island dependency of
(3b) is judged in comparison to (3a) – this is the upper-righthand point. We can
interpret this as the unacceptability associated with simply having an embedded wh-
dependency. If the unacceptability of the embeddedþisland dependency of (3d) were
simply the result of those two unacceptabilities (having an island structure in the
utterance and having an embedded wh-dependency), the drop in unacceptability
would be additive and the lower-righthand point would be just below the upper-
righthand point (and so look just like the points on the lefthand side). However, this is
not what we see. Instead, the acceptability of (3d) is much lower than this. This
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Figure 1. Higher-SES adult acceptability judgments from Sprouse et al. (2012), showing means and standard
deviations of adult judgments. These judgments are interpreted as demonstrating implicit knowledge of four
syntactic islands via a superadditive interaction of acceptability judgments for the selectedwh-dependencies that
cross dependency length (matrix vs. embedded) with the absence/presence of an island structure (non-island
structure vs. island structure) in a 2 x 2 factorial design
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much-lower acceptability is a superadditive effect for the embeddedþisland stimuli.
So, the additional unacceptability of an island-crossing-dependency like (3d) – inter-
preted by Sprouse and colleagues (Pearl & Sprouse, 2013, 2015; Sprouse et al., 2012) as
implicit knowledge of syntactic islands – appears as a superadditive interaction in these
types of acceptability judgement plots. This superadditive acceptability judgment
pattern appears for all four island types tested by Sprouse et al. (2012) from (2):
Complex NP, Subject, Whether, and Adjunct islands.

5. Linking children’s input to syntactic island development

From a computational cognitive modeling standpoint, a modeled learner who can
successfully acquire knowledge from its input of any of the four syntactic islands, as
measured via acceptability judgments like those of Sprouse et al. (2012), should be able
to reproduce the superadditive judgment pattern described above. So, the target
behavior for successful development is generating the superadditive judgment pattern
for a set of wh-dependency stimuli associated with a particular syntactic island. Pearl
and Sprouse (2013) proposed a concrete learning theory – the first of its kind – to
specify a precise quantitative link between children’s input and this measurable output
behavior, and then implemented this learning theory in a computational cognitive
model.1

This learning theory is based on the intuition that children will learn what they can
from all the wh-dependencies available in the input, rather than ones that are identical to
the wh-dependencies they need to judge the acceptability of. To do this, the learning
theory proposes that children break wh-dependencies they encounter into smaller
building blocks that can be used to construct any wh-dependency, and not necessarily
just thewh-dependencies they have encountered before. So, these smaller building blocks
comprise the internalized knowledge that corresponds to syntactic island knowledge –
that is, by drawing on these learned building blocks, children can generate acceptability
judgements, just as they would presumably draw on their syntactic island knowledge to
generate acceptability judgments.

Pearl and Sprouse (2013) evaluated their computational cognitivemodel by allowing it
to learn from a realistic sample of higher-SES CDS, and then seeing if it could generate the
superadditive acceptability judgment patterns from Sprouse et al. (2012). They found that
the modeled learner could indeed generate the appropriate patterns (see Figure 2). This
finding supported the learning theory implemented in the model for explaining the
development of syntactic island knowledge in higher-SES children. Additionally, the
specific finding thatwh-dependencies crossing ComplexNP islands are far less acceptable
(Figure 2, upper left) aligns with higher-SES child wh-dependency (dis)preferences at age

1We note that there are several more recent computational modeling approaches using non-symbolic
frameworks such as LSTMs (see Linzen and Baroni 2021 for a review) that have also been used to learn about
syntactic knowledge, including syntactic islands. However, these models do not, to our knowledge, imple-
ment a concrete learning theory – or at least not one that is easy to interpret from the model (see Pearl, 2019
and Linzen and Baroni 2021 for more discussion on this point). Thus, these models contrast with the Pearl
and Sprouse model used here, which implements an easy-to-interpret learning theory for syntactic islands.
Another more recent computational cognitive model by Dickson et al. (2022) encodes an easy-to-interpret
learning theory that learns about syntactic islands as a by-product of learning how to efficiently represent the
structure ofwh-dependencies. We discuss alternative modeling approaches further in the general discussion.
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four for wh-dependencies crossing Complex NP islands (de Villiers et al., 2008); this
alignment also supports the learning theory implemented in the model. Because the
model could match available data on output behavior when it learned from children’s
input, we use it here as a tool for evaluating variation in children’s input.

The model’s learning theory assumes children can characterize a wh-dependency as a
syntactic path from the head of the dependency (e.g.,What in (7)) through a set of phrase
structures that contain the tail (e.g., __what) of the wh-dependency, as shown in (7a)-(7b).
These structures correspond to phrase types thatmake upwh-dependencies, such as Verb
Phrases (VP), Inflectional Phrases (IP), and Complementizer Phrases (CP), among
others. Importantly, these are the structures that wh-dependencies would cross to create
the link between the head of the dependency and the tail of the dependency. Under this
view, children simply need to learn how acceptable the syntactic paths are for different
wh-dependencies, which cross different phrase structures.

The learning process itself is implemented as a probabilistic learning algorithm
that tracks local pieces (i.e., the building blocks) of these syntactic paths. The learning
algorithm assumes the learner breaks the syntactic path into a collection of “syntactic
trigrams” (groups of three units derived from the syntactic path) that can be combined

Figure 2. Higher-SES child judgments generated from the computational cognitive model in Pearl and Sprouse
(2013). These generated judgements can be interpreted as demonstrating implicit knowledge of four syntactic
islands via a superadditive interaction of acceptability judgments for the selected wh-dependencies that cross
dependency length (matrix vs. embedded) with the absence/presence of an island structure (non-island structure
vs. island structure) in a 2 x 2 factorial design. Log probabilities correspond to acceptability judgments, with log
probabilities closer to 0 indicating higher acceptability
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to reproduce the original syntactic path, as shown in (7c).2 The modeled learner then
tracks the frequencies of these syntactic trigrams in the input, encountering one data
point at a time. After the learning period is complete, the modeled learner uses these
learned frequencies to calculate probabilities for all syntactic trigrams potentially
comprising a wh-dependency3 and so generate the probability of any wh-dependency
(as shown in (8)-(9)). More specifically, any wh-dependency’s probability is the
product of the individual trigram probabilities that comprise its syntactic path, as
shown in (10). Importantly, relying on the frequencies of syntactic trigrams (rather
than the frequencies of entire wh-dependencies) allows the modeled learner to
generate probabilities for any wh-dependency, including wh-dependencies that it
has never seen before in its input. So, an unseen acceptable wh-dependency can still
have a higher probability than an unseen one that is less acceptable, depending on the
syntactic trigrams comprising each wh-dependency.

(7) What did Falkor claim that Atreyu fought__what?
a. Syntactic structures containing the wh-dependency:

What did [IPFalkor [VP claim [CP that [IP Atreyu [VP fought__what]]]]]?
b. Syntactic path of wh-dependency:

start-IP-VP-CPthat-IP-VP-end
c. Syntactic trigrams T ∈ syntactic path:

= start-IP-VP
IP-VP-CPthat

VP-CPthat-IP
CPthat-IP-VP

IP-VP-end

(8) Smoothed probabilities of trigrams:

p(start-IP-VP) ≈ count start�IP�VPð Þ
total count of all trigrams

…
p(IP-VP-end) ≈ count IP�VP�endð Þ

total count of all trigrams

(9) Probability of new wh-dependency: What did Engywook tell Atreyu __what?
Syntactic structures = What did [IP Engywook [VP tell Atreyu __what?]]
Syntactic path = start-IP-VP-end
trigrams = start-IP-VP, IP-VP-end
Probability = p(start-IP-VP-end) = p(start-IP-VP)*p(IP-VP-end)

2For discussion of the motivation for the model’s implementation choices, including using information
only from wh-dependencies, using trigrams as opposed to n-grams of other sizes, the specification of the
trigrams as comprised of these particular phrase structures, when special start and end symbols are added,
calculating trigram probabilities, and the method of aggregating trigrams into a wh-dependency, see Pearl
and Sprouse (2013).

3The modeled learner smooths these probabilities by adding 0.5 to all trigram counts. This smoothing
allows the modeled learner to generate a non-zero probability for wh-dependencies composed of trigrams it
has never seen before. However, it gives these wh-dependencies a much lower probability than wh-
dependencies composed of trigrams it has in fact seen before. See Pearl and Sprouse (2013, 2015) for further
discussion of this point.
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(10) General formula for generating a wh-dependency’s probability:Q
trigram∈Tp trigramð Þ

The probability generated by the modeled learner corresponds to how acceptable thewh-
dependency is predicted to be. In this way, themodeled learner can generate judgments of
wh-dependencies. If the learner can generate the same pattern of judgments that adults
do, we can interpret this predicted judgment behavior as the learner internalizing some
version of the knowledge adults use to make those judgments. In this case, that means the
modeled learner has internalized knowledge (via the syntactic trigrams) that allows it to
replicate the knowledge contained in syntactic islands. So, we can interpret this as the
modeled learner having learned about those syntactic islands.

