COMMUTATIVITY FOR MATRICES OF QUATERNIONS

R. E. CARLSON AND C. G. CULLEN

1. Introduction. For any ring \mathscr{R} we shall denote by \mathscr{R}_n the ring of all $n \times n$ matrices with elements from \mathscr{R} and by $\mathscr{R}[x]$ the set of all polynomials in x with coefficients from \mathscr{R} .

 $\mathfrak Q$ will denote the non-commutative four-dimensional division algebra of real quaternions with 1, i_1 , i_2 , i_3 as generators

$$(i_1^2 = i_2^2 = -1, i_1 i_2 = -i_2 i_1 = i_3).$$

We shall not distinguish between the real field \Re and the subfield of \mathfrak{Q} generated by 1. Also, we shall not distinguish between the complex field \mathfrak{C} and the subfield of \mathfrak{Q} generated by 1 and i_1 .

If \mathfrak{D} is any subset of \mathscr{R}_n we shall denote the centralizer of \mathfrak{D} in \mathscr{R}_n by $C(\mathfrak{D}) = \{A \in \mathscr{R}_n | AD = DA$, for all $D \in \mathfrak{D}\}$. In particular, if $A \in \mathscr{R}_n$, then C(A) is the set of all matrices in \mathscr{R}_n which commute with A and $C^2(A) = C(C(A))$ is the set of all matrices in \mathscr{R}_n which commute with every matrix which commutes with A. If \mathfrak{D}_1 and \mathfrak{D}_2 are subsets of \mathscr{R}_n such that $\mathfrak{D}_1 \subseteq \mathfrak{D}_2$, then we observe that $C(\mathfrak{D}_1) \supseteq C(\mathfrak{D}_2)$.

Our main purpose in this paper is to prove that $C^2(A) = \mathfrak{N}[A]$ for any $A \in \mathfrak{Q}_n$. This is a generalization of the following well-known result for matrices over a field.

THEOREM 1. Let \mathfrak{F} be a field and $A \in \mathfrak{F}_n$. Then $C^2(A) = \mathfrak{F}[A]$ (2, Theorem 5–19).

The development in this paper will depend heavily upon the following theorem about matrices of quaternions due to Wiegmann (5, Theorem 1).

THEOREM 2. For any $A \in \mathbb{Q}_n$ there exists a non-singular matrix $P \in \mathbb{Q}_n$ such that $P^{-1}AP = J \in \mathbb{G}_n$ is in Jordan canonical form with characteristic values (the diagonal elements of J) having non-negative imaginary parts.

Since the diagonal blocks in the Jordan form may appear in any order, we have the following corollary to Theorem 2.

COROLLARY 2.1. For any $A \in \mathfrak{Q}_n$ there exists a non-singular matrix $P \in \mathfrak{Q}_n$ such that the matrix of Theorem 2 is

$$P^{-1}AP \, = \, J \, = \begin{bmatrix} J_{11} & 0 \\ 0 & J_{22} \end{bmatrix},$$

Received May 12, 1966. Research supported by the National Science Foundation.

where J_{11} has real entries and the characteristic values of J_{22} have positive imaginary parts.

2. Commutativity in \mathfrak{Q}_n . We begin by investigating the structure of the subalgebra $C^2(J)$, where J is a Jordan canonical matrix of the type described in Corollary 2.1. We shall then be led directly to the more general result about $C^2(A)$ for any $A \in \mathfrak{Q}_n$.

THEOREM 3. Let

$$J = \begin{bmatrix} J_{11} & 0 \\ 0 & J_{22} \end{bmatrix} \in \mathfrak{C}_n \subset \mathfrak{Q}_n$$

be a Jordan canonical matrix, where J_{11} is real and J_{22} has characteristic values with positive imaginary parts. If $A \in C^2(J)$, then

(1) $A \in \mathfrak{C}[J]$,

(2)
$$A = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}$$
, where A_{11} has only real entries.

Proof. $C(J) \supseteq C(J) \cap \mathfrak{C}_n$; hence $C^2(J) \subseteq C(C(J) \cap \mathfrak{C}_n)$ and, by Theorem 1, $C^2(J) \cap \mathfrak{C}_n \subseteq C(C(J) \cap \mathfrak{C}_n) \cap \mathfrak{C}_n = \mathfrak{C}[J]$.