For the stimuli sets used by Sprouse and colleagues (Pearl & Sprouse, 2013, 2015;
Sprouse et al., 2012), eachwh-dependency stimulus can be transformed into its respective
syntactic path (see Table 1). Then, the syntactic trigram probabilities learned from
children’s input can be used by the modeled learner to generate predicted acceptability
judgments. This is the process that allowed Pearl and Sprouse (2013) to generate the
judgment patterns in Figure 2, whichmatched higher-SES adult judgment patterns and so
were interpreted as the modeled learner successfully developing knowledge of those four
syntactic islands, when given higher-SES children’s input.

We note that the learning theory implemented in this computational cognitive model
requires children to have certain (potentially sophisticated) knowledge and abilities in
place. More specifically, children are assumed to be able to reliably (i) parse utterances in
their input into phrase structure trees, (ii) extract the syntactic paths for the wh-
dependencies, (iii) track the frequency of the syntactic trigams, and (iv) calculate the
probability for the complete syntactic path of a wh-dependency, based on its syntactic
trigrams. It remains for future work to determine when children are able to accomplish
these prerequisite tasks, especially if there is variation with respect to when they can.

Table 1. Syntactic paths for experimental stimuli that the modeled learner can generate acceptability
judgments for, in a 2x2 factorial design varying dependency length (matrix vs. embedded) and absence/
presence of an island structure (non-island vs. island). Island-spanning dependencies are indicated with a *

Complex NP islands Subject islands

matrix non start-IP-end start-IP-end

embedded non start-IP-VP-CPthat-IP-VP-end start-IP-VP-CPnull-IP-end

matrix island start-IP-end start-IP-end

embedded island *start-IP-VP-NP-CPthat-IP-VP-end *start-IP-VP-CPnull-IP-NP-PP-end

Whether islands Adjunct islands

matrix non start-IP-end start-IP-end

embedded non start-IP-VP-CPthat-IP-VP-end start-IP-VP-CPthat-IP-VP-end

matrix island start-IP-end start-IP-end

embedded island *start-IP-VP-CPwhether-IP-VP-end *start-IP-VP-CPif-IP-VP-end
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However, once children can indeed do these things, children would be able to harness the
input the way this computational cognitive model does.

6. Input analysis across SES through age four

Here we assess input variation across SES, focusing on the information necessary for
developing knowledge of the four syntactic islands in (2). The learning theory reviewed
above assumes that the relevant input aspect is the wh-dependencies and the syntactic
trigrams that comprise those wh-dependencies. So, we consider information available to
children across SES in both the wh-dependencies and the syntactic trigrams. Because
prior child behavioral work indicates that both higher-SES and lower-SES four-year-olds
disprefer wh-dependencies crossing Complex NP islands (de Villiers & Roeper, 1995; de
Villiers et al., 2008; Otsu, 1981)4, we consider variation present in children’s input across
SES through age four.

We begin characterizing children’s input for learning about syntactic islands by
providing a descriptive analysis of the wh-dependencies and syntactic trigrams available
in samples of higher-SES and lower-SES CDS.5We then estimate the total quantity ofwh-
dependency input available across SES through age four, finding a potentially large
difference in the total quantity of wh-dependencies.

We then use the computational cognitive model from Pearl and Sprouse (2013) to
predict the syntactic island knowledge children would learn by age four from their input.
More specifically, the modeled learner learns from the estimated wh-dependency input
that higher-SES and lower-SES children encounter by age four, in terms of both the total
quantity of wh-dependencies encountered and the distributions of those wh-dependen-
cies. The modeled learner then predicts the acceptability judgments that would be
generated by higher-SES and lower-SES children for the four sets of stimuli from Sprouse
et al. (2012). We see if these predicted acceptability judgments suggest any input-based
differences across SES by age four, which would signal that differences in the wh-
dependency input were indeed developmentally meaningful. Conversely, similarity in
the predicted acceptability judgment patterns would signal that wh-dependency input
differences are predicted not to be developmentally meaningful.

6.1. Input samples

Higher-SES
Our higher-SES input samples are the data used by Pearl and Sprouse (2013), and come
from the structurally-annotated Brown-Adam (Brown, 1973), Brown-Eve (Brown, 1973),
Valian (Valian, 1991), and Suppes (Suppes, 1974) corpora from the CHILDES Treebank
(Pearl & Sprouse, 2013). These data are child interactions involving 24 children between
the ages of one and a half and four, containing 101,838 utterances with 20,923 wh-
dependencies.

4We note that the wh-dependencies we refer to as crossing Complex NP islands are referred to in those
prior studies as dependencies crossing argument barriers with a relative clause.

5Appendix B additionally provides an information-theoretic analysis quantifying how similar the wh-
dependency and syntactic trigram distributions are in CDS across SES, compared to these distributions
within SES but across child-directed vs. adult-directed speech.
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Lower-SES
Our lower-SES input samples come from a subpart of the HSLLD corpus (Dickinson &
Tabors, 2001) in CHILDES (MacWhinney, 2000), where SES was defined according to
maternal education and annual income. Maternal education ranged from 6 years of
schooling to some post-high school education. Annual income did not have hard lower
and upper bounds; instead, 70% of the families reported an annual income of $20,000 or
less, while 21% of the families reported an income of over $25,000. The annual income
of the remaining 9% was unreported. In this dataset, we focused on the Elicited Report,
Mealtime, and Toy Play sections, which represent more naturalistic interactions. We
also drew our samples from Home Visit 1, which recorded child language interactions
involving children between the ages of three and five. Our sample contained 31,875
utterances and 3,904 wh-dependencies directed at 78 children. We extracted and
manually annotated all wh-dependencies with syntactic structure, following the format
of the CHILDES Treebank, as described in the accompanying documentation for the
CHILDES Treebank6 (Pearl & Sprouse, 2013).

Limitations of corpus samples
Because we draw our samples from already existing corpora freely available through
CHILDES, they do differ on other factors besides SES. Such factors include age range of
the children sampled, number of children sampled, gender ratios of the children sampled,
size of the samples, and myriad factors related to the child language interactions
themselves, including specific topics of conversation and contexts in which the inter-
actions occurred. Though there are overlaps for some of these factors, such as age range
(three- and four-year-olds) as well as some topics and contexts of interactions (meal times
and toy-playing sessions), it is certainly possible that the non-SES-based differences
between these samples impact the wh-dependency distributions.

With respect to the age range differences in these samples, analyses from Pearl and
Sprouse (2013) suggest that there is little difference in wh-dependency distribution when
comparing higher-SES CDS between one and four years old with adult-directed speech.
Because the differences between CDS and adult-directed speech are generally more
pronounced than CDS at different ages, this prior analysis suggests that the age range
differences in the samples here may not impact the wh-dependency distributions so
much. However, a valuable avenue for future work is to collect data across SES that more
explicitly controls for many other factors in order to know more clearly which factors do
and do not impact the wh-dependency distribution in the input.

Wh-dependency coding
The structural annotations of the wh-dependencies in each sample indicate the syntactic
structure necessary to characterize the syntactic paths ofwh-dependencies. We coded the
syntactic paths of the dependencies as in (7b), shown below with a different example in
(11). Following Pearl and Sprouse (2013), the CP phrase structure nodes were further

6This documentation is available with the downloaded corpus at https://www.socsci.uci.edu/lpearl/
CoLaLab/CHILDESTreebank/childestreebank.html and at https://childes.talkbank.org/derived/ (called the
Pearl_Sprouse_Corpus at that URL).
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subcategorized by the lexical item serving as complementizer, such as CPthat, CPwhether,
CPif, and CPnull. This subcategorization allows the modeled learner to distinguish
dependencies judged by higher-SES adults to be more acceptable, like (11a), from those
judged to be far less acceptable, like (11b) (Cowart, 1997). With these syntactic paths
characterizing wh-dependencies, we can then assess the distribution of the wh-
dependencies in each input sample.

(11) a. Who do you think __who read the book?
syntactic path: start-IP-VP-CPnull-IP-end

b. *Who do you think that __who read the book?
syntactic path: *start-IP-VP-CPthat-IP-end

6.2. Descriptive corpus analyses

Wh-dependencies
Our corpus analyses found 12 wh-dependency types in common between the higher-
SES and lower-SES child input samples (out of 26 total in the higher-SES and 16 total in
the lower-SES).7 So, the higher-SES input sample contained 14 wh-dependency types
not in the lower-SES input sample, and the lower-SES input sample contained 4 wh-
dependency types not in the higher-SES input sample, as shown in the lefthand column
of Table 2.

We see first that there is a striking similarity in the two most frequent wh-dependency
types across SES: the same two account for the vast majority of wh-dependency types in
children’s input across SES (higher-SES: 89.5%, lower-SES: 85.8%), and these two types
seem to occur in similar proportions – shown in (12).8 This suggests a high-level
distributional similarity in the wh-dependency input across SES, despite the individual
wh-dependency differences.

(12) Proportions of the two most frequent wh-dependency types across SES
a. 1st most frequent: start-IP-VP-end (e.g., What did Lily read __what?)

76.7% higher-SES, 75.5% lower-SES
b. 2nd most frequent: start-IP-end (e.g., What __what happened?)

12.8% higher-SES, 10.3% lower-SES

When we compare the rate of wh-dependencies across SES (i.e., how often an utterance
has awh-dependency), we find another difference, withwh-dependencies occurringmore
frequently in higher-SES CDS (higher-SES: 20,932/101,383 = 20.5%, lower-SES:
3,904/31,875 = 12.2%; two-proportion z-test: z=33.3, p <.01). Over time (as detailed
in section 6.3), this rate difference can lead to a considerable difference in the total
quantity of wh-dependencies encountered.

7A more detailed description of the wh-dependency distribution across SES is available in Appendix A.
8In fact, despite the sample size differences (20,923 vs. 3,904), the most frequent wh-dependency

proportion (76.7% higher-SES vs. 75.5% lower-SES) is indeed not significantly different across these samples
(two-proportion z-test: z = 1.62, p = .10). However, the second most frequent wh-dependency proportion
(12.8% higher-SES vs. 10.3% lower-SES) does seem to be different, despite the surface similarity in
proportions (two proportion z-test: z = 4.34, p <.01).
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Table 2. Wh-dependencies and syntactic trigrams unique to speech samples directed at higher-SES and
lower-SES children, respectively. Unique syntactic trigrams are on the same row as the unique wh-
dependencies they come from

wh-dependencies syntactic trigrams

only higher-SES

start-IP-VP-CPfor-IP-VP-PP-end
(e.g., What did she put on for you to dance to __what?)

IP-VP-CPfor, VP-CPfor-IP, CPfor-IP-VP

start-IP-VP-CPnull-IP-VP-IP-VP-IP-VP-end
(e.g., What did he think she wanted to pretend to steal __what?)

start-IP-VP-CPnull-IP-VP-IP-VP-PP-end
(e.g., Who did he think she wanted to steal from__who?)

start-IP-VP-CPnull-IP-VP-NP-end
(e.g., What did he think she said __what about it?)

start-IP-VP-CPnull-IP-VP-PP-PP-end
(e.g., What did he think she wanted out of __what?)

start-IP-VP-CPthat-IP-VP-end
(e.g., What did he think that she stole __what?)

CPthat-IP-VP

start-IP-VP-IP-end
(e.g., Who did he want __who to steal the necklace?)

VP-IP-end

start-IP-VP-IP-VP-IP-VP-PP-end
(e.g., Who did he want her to pretend to steal from __who?)

start-IP-VP-IP-VP-NP-end
(e.g., What did he want to say __what about it?)

start-IP-VP-IP-VP-NP-PP-end
(e.g., What did she want to steal more of __what?)

start-IP-VP-NP-end
(e.g., What did she say __what about the necklace?)

VP-NP-end

start-IP-VP-PP-CPnull-IP-VP-end
(e.g., What did she feel like he saw __what?)

VP-PP-CPnull, PP-CPnull-IP

start-IP-VP-PP-NP-PP-end
(e.g., What do you put it on top of __what?)

VP-PP-NP, PP-NP-PP

start-IP-VP-PP-IP-VP-end
(e.g., What did he think about stealing __what?)

only lower-SES

start-IP-VP-CPnull-IP-VP-NP-PP-end
(e.g., What did he think it was a movie of __what?)

start-IP-VP-IP-VP-IP-VP-PP-IP-VP-end
(e.g., What did you want to try to plan on doing __what?)

start-IP-VP-PP-IP-VP-end
(e.g., What did she think about buying __what?)

start-IP-VP-CPthat-IP-end
(e.g., What do you think that __what happens?)

CPthat-IP-end
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Syntactic trigrams
For syntactic trigrams, which serve as the building blocks of wh-dependencies under the
Pearl & Sprouse learning theory, our corpus analysis found 19 syntactic trigrams in
common between the higher-SES and lower-SES child input samples (out of 29 total for
the higher-SES and 20 total in the lower-SES). So, the higher-SES input sample contained
10 syntactic trigrams not in the lower-SES input sample, and the lower-SES input sample
contained 1 syntactic trigram not in the higher-SES input sample, shown in the righthand
column of Table 2.9

As might be expected from the wh-dependency descriptive analysis, the most
frequent syntactic trigrams are also very similar across SES; this is because these
trigrams come from the most frequent wh-dependency type, start-IP-VP-end. More
specifically, the two trigram types that collectively account for the majority of the
trigrams in the wh-dependency input (start-IP-VP, IP-VP-end) are the same across
SES and account for the vast majority of the input (higher-SES: 81.7%, lower-SES:
80.3%). Moreover, these two syntactic trigrams occur in similar proportions10 – shown
in (13). So, as with the wh-dependency types, this descriptive analysis suggests a high-
level distributional similarity in the syntactic trigram input across SES, despite the
individual syntactic trigram differences.

(13) Proportions of the two most frequent trigram types across SES
a. 1st most frequent: start-IP-VP

41.8% higher-SES, 41.4% lower-SES
b. 2nd most frequent: IP-VP-end

39.9% higher-SES, 38.9% lower-SES

6.3. Realistic estimates of total input quantity across SES through age four

To estimate the total quantity of wh-dependency data that children from different SES
backgrounds encounter through age four, we can draw on available empirical data sources
to estimate both how long children have to learn (i.e., the learning period) and howmuch
data they encounter during that learning period. More specifically, we can estimate when
children would begin harnessing the wh-dependency information in their input
(i.e., when the learning period for syntactic islands could plausibly start), how much
time passes between that starting point and age four (i.e., the length of the learning
period), and how many wh-dependencies children across SES would encounter during
that learning period.

When children’s learning period plausibly starts
To begin learning about the relative acceptability of different wh-dependencies, children
must be able to process the structure of wh-dependencies. Current research suggests that

9A more detailed description of the syntactic trigram distribution across SES is available in Appendix A.
10As with the wh-dependency analysis, despite the sample size differences (43,786 vs. 8,464), the first and

second most frequent syntactic trigram proportions (1st most frequent: 41.8% higher-SES vs. 41.4% lower-
SES; 2nd most frequent: 39.9% higher-SES vs. 38.9% lower-SES) are not significantly different across these
samples (two-proportion z-test for the 1stmost frequent: z= 0.68, p= .49; for the 2ndmost frequent: z= 1.72,
p = .085).
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children begin to represent the full structure of wh-dependencies (e.g., wh-questions and
relative clauses) at 20 months (Gagliardi et al., 2016; Perkins & Lidz, 2020; Seidl et al.,
2003). So, we estimate 20 months as the starting point of the learning period for syntactic
islands, which depend on wh-dependencies.

How much time awake during the learning period
Taking four years old as the end point of the learning period for syntactic islands, the
estimated learning period is then from 20 months through the end of age four
(59 months). We estimate the number of hours awake by drawing on Davis, Parker,
andMontgomery (2004), who summarize the hours asleep for young children at different
ages (one through four), as shown in Table 3. Based on these estimates, we can then
estimate the hours awake between 20 months and 59 months, and sum those hours to
estimate the total hours awake during this learning period. Our calculations in Table 3
yield about 14,174 hours awake ( ≈850,450 minutes awake).

How many wh-dependencies during the learning period
Based on the estimated minutes awake during the learning period, we can then estimate
the total quantity of wh-dependencies children encounter. More specifically, we estimate
this quantity by drawing on estimates of the number of utterances children from different
SES backgrounds hear per minute and our own corpus samples of the rate of wh-
dependencies in children’s input.

To estimate utterances per minute across SES, we draw on work by Rowe (2012) and
Hoff-Ginsberg (1998). Rowe (2012) examined word tokens perminute at ages 18months,
30 months, and 42 months across SES, finding that quantity of word tokens per minute
appears to remain steady (rather than increasing). So, we assume here that the rate of
utterances per minute across SES also remains the same during the learning period
from 20 months to 59 months. Hoff-Ginsberg (1998) identified average rates of utter-
ances per minute for children age 21 to 24 months from families with different SES

Table 3. Calculating the total hours (cumulative waking hrs) and minutes (cumulative waking mins)
awake for children between the ages of 20 and 59 months, the estimated learning period for syntactic
islands. These calculations are based on waking hours per day (waking) and total waking hours.
Cumulative hours awake are shown at age one (20-23 months), two (24-35 months), three (36-47
months), and four (48-59 months).

age age range waking total waking hours cumulative waking hrs

one 20–23 months 10 11 hrs/day * 365 days/yr * 4/12 = 1216.67 1216.67

two 24–35 months 11 11 hrs/day * 365 days/yr = 4015 5231.67

three 36–47 months 12 12 hrs/day * 365 days/yr = 4380 9611.67

four 48–59 months 12.5 12.5 hrs/day * 365 days/yr = 4562.5 14174.17

cumulative waking mins

14174.17 * 60 min/hour

850450.2
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backgrounds: (i) parents whowere college-educated andworked in professional positions
(which we will associate with higher-SES), and (ii) parents who were high-school
educated and worked in semi-skilled, unskilled, or service positions (which we will
associate with lower-SES). The higher-SES children heard 15.8 utterances per minute
(standard deviation 4.2), while the lower-SES children heard 13.0 utterances per minute
(standard deviation 4.2). To capture 95% of each population, we consider the range of
utterance rates within two standard deviations from the average, as shown in Table 4
(higher-SES: 7.4-24.2 utterances/minute; lower-SES: 4.6-21.4 utterances/minute).

Our corpus estimates of wh-dependency rate suggest that higher-SES children’s input
consists of about 20.5% wh-dependencies (20,923 wh-dependencies of 101,838 utter-
ances), while lower-SES children’s input consists of about 12.2%wh-dependencies (3,904
wh-dependencies of 31,857 utterances). Table 4 shows the resulting range of total wh-
dependency quantity heard during the learning period across SES: 1,293,545-4,230,241
for higher-SES children, and 479,144-2,229,063 for lower-SES children. While there are
some points where there appear to be similar total quantities of wh-dependencies in
children’s input across SES (e.g., 2 standard deviations below the higher-SES average =
1,293,545 while the lower-SES average = 1,354,103), there can be a marked disparity in
total quantity. On average, higher-SES children will hear about twice as many wh-
dependencies as lower-SES children ( 2,761,893

1,354,103=2:04). In the most extreme case, higher-
SES children at the top of the higher-SES range (2 standard deviations above the average:
4,230,241) hear nearly 9 times as many wh-dependencies as lower-SES children at the
bottom of the lower-SES range (2 standard deviations below the average: 479,144):
4,230,241
479,144 =8:8.

Table 4. Calculating the range of total wh-dependencies (total wh-dep) that higher-SES and lower-SES
children encounter between the ages of 20 and 59 months, the estimated learning period for syntactic
islands. These calculations are based on 850,450.2 waking minutes between these ages, estimated
ranges of utterance rates per min (utt/min), based on average rates (average) and standard deviations
(s.d.) across SES, and wh-dependencies in the input (wh-dep/utt) across SES.

utt/min * min * wh-dep/utt = total wh-dep

higher-SES * 850,450.2 * 20,932/101,838

– 2 s.d. 7.4 = 1,293,545

– 1 s.d. 11.6 = 2,027,719

average 15.8 = 2,761,893

þ 1 s.d. 20.0 = 3,496,067

þ 2 s.d. 24.2 = 4,230,241

lower-SES * 850,450.2 * 3,904/31,875

– 2 s.d. 4.6 = 479,144

– 1 s.d. 8.8 = 916,624

average 13.0 = 1,354,103

þ 1 s.d. 17.2 = 1,791,583

þ 2 s.d. 21.4 = 2,229,063
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6.4. Summary and implications of corpus analyses

Our descriptive corpus analyses highlight both high-level similarities and differences in
the distributions of wh-dependency information in children’s input across SES. Chil-
dren’s input is similar with respect to the most frequent wh-dependency types and
syntactic trigrams, as well as how frequent they are; children’s input is different with
respect to specific wh-dependency types and syntactic trigrams unique to each sample, as
well as the rate of wh-dependencies in the input. Moreover, our estimate of the total
quantity of wh-dependencies heard during the estimated learning period for syntactic
islands (through age four) highlights how the total quantity can be quite different across
SES, with higher-SES children potentially hearing nearly nine times the quantity of wh-
dependencies as lower-SES children.

However, recall that for at least one syntactic island type we investigate (Complex NP
islands), children across SES seem to have developed a similar (dis)preference by age four
for wh-dependencies crossing that island (Otsu, 1981; de Villiers & Roeper, 1995; de
Villiers et al., 2008). So, wemight expect that the input differences across SES that we have
found so far are not developmentally meaningful by age four for learning a dispreference
for wh-dependencies crossing Complex NP islands. This is a prediction we can evaluate
using the computational cognitive model from Pearl and Sprouse (2013). Note that each
island type involves different syntactic structures – therefore, even if knowledge of one
syntactic island type can develop from children’s input (e.g., Complex NP islands), there
is no guarantee that knowledge of all these island types can develop from that same input.

Of course, as noted previously, there is suggestive evidence from prior modeling work
by Pearl and Sprouse (2013) that higher-SES input can support development of all four
syntactic island types. However, the input sample used in those prior analyses is not as
realistic as the range we explore in our own modeling analyses here, summarized in
Table 4. Thus, our analysis with a more realistic range of higher-SES input will serve as a
more comprehensive comparison to our analysis with lower-SES input, and thus of input
variability across SES for learning about syntactic islands.

6.5. Computational cognitive modeling analysis

We conducted the computational cognitive modeling analysis by implementing a mod-
eled learner that uses the learning theory of Pearl and Sprouse (2013), and then allowing
that modeled learner to learn from the estimated input samples described above. In
particular, the modeled learner learned from the range of quantities of wh-dependencies
estimated for higher-SES children by age four, with thewh-dependencies distributed as in
our higher-SES corpus sample; similarly, the modeled learner learned from the range of
quantities of wh-dependencies estimated for lower-SES children by age four, distributed
as in our lower-SES corpus sample. For each input set, the modeled learner estimated
syntactic trigram probabilities and could then generate probabilities for any desired wh-
dependency, whether seen or unseen in its input.

We then demonstrate what thismodeled learner would learn about the syntactic island
types we investigate from its input, as measured by its predicted judgments on the wh-
dependency stimuli from Sprouse et al. (2012), reviewed in (3)-(6) and characterized by
the syntactic paths in Table 1. The target state for development is adult-like acceptability
judgment patterns – which are superadditive, as in Figure (6). As mentioned above,
previous computational cognitive modeling results from Pearl and Sprouse (2013) using
higher-SES input were able to generate this superadditive judgment pattern for all four
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syntactic island types, as shown in Figure 2. Our current analysis will see if the higher-SES
predicted judgment patterns replicate when using more realistic estimates of higher-SES
input encountered by age four. We will additionally be able to predict the lower-SES
judgment patterns resulting by age four, and see how those compare to the predicted
higher-SES judgment patterns. In this way, we will be able to compare the input across
SES by age four for learning about these four syntactic island types.

6.5.1. Analysis implementation and visualization
For each SES type (higher vs. lower), a modeled learner was run on 1000 representative
input sets sampled according to the relative frequencies of the wh-dependencies in our
corpus samples; each input set matched the estimated input quantity being modeled
(2 standard deviations below average, 1 standard deviation below average, average,
1 standard deviation above average, 2 standard deviations above average). Averages of
these 1000 runs for each SES type and estimated input quantity are plotted in Figures 3
and 4, with the log probability averages and standard deviations for each wh-dependency
stimuli type available in Appendix C. Standard deviations were not plotted as they were
too small to appear on the graphs.

6.5.2. Complex NP islands
The computational cognitive modeling analysis for Complex NP islands predicts
acceptability judgment patterns for the wh-dependency stimuli from Sprouse et al.
(2012), as shown in Figure 3. For higher-SES child-directed input (left side of Figure 3),
we see the same superadditive judgment pattern that higher-SES adults had in Sprouse
et al. (2012), and which the prior computational cognitive modeling analysis of Pearl
and Sprouse (2013) found. This judgment pattern can be interpreted as demonstrating
implicit knowledge of the Complex NP island. In particular, the island-crossing

Figure 3. Predicted four-year-old child judgments for Complex NP stimuli by a modeled learner learning from
higher-SES (left) and lower-SES (right) input data ranges: 2 standard deviations below average (-2sd), 1 standard
deviation below average (-1sd), average (avg), 1 standard deviation above average (þ1sd), 2 standard deviations
above average (þ2sd). Averages are shown from 1000modeled learner runs per input range. Both interaction plots
show the superadditive pattern that appears in adult judgments of these wh-dependencies, given the factorial
design crossing dependency distance (matrix vs. embedded) with the absence/presence of an island structure in
the utterance (non vs. island)
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dependency (an embedded dependency with an island structure in it) is far less
acceptable than expected if its acceptability were solely based on it being an embedded
dependency with an island structure present in the utterance. Thus, these results
support prior computational cognitive modeling work suggesting that higher-SES input
can lead to implicit knowledge of the Complex NP island, as assessed by the super-
additive judgment pattern.

We see this same judgment pattern in the predicted judgments derived from lower-
SES child input (right side of Figure 3). So, these results additionally suggest that there is
no predicted difference in Complex NP island knowledge by age four across SES. In
particular, both higher-SES and lower-SES children should find wh-dependencies that
cross Complex NP islands to be far less acceptable. These results align with prior
child behavioral data from de Villiers et al. (2008) suggesting that children across SES
disprefer wh-dependencies crossing Complex NP islands – that is, our computational
cognitive modeling results predict that four-year-olds across SES should judge such
wh-dependencies as much less acceptable, which seems to be true.

So, the computational cognitive model correctly predicts that (i) higher-SES children
should dispreferwh-dependencies that cross Complex NP islands, and that (ii) lower-SES
children should also disprefer these wh-dependencies. Moreover, a more precise predic-
tion is that both higher-SES and lower-SES children should show the same, adult-like
superadditive acceptability judgment pattern on this wh-dependency stimuli set by age
four. Taken together, these results suggest there is no predicted developmentally-
meaningful difference by age four in children’s input across SES for learning about the
Complex NP island, and this prediction aligns with currently available empirical evi-
dence. With this in mind, we now turn to the predictions for the other three island types.

6.5.3. Subject, Whether, and Adjunct islands
The computational cognitive modeling analysis for Subject, Whether, and Adjunct
islands predicts acceptability judgment patterns for the wh-dependency stimuli from
Sprouse et al. (2012), as shown in Figure 4. For higher-SES child-directed input (left side
of Figure 4), we see the same superadditive judgment pattern that higher-SES adults had
in Sprouse et al. (2012), andwhich the prior computational cognitivemodeling analysis of
Pearl and Sprouse (2013) found. This judgment pattern can be interpreted as demon-
strating implicit knowledge of Subject, Whether, and Adjunct islands. In particular, the
island-spanning dependencies (embedded dependencies with an island structure in
them) are far less acceptable than expected if their acceptability were solely based on
them being embedded dependencies with an island structure present in the utterance.
Thus, these results support prior computational cognitive modeling work suggesting that
higher-SES input can lead to implicit knowledge of Subject, Whether, and Adjunct
islands, as assessed by the superadditive judgment pattern.

We see this same judgment pattern in the predicted judgments derived from lower-
SES child input (right side of Figure 4). So, these results additionally suggest that there is
no predicted difference in Subject, Whether, or Adjunct island knowledge by age four
across SES. In particular, both higher-SES and lower-SES children by age four should
find wh-dependencies that cross Subject, Whether, and Adjunct islands to be far less
acceptable.

So, as with the Complex NP island, the computational cognitive model predicts that
(i) higher-SES children should disprefer wh-dependencies that cross Subject, Adjunct,
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andWhether islands, and (ii) lower-SES children should also disprefer these wh-depend-
encies. As with the Complex NP island type, amore precise prediction is that both higher-
SES and lower-SES children should show the same, adult-like superadditive acceptability
judgment pattern on these wh-dependency stimuli sets by age four. Taken together, these

Figure 4. Predicted four-year-old child judgments for Subject, Whether, and Adjunct stimuli by a modeled learner
learning from higher-SES (left column) and lower-SES (right column) input data ranges – 2 standard deviations
below average (-2sd), 1 standard deviation below average (-1sd), average (avg), 1 standard deviation above
average (þ1sd), 2 standard deviations above average (þ2sd). Averages are shown from 1000modeled learner runs
per input range. All interaction plots show the superadditive pattern that appears in adult judgments of thesewh-
dependencies, given the factorial design crossing dependency distance (matrix vs. embedded) with the absence/
presence of an island structure in the utterance (non vs. island)

Journal of Child Language 823

https://doi.org/10.1017/S0305000922000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000922000514


results suggest there is also no predicted developmentally-meaningful difference in
children’s input by age four across SES for learning about Subject, Whether, or Adjunct
islands.

6.5.4. Summary of modeling results
As mentioned above, our computational cognitive modeling analysis predicts no differ-
ence in children’s knowledge across SES by age four about these four island types, as
assessed by acceptability judgment patterns for specific sets of wh-dependencies. These
predictions can be tested experimentally in future child behavioral work that gathers
acceptability judgments.

If these predictions are indeed true, and there is no difference in acceptability
judgments for all four of these island types by age four across SES, then those future
behavioral results would additionally support our basic finding: lower-SES input is
equivalent to higher-SES input when it comes to the development of this syntactic island
knowledge – that is, the measurable input differences across SES are not developmentally
meaningful. Importantly, because of the learning theory implemented concretely by the
modeled learner, we understand why this result occurs, both in general and more
specifically. In general, the observable differences in the wh-dependency distributions
in children’s input across SES do not matter for the part of that input that scaffolds
knowledge of these syntactic islands. More specifically, the necessary building blocks
(i.e., the specific syntactic trigrams associated with each wh-dependency) appear in the
appropriate relative frequencies in children’s input across SES.

7. Discussion

Our computational cognitive modeling analysis suggests that higher-SES child input is
equivalent to lower-SES child input with respect to how the wh-dependency input can
support the development of certain syntactic island knowledge by age four. This is true
despite the small differences in wh-dependency distribution and the potentially large
differences in total quantity ofwh-dependency input encountered by age four. Notably,
small distributional differences could have mattered, as children’s learning is often
impacted by relative frequency differences of different items in their input (e.g., see
Ramscar, Dye, & Klein, 2013a; Ramscar, Dye, &McCauley, 2013b). Yet, we did not find
this – instead, any measurable wh-dependency input differences across SES are not
predicted to be developmentally meaningful with respect to learning this syntactic
island knowledge. That is, surface input differences mask deeper input similarities
across SES.

One benefit of our computational cognitive modeling approach is that it implements a
learning theory specifying a causal link between children’s input and their observable
language behavior. In particular, it makes predictions about children’s observable behav-
ior (here: acceptability judgments for wh-dependencies at age four) that can be evaluated
against existing and future child behavioral data. Current data from de Villiers et al.
(2008) align with the predictions for Complex NP islands, supporting the learning theory
implemented in the computational cognitive model. We note again that, to our know-
ledge, this is the first learning theory of this kind for syntactic islands that is specified
enough to generate precise, testable predictions from children’s input. Thus, we believe it
is valuable to continue evaluating the learning theory’s predictions against empirical data,
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though of course future workmay explore other learning theories for syntactic islands and
evaluate their predictions against available empirical data.

In particular, future child behavioral work can investigate the specific predicted
acceptability judgements for Complex NP islands, to further evaluate both the learning
theory and the prediction that there should be no difference in this Complex NP island
knowledge across SES by age four. Future child behavioral studies can also investigate the
predictions for the other three island types (Subject, Whether, and Adjunct), where the
computational cognitive modeling analysis also predicts no differences across SES by
age four.

Below, we first discuss some interesting input differences across SES involving the
complementizer that, which the learning theory implemented by the computational
cognitive model identifies as important for the development of certain syntactic
island knowledge. We then turn to other testable model predictions for related syntactic
knowledge concerning wh-dependencies. We then consider the plausibility of the prior
knowledge and abilities assumed by the learning theory implemented in the model; these
prerequisites are also potential points of variation across SES that could therefore impact
when children across SES could harness the information in their input in the way the
learning theory proposes. We additionally discuss limitations of this computational
cognitive model, and consider alternative computational modeling approaches that can
be used to evaluate developmentally-meaningful input variation.

7.1. Interesting input differences involving complementizer that
There is a striking difference in the exact wh-dependency distribution across SES that is
predicted by the learning theory to be crucial for learning about two of the syntactic island
types, Whether and Adjunct islands. This input difference involves particular structural
building blocks, which come from wh-dependencies that have the complementizer that
and so are characterized by syntactic trigrams with CPthat in them.

As noted before in (11), the only distinction between certain wh-dependencies judged
more acceptable and other wh-dependencies judged less acceptable by higher-SES adults
is the complementizer. With respect to the wh-dependencies we have investigated here,
wh-dependencies like (14a) with complementizer that are judged as more acceptable,
while equivalent wh-dependencies like (14b) with complementizers like whether
(Whether islands) or if (Adjunct islands) are judged as far less acceptable. Again, the
only difference in the syntactic path of these wh-dependencies is CPthat for the wh-
dependency in (14a) and CPwhether or CPif for the wh-dependencies in (14b).

(14) a. What do you think that Jack read __what?
syntactic path: start-IP-VP-CPthat-IP-VP-end

b. *What do you wonder whether/if Jack read __what?
syntactic path: *start-IP-VP-CPwhether if-IP-VP-end

This instance highlights that it is important for children to encounterwh-dependencies in
their input that involve complementizer that (and not whether or if), if children are to
learn about Whether and Adjunct islands the way the learning theory here proposes.
When children do in fact encounterwh-dependencies with complementizer that (CPthat),
the learning theory here can leverage the CPthat piece to predict that (14a) should be
judged as more acceptable than (14b).
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However, wh-dependencies involving CPthat are actually fairly rare in naturalistic
usage. Pearl and Sprouse (2013) only found 2 of 20,923 (0.0096%) in higher-SES
CDS.11 (7 of 8,508 = 0.082%) and adult-directed text (2 of 4,230 = 0.048%). Based on
our estimated input ranges by age four for higher-SES children, this would correspond
to about three to ten wh-dependencies with CPthat every month.12 In our lower-SES
CDS sample, there are 2 of 3,094 (0.051%)wh-dependencies involving CPthat. Based on
our estimated input ranges by age four for lower-SES children, this would correspond
to about six to 29 wh-dependencies with CPthat every month.13 If these corpus samples
are accurate, this calculation highlights that lower-SES children could actually hear a
crucial building block far more often in their input than higher-SES children do
(i.e., lower-SES: 29 times vs. higher-SES: ten times per month even at the highest
input estimates); this is true despite higher-SES children likely hearing more wh-
dependencies overall before age four. That is, input quantity for this particular input
aspect (i.e., wh-dependencies involving CPthat) is estimated to be more for lower-SES
children, rather than for higher-SES children, in contrast to total wh-dependency
quantity.

Interestingly, the type of wh-dependency in children’s input that contains the crucial
CPthat building block also appears to differ across SES, based on our corpus samples. In
the higher-SES sample, both CPthat dependencies are of the same type: start-IP-
VP-CPthat-IP-VP-end instances like (14a). However, in our lower-SES CDS sample, the
CPthat building block comes from a different wh-dependency type, which happens to be a
“that-trace violation” judged as much less acceptable by higher-SES adults (Cowart,
1997): start-IP-VP-CPthat-IP-end instances like (15).

(15) What do you think that __what happens?
What do [IP you [VP think [ CPthat that [IP __what [VP happens]]]]]?
syntactic path: start-IP-VP-CPthat-IP

That is, the key linguistic experience allowing a lower-SES child to acquire the same
syntactic knowledge about Whether and Adjunct islands as a higher-SES child actually
comes from data that would be unlikely to occur in a higher-SES child’s input. It is
unlikely to occur because that data type is judged less acceptable by higher-SES adults,
who produce the CDS. This finding underscores the power of learning theories that
generate the linguistic knowledge of larger structures (such as wh-dependencies) from
smaller building blocks (such as syntactic trigrams), like the learning theory here. In
particular, children with different input experiences who rely on smaller building blocks
may be able to find evidence for the same building blocks (e.g., syntactic trigrams
involving CPthat) in different places (e.g., different wh-dependencies involving CPthat).

11They additionally found that CPthat wh-dependencies are rare in both higher-SES adult-directed speech
(7 of 8,508 = 0.082%) and adult-directed text (2 of 4,230 = 0.048%).

12Two standard deviations below the average: CPthat rate 2
20932 * 1,293,545wh-dependencies in the learning

period= 124; 124 / 40months in the learning period= 3.1 CPthat wh-dependencies permonth. Two standard
deviations above the average: CPthat rate 2

20932 * 4,230,241 wh-dependencies in the learning period = 404;
404/40 months in the learning period = 10.1 CPthat wh-dependencies per month.

13Two standard deviations below the average: CPthat rate 2
3094 * 479,144 wh-dependencies in the learning

period= 245; 245 / 40months in the learning period= 6.1 CP thatwh-dependencies permonth. Two standard
deviations above the average: CPthat rate 2

3094 * 2,229,063 wh-dependencies in the learning period = 1142;
1142/40 months in the learning period = 28.6 CPthat wh-dependencies per month.
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However, we note again that these findings and implications rest on the accuracy of
our corpus samples. In particular, for the lower-SES CPthat wh-dependencies, it is possible
that these wh-dependency instances were speech errors from the adult speakers. We feel
this possibility is less likely, as the twowh-dependency instances came from two different
speakers, and so are more likely to reflect naturalistic lower-SES usage. Still, future work
can evaluate this prediction that these wh-dependencies would in fact be judged as
acceptable by lower-SES adults.

However, suppose these wh-dependency instances in the lower-SES corpus samples
were in fact speech errors and so are unlikely to occur in lower-SES children’s input in
general (this would be because lower-SES adults would find them as unacceptable as
higher-SES adults do). In that case, we would not expect lower-SES children in general
to encounter these CPthat wh-dependencies. Because these were the only wh-
dependencies in our lower-SES sample containing CPthat, we might then expect that
lower-SES children do not in fact encounter any CPthat wh-dependencies. Without the
crucial CPthat building block in lower-SES children’s input, the learning theory would
predict that lower-SES children would not in fact judge wh-dependencies crossing
Whether and Adjunct islands as any less acceptable than wh-dependencies crossing
embedded clauses with complementizer that. That is, the learning theory would predict
no difference in judged acceptability of the wh-dependencies in (14a) and (14b). So,
lower-SES children would not learn the same syntactic knowledge as higher-SES
children with respect to Whether and Adjunct islands, as reflected in judged accept-
ability of the relevant wh-dependencies.

In this situation, the computational cognitive modeling analysis would predict a
developmentally-meaningful input difference across SES for Whether and Adjunct
islands. In particular, higher-SES children’s input would be predicted to support the
development of this knowledge, while lower-SES children’s input would not. More
specifically, lower-SES children would be predicted to NOT have the adult-like super-
additive judgment pattern by age four for the Whether and Adjunct wh-dependency
stimuli, in contrast with higher-SES children.

To explore whether this input situation is in fact occurring, there are at least two
specific things we can investigate in future work, using both corpus and behavioral
techniques. First, we can analyze larger samples of lower-SES input to see if and how
wh-dependencies with CPthat occur. The CHILDES database (MacWhinney, 2000) has
additional data from the HSLLD corpus (Dickinson & Tabors, 2001) that we drew from
for our lower-SES corpus sample here, as well as other lower-SES CDS samples in the Hall
(Hall & Tirre, 1979) and the Brown-Sarah (Brown, 1973) corpora.

Second, we can use behavioral techniques to evaluate whether lower-SES adults judge
as acceptable the specific wh-dependency with CPthat that we found in our lower-SES
sample (i.e., the “that-trace violation”). If so, this would support the plausibility of lower-
SES adults using this wh-dependency type in lower-SES children’s input, rather than it
being a speech error. Lower-SES children would then be likely to encounter this wh-
dependency type, and importantly, the CPthat building block it contains. If instead lower-
SES adults find that CPthat wh-dependency type less acceptable (as higher-SES adults do),
this would suggest that the instances in our lower-SES corpus sample were speech errors.
In that case, lower-SES children would not be likely to encounter this wh-dependency
type in their input in general. Information about the CPthat building block, used to learn
aboutWhether and Adjunct islands, would need to come from some other type(s) of wh-
dependency involving CPthat, if lower-SES children are to learn about these islands the
way higher-SES children are proposed to do.
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7.2. Other predictions

While our investigation here focused on four island types and the specificwh-dependency
stimuli related to them, where empirical data were already available about their judged
acceptability, the learning theory is capable of generating predictions for anywh-depend-
ency. Recall that this is because the learning theory proposed that allwh-dependencies are
composed of the same building blocks (i.e., the syntactic trigrams). So, the learning theory
proposes that children are learning about those building blocks from their input, and then
can use those building blocks to judge the acceptability of any wh-dependency.

There are in fact additional data available about children’s preferences and disprefer-
ences for certain wh-dependencies across SES (e.g., from de Villiers et al., 2008). So, the
learning theory itself can be evaluated by seeing how well it can capture those known
preferences. For instance, de Villiers et al. (2008) found that four-year-olds across SES
prefer a wh-dependency like What did he fix the table with __what? (with syntactic path
start-IP-VP-PP-end) over awh-dependency crossing aComplexNP syntactic island. This
preference is easily captured by comparing the probabilities generated by the model
learning from either higher-SES or lower-SES input data: the probability for the preferred
wh-dependency is much higher14, yielding a prediction that children across SES prefer
that wh-dependency, just as children across SES actually do.

Of course, there are many wh-dependencies for which we do not know children’s
preferences (e.g., the that-trace violations discussed above). In these cases, the model’s
predictions can be used to design future child behavioral studies that can evaluate those
predictions. In addition, because the model generates more precise predictions about
judged acceptability patterns (for which we do not currently have child behavioral data)
rather than simple preference, future child behavioral studies can be designed to test
predicted acceptability judgment patterns in children across SES.

7.3. Learning prerequisites and possible variation

It is not trivial to leverage the information fromwh-dependencies that the learning theory
relies on. More concretely, several foundational knowledge components and processing
abilities must be “good enough” to learn the specific syntactic island knowledge inves-
tigated here the way the learning theory assumes. First, children must know about
syntactic phrase structure; they must be able to use that phrase structure knowledge to
extract the syntactic path of a wh-dependency in real time (including accurately identi-
fying where the wh-word is understood). As noted in section 6.3, current research
suggests children begin to represent the full structure of wh-dependencies at 20 months
(Gagliardi et al., 2016; Perkins & Lidz, 2020; Seidl et al., 2003), which is why we took that
age as the starting point for our modeled learners. Yet, it is possible that that there is
variation across SES on when this ability is good enough, as there are known delays in
language processing in lower-SES children compared to their higher-SES counterparts
(Fernald et al., 2013).

Children must also know to break syntactic paths into smaller syntactic trigram
building blocks that can be used to generate a probability for any wh-dependency; they
must be able to identify these syntactic trigrams in real time. As with extracting the

14Higher-SES: the preferred dependency has a predicted log probability about 1018 times more probable
than the dispreferred one. Lower-SES: the preferred dependency has a predicted log probability about 1021

times more probable than the dispreferred one.
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syntactic path, it is possible that a “good enough” version of this ability could be delayed in
lower-SES children relative to their higher-SES counterparts because it involves language
processing.

In addition, children must know to track the relative frequency of the syntactic
trigrams and know to combine these syntactic trigrams to generate the probability for
a new wh-dependency; they must be able to do both of these in real time. These
components rely on statistical learning abilities, as they involve sensitivity to input
frequencies and the ability to aggregate probabilistic information. Recent work on
statistical learning abilities across SES (Eghbalzad, Deocampo, & Conway, 2016; Eghbal-
zad, Deocampo, & Conway, 2021) found no differences by age 8. It is therefore possible
that younger children across SES also would not differ in statistical learning abilities,
though of course they might.

More generally, it is possible that the components reviewed above that are related to
language processing are delayed in lower-SES children, while the domain-general com-
ponents related to statistical learning are not. Any delays could lead to lower-SES children
being less able to harness the complex syntactic information available in their input as
early as higher-SES children do. This inability to harness information would occur even if
the necessary information is in fact there (as our modeling analysis predicts it to be).
However, prior child behavioral work by de Villiers et al. (2008) suggests that any delays
present are surmounted by the time children are four years old when it comes to learning
certain preferences about Complex NP islands, as there are no delays across SES. So, those
prior behavioral results suggest that the necessary prerequisites for learning about
syntactic islands are good enough across SES for some amount of time before age four.
This then means the computational cognitive model predictions here are likely plausible
by age four.

7.4. Using computational models to evaluate input variation

The computational cognitive model we used here to evaluate input variation seemed
reasonable because prior work demonstrated its ability to learn from children’s input and
match available empirical data on observable behavior. Yet, this model has limitations.
For instance, this model currently only learns about wh-dependencies, rather than
implementing a more general-purpose syntactic learning theory. That is, it is unclear if
the model can be used to learn about other syntactic phenomena involving dependencies
(e.g., binding relations between pronouns like him and their antecedents like Atreyu in
Jareth banished Atreyua after meeting hima).15 If we believe children do not use a learning
strategy tuned to wh-dependencies specifically, then the computational cognitive mod-
eling analysis here may not accurately represent what children would learn from their
input.

Another limitation is that the model here operates over the abstract representations of
phrase structure. While it is generally uncontroversial that children have abstract repre-
sentations they rely on when learning from their input, the exact form of those repre-
sentations is often not agreed upon. In contrast, models that learn from less-abstract
representations that are easier to agree upon, such as words, may serve as alternative input
evaluation tools. Several recent computational models learn by trying to predict the next
word in a sequence, and along the way, these models internalize a variety of syntactic

15See Pearl and Sprouse (2013) for more discussion.
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knowledge, including knowledge about syntactic islands (e.g., Chaves, 2020; deWarstadt,
Parrish, Liu, Mohananey, Peng, Wang, & Bowman, 2020; Futrell, Wilcox, Morita, Qian,
Ballesteros, & Levy, 2019; Wilcox, Futrell, & Levy, 2021; Wilcox, Levy, Morita, & Futrell,
2018). To the extent we believe the computations that these models perform are equiva-
lent to the mental computations that children perform, future work can use these models
to evaluate input variation as we have done here.

More generally, future work can aim to use the modeling approach demonstrated
here to evaluate input variation, relying on whatever computational cognitive model
seems reasonable. However, it is indeed important that the chosen model be a plausible
implementation for what children could be doing to extract information from their
input and learn from that extracted information. When the particular computational
cognitivemodel is plausible in this way, we can bemore confident in using that model to
evaluate whether input variation is potentially developmentally meaningful, as we have
done here.

8. Conclusion

We have provided a new approach for identifying if and when variation in children’s
input could be developmentally meaningful. This approach harnesses computational
cognitive modeling and complements existing behavioral approaches. In particular, a
computational cognitive model can be used to assess if a particular measurable difference
is likely to be developmentally meaningful; the model does so by predicting what children
should be able to learn from their input, because the model concretely implements a
theory of learning from that input. If input variation is potentially developmentally
meaningful, then the model predicts different learning outcomes; in contrast, if
input variation is not developmentally meaningful, the model predicts similar learning
outcomes.

One practical benefit of this approach is that it is typically less costly to implement in
terms of time and resources, compared to behavioral approaches that assess develop-
mental outcomes and then look for correlations with children’s input. However, this
approach does require that reasonable samples of children’s input are available, as well as
a learning theory that specifies how the input causes linguistic knowledge to develop over
time. Still, with the input samples and learning theory in hand, the computational
cognitive modeling approach can provide a “first pass” input variation assessment, which
can predict if input differences are likely to matter. These predictions can be followed up
by targeted behavioral work evaluating the predictions, and thus offer a way to guide
future research relying on behavioral approaches.

To demonstrate the computational cognitive modeling approach, we applied it to
input variation across SES related to the development of syntactic island knowledge. Our
model predicted that there were no developmentally-meaningful input differences by age
four, as equivalent outcomes were predicted to occur for all the island types we investi-
gated, despite measurable input differences. One predicted developmental similarity
about a specific island type aligns with prior child behavioral work, though more targeted
behavioral work can investigate the precise outcome predictions for that island type as
well as the predictions for the other island types. More generally, because the learning
theory implemented in the model provides an explicit link between the input and
language knowledge development, this approach can help us better understand
(i) when and why observable input differences are not predicted to be developmentally
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meaningful, (ii) what parts of the input are predicted to be especially important, and
(iii) where those important parts appear in different input samples that reflect different
language input experiences.

This result broadens the body of research on language input variation across SES to
include the nature of the input for more complex syntactic knowledge, such as syntactic
islands. This is the first comparison across SES that uses a computational cognitive
modeling approach to investigate the impact of input variation with respect to learning
about syntactic island knowledge. Our results suggest that if we do see developmental
differences in syntactic island knowledge across SES, it is not because of meaningful
differences in the information available in the input. Instead, children’s ability to harness
that information may differ. In short, the information for learning about these syntactic
islands is predicted to be there for children to use, no matter their SES – a key
developmental step may instead be for them to figure out how to use it.

Acknowledgements. We are deeply grateful to the audiences at the Eyelands Lab 2021, the UMaryland
Linguistics Colloquium 2020, the Institute of Language Studies ForMA colloquium 2020, the UC San Diego
Linguistics Colloquium 2020, BUCLD 2018, the UCI Quantitative Collective, and the UCI Language Science
community, as well as Meredith Rowe, Elma Blom, and several anonymous reviewers who saw earlier
versions of this manuscript. Their collective comments and suggestions have greatly improved this work.

Competing interests. The authors declare none.

References

Blum, S. (2015). “Wordism”: Is there a teacher in the house. Journal of Linguistic Anthropology, 25(1):74–75.
Brown, R. (1973). A first language: The early stages. Harvard University Press, Cambridge, MA.
Chaves, R. P. (2020). What Don’t RNN Language Models Learn About Filler-Gap Dependencies? Proceed-

ings of the Society for Computation in Linguistics, 3(1):20–30.
Chomsky, N. (1965). Aspects of the Theory of Syntax. The MIT Press, Cambridge.
Chomsky, N. (1973). Conditions on transformations. In S., &erson & P. Kiparsky (eds.), A Festschrift for

Morris Halle, pages 237–286. Holt, Rinehart, and Winston, New York.
Coles-White, D., de Villiers, J. G., & Roeper, T. (2004). The emergence of barriers to wh-movement,

negative concord, and quantification. In A. Brugos, L. Micciulla & C. Smith (eds.), The proceedings of the
28th annual Boston University Conference on Language Development, pages 98–107, Somerville, MA.
Cascadilla Press.

Cowart, W. (1997). Experimental Syntax: Applying Objective Methods to Sentence Judgements. Thousand
Oaks, CA: Sage.

Davis, K. F., Parker, K. P., & Montgomery, G. L. (2004). Sleep in infants and young children: Part one:
normal sleep. Journal of Pediatric Health Care, 18(2):65–71.

deVilliers, J., &Roeper, T. (1995). Relative clauses are barriers to wh-movement for young children. Journal
of Child Language, 22(2):389–404.

de Villiers, J., Roeper, T., Bland-Stewart, L., & Pearson, B. (2008). Answering hard questions:
Wh-movement across dialects and disorder. Applied Psycholinguistics, 29(1):67–103.

de Villiers, J., Roeper, T., &Vainikka, A. (1990). The acquisition of long-distance rules. In L. Frazier & J. de
Villiers (eds.), Language processing and language acquisition, pages 257–297. Kluwer Academic, Boston.

de Villiers, J. G., & Pyers, J. E. (2002). Complements to cognition: A longitudinal study of the relationship
between complex syntax and false-belief-understanding. Cognitive Development, 17(1):1037–1060.

Dickinson, D. K., &Tabors, P. O. (2001). Beginning literacy with language: Young children learning at home
and school. Paul H Brookes Publishing.

Dickson, N., Pearl, L., & Futrell, R. (2022). Learning constraints on wh-dependencies by learning how to
efficiently represent wh-dependencies: A developmental modeling investigation with Fragment Gram-
mars. Proceedings of the Society for Computation in Linguistics, 5(1):220–224.

Journal of Child Language 831

https://doi.org/10.1017/S0305000922000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000922000514


Eghbalzad, L.,Deocampo, J., &Conway, C. (2016). Statistical Learning Ability Can Overcome the Negative
Impact of Low Socioeconomic Status on Language Development. In Proceedings of the 38th annual
meeting of the Cognitive Science Society, pages 2129–2134, Austin, TX.

Eghbalzad, L., Deocampo, J. A., & Conway, C. M. (2021). How statistical learning interacts with the
socioeconomic environment to shape children’s language development. PloS One, 16(1):e0244954.

Fernald, A., Marchman, V. A., & Weisleder, A. (2013). SES differences in language processing skill and
vocabulary are evident at 18 months. Developmental Science, 16(2):234–248.

Futrell, R., Wilcox, E., Morita, T., Qian, P., Ballesteros, M., & Levy, R. (2019). Neural language models as
psycholinguistic subjects: Representations of syntactic state. Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1.

Gagliardi, A., Mease, T. M., & Lidz, J. (2016). Discontinuous development in the acquisition of filler-gap
dependencies: Evidence from 15-and 20-month-olds. Language Acquisition, 23(3):234–260.

Hall, W. S., & Tirre, W. C. (1979). The Communicative Environment of Young Children: Social Class,
Ethnic, and Situational Differences. Technical Report No. 125.

Hart, B., &Risley, T. (1995).Meaningful differences in the everyday experience of youngAmerican children. P.
H. Brookes, Baltimore, MD.

Hirsh-Pasek, K., Adamson, L. B., Bakeman, R., Owen, M. T., Golinkoff, R. M., Pace, A., Yust, P. K., &
Suma, K. (2015). The contribution of early communication quality to low-income children’s language
success. Psychological Science, 26:1071–1083.

Hoff, E. (2003). The specificity of environmental influence: Socioeconomic status affects early vocabulary
development via maternal speech. Child Development, 74(5):1368–1378.

Hoff, E. (2006). How social contexts support and shape language development.Developmental Review, 26(1):
55–88.

Hoff-Ginsberg, E. (1998). The relation of birth order and socioeconomic status to children’s language
experience and language development. Applied Psycholinguistics, 19(4):603–629.

Huttenlocher, J., Vasilyeva, M., Cymerman, E., & Levine, S. (2002). Language input and child syntax.
Cognitive Psychology, 45(3):337–374.

Huttenlocher, J., Waterfall, H., Vasilyeva, M., Vevea, J., & Hedges, L. V. (2010). Sources of variability in
children’s language growth. Cognitive Psychology, 61(4):343–365.

Linzen, T., & Baroni, M. (2021). Syntactic Structure from Deep Learning. Annual Review of Linguistics,
pages 195–212.

MacWhinney, B. (2000). The CHILDES Project: Tools for Analyzing Talk. Lawrence Erlbaum Associates,
Mahwah, NJ.

McDaniel, D., Chiu, B., &Maxfield, T. L. (1995). Parameters for wh-movement types: Evidence from child
English. Natural Language & Linguistic Theory, 13(4):709–753.

Otsu, Y. (1981). Universal Grammar and syntactic development in children: Toward a theory of syntactic
development. PhD thesis, Massachusetts Institute of Technology.

Pearl, L. (2019). Fusion is great, and interpretable fusion could be exciting for theory generation: Response to
Pater. Language, 95(1):e109–e114.

Pearl, L. (2021). Modeling syntactic acquisition. In J. Sprouse (ed.), Oxford Handbook of Experimental
Syntax. Oxford University Press.

Pearl, L., & Sprouse, J. (2013). Syntactic islands and learning biases: Combining experimental syntax and
computational modeling to investigate the language acquisition problem. Language Acquisition, 20:19–64.

Pearl, L., & Sprouse, J. (2015). Computational modeling for language acquisition: A tutorial with syntactic
islands. Journal of Speech, Language, and Hearing Research, 58:740–753.

Pearl, L., & Sprouse, J. (2019). Comparing solutions to the linking problem using an integrated quantitative
framework of language acquisition. Language.

Pearl, L., & Sprouse, J. (2021). The acquisition of linking theories: A Tolerance and Sufficiency Principle
approach to deriving UTAH and rUTAH. Language Acquisition, pages 1–32.

Perkins, L., & Lidz, J. (2020). Filler-gap dependency comprehension at 15 months: The role of vocabulary.
Language Acquisition, 27(1):98–115.

Ramscar, M., Dye, M., & Klein, J. (2013a). Children value informativity over logic in word learning.
Psychological Science, 24(6):1017–1023.

Ramscar, M., Dye, M., & McCauley, S. (2013b). Error and expectation in language learning: The curious
absence of mouses in adult speech. Language, 89(4):760–793.

832 Lisa Pearl and Alandi Bates

https://doi.org/10.1017/S0305000922000514 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000922000514


Roeper, T., & Seymour, H. N. (1994). The place of linguistic theory in the theory of language acquisition and
language impairment. In Y. Levy (ed.), Other children, other languages: Issues in the theory of language
acquisition, pages 305–330. Erlbaum, Hillsdale, NJ.

Ross, J. (1967). Constraints on variables in syntax. PhD thesis, MIT, Cambridge, MA.
Rowe,M. L. (2012). A longitudinal investigation of the role of quantity and quality of child-directed speech in

vocabulary development. Child Development, 83(5):1762–1774.
Rowe, M. L., Leech, K. A., & Cabrera, N. (2017). Going beyond input quantity: Wh-questions matter for

toddlers’ language and cognitive development. Cognitive Science, 41:162–179.
Schwab, J. F., & Lew-Williams, C. (2016). Language learning, socioeconomic status, and child-directed

speech. Wiley Interdisciplinary Reviews: Cognitive Science, 7:264–275.
Scontras, G., & Pearl, L. S. (2021). When pragmatics matters more for truth-value judgments: An

investigation of quantifier scope ambiguity. Glossa: A journal of general linguistics, 6(1).
Seidl, A., Hollich, G., & Jusczyk, P. W. (2003). Early understanding of subject and object wh-questions.

Infancy, 4(3):423–436.
Sperry, D. E., Sperry, L. L., & Miller, P. J. (2018). Reexamining the verbal environments of children from

different socioeconomic backgrounds. Child development.
Sprouse, J.,Wagers, M., & Phillips, C. (2012). A test of the relation between working memory capacity and

syntactic island effects. Language, 88(1):82–124.
Suppes, P. (1974). The semantics of children’s language. American Psychologist, 29:103–114.
Vainikka, A., & Roeper, T. (1995). Abstract operators in early acquisition. Linguistic Review, 12:275–312.
Valian, V. (1991). Syntactic subjects in the early speech of American and Italian children. Cognition, 40(1):

21–81.
Valian, V., & Casey, L. (2003). Young children’s acquisition of wh-questions: The role of structured input.

Journal of child language, 30(1):117–143.
Vasilyeva, M., Waterfall, H., & Huttenlocher, J. (2008). Emergence of syntax: Commonalities and

differences across children. Developmental Science, 11(1):84–97.
Warstadt, A.,Parrish, A., Liu,H.,Mohananey, A.,Peng,W.,Wang, S.-F., &Bowman, S. R. (2020). BLiMP:

The benchmark of linguistic minimal pairs for English. Transactions of the Association for Computational
Linguistics, 8:377–392.

Weisleder, A., & Fernald, A. (2013). Talking to children matters early language experience strengthens
processing and builds vocabulary. Psychological Science, 24(11):2143–2152.

Wilcox, E., Futrell, R., & Levy, R. (2021). Using computational models to test syntactic learnability. https://
ling.auf.net/lingbuzz/006327.

Wilcox, E., Levy, R.,Morita, T., & Futrell, R. (2018). What do RNN language models learn about filler-gap
dependencies? In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP. Association for Computational Linguistics.

Cite this article: Pearl, L.,& Bates, A. (2024). A new way to identify if variation in children’s input could be
developmentallymeaningful: Using computational cognitivemodeling to assess input across socio-economic
status for syntactic islands. Journal of Child Language 51, 800–833, https://doi.org/10.1017/
S0305000922000514

Journal of Child Language 833

https://doi.org/10.1017/S0305000922000514 Published online by Cambridge University Press

https://ling.auf.net/lingbuzz/006327
https://ling.auf.net/lingbuzz/006327
https://doi.org/10.1017/S0305000922000514
https://doi.org/10.1017/S0305000922000514
https://doi.org/10.1017/S0305000922000514

	A new way to identify if variation in children’s input could be developmentally meaningful: Using computational cognitive modeling to assess input across socio-economic status for syntactic islands
	Introduction
	Identifying if input differences are developmentally meaningful
	Input differences for syntactic island knowledge

	The development of wh-dependency knowledge across SES
	Syntactic islands
	Assessing knowledge of syntactic islands
	Linking children’s input to syntactic island development
	Input analysis across SES through age four
	Input samples
	Higher-SES
	Lower-SES
	Limitations of corpus samples
	Wh-dependency coding

	Descriptive corpus analyses
	Wh-dependencies
	Syntactic trigrams

	Realistic estimates of total input quantity across SES through age four
	When children’s learning period plausibly starts
	How much time awake during the learning period
	How many wh-dependencies during the learning period

	Summary and implications of corpus analyses
	Computational cognitive modeling analysis
	Analysis implementation and visualization
	Complex NP islands
	Subject, Whether, and Adjunct islands
	Summary of modeling results

	Discussion
	Interesting input differences involving complementizer that

	Other predictions
	Learning prerequisites and possible variation
	Using computational models to evaluate input variation

	Conclusion
	Acknowledgements
	Competing interests
	References