It remains to show that $C^2(J) \cap \mathfrak{C}_n = C^2(J)$. If $A \in C^2(J)$, then A commutes with every matrix in C(J); in particular, $A(i_1 I) = (i_1 I)A$, which, since the centralizer of i_1 in \mathfrak{Q} is \mathfrak{C} , implies that $A \in \mathfrak{C}_n \subset \mathfrak{Q}_n$. Therefore, $C^2(J) \subseteq C^2(J) \cap \mathfrak{C}_n \subseteq \mathfrak{C}[J]$, which completes the proof of (1).

If $A \in C^2(J)$, then $A \in \mathfrak{C}[J]$ so that A has the form

$$\begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}.$$

The matrix

$$B = \begin{bmatrix} i_2 I & 0 \\ 0 & I \end{bmatrix}$$

is in C(J); hence AB = BA and $A_{11}(i_2 I) = (i_2 I)A_{11}$, which, since the centralizer of i_2 in \mathfrak{C} is \mathfrak{R} , implies that A_{11} has only real entries, and the proof is complete.

From Theorem 3 we have that

(2.1)
$$C^2(J) \subseteq \{p(J) | p(x) \in \mathfrak{C}[x] \text{ and } p(J_{11}) \text{ is real}\} \subseteq \mathfrak{C}[J].$$

We shall show that if $p(x) \in \mathbb{S}[x]$ such that $p(J_{11})$ is real, then we can find a real polynomial q(x) such that q(J) = p(J).

THEOREM 4. Let

$$J = \begin{bmatrix} J_{11} & 0 \\ 0 & J_{22} \end{bmatrix}$$

be a Jordan canonical matrix such that J_{11} is real and the characteristic values of J_{22} have positive imaginary parts. Let $p(x) \in \mathfrak{C}[x]$ such that $p(J_{11})$ is real. Then there exists a polynomial $q(x) \in \mathfrak{R}[x]$ such that p(J) = q(J).

*Proof.** Let r_1, r_2, \ldots, r_s be the distinct characteristic values of J_{11} (all real) and let $\lambda_1, \lambda_2, \ldots, \lambda_t$ be the distinct characteristic values of J_{22} (non-real with positive imaginary parts). Let the largest simple Jordan block associated with r_i be $k_i \times k_i$ and let the largest simple Jordan block associated with λ_j be $l_j \times l_j$.

Since $\bar{\lambda}_j \neq \lambda_j$, let $q(x) \in \mathfrak{C}[x]$ be the unique polynomial (Lagrange-Hermite interpolation polynomial) of degree less than $\sum k_i + 2\sum l_i$ which satisfies

(2.2)
$$q^{(n)}(r_i) = p^{(n)}(r_i), \quad i = 1, 2, \dots, s; \ n = 0, 1, \dots, k_i - 1,$$

 $q^{(m)}(\lambda_j) = p^m(\lambda_j)$ $j = 1, \dots, t;$
 $q^{(m)}(\bar{\lambda}_j) = p^m(\lambda_j)$ $m = 0, 1, \dots, l_j - 1.$

The first two of these inequalities imply that p(J) = q(J) (2, p. 178). Now the polynomial $\bar{q}(x)$ is easily seen to fulfil the relations (2.2), e.g.

$$\bar{q}^{(m)}(\lambda_j) = \overline{q^{(m)}(\bar{\lambda}_j)} = p^{(m)}(\bar{\lambda}_j).$$

The uniqueness of q(x) thus implies that $q(x) = \bar{q}(x)$ and hence that $q(x) \in \Re[x]$.

From equation (2.1) and Theorem 4 we have

Corollary 4.1. If

$$J = \begin{bmatrix} J_{11} & 0 \\ 0 & J_{22} \end{bmatrix}$$

is a Jordan canonical matrix such that J_{11} is real and the characteristic values of J_{22} have positive imaginary parts, then $C^2(J) = \Re[J]$.

We conclude this section by showing that the conclusions of Corollary 4.1 hold for any $A \in \mathfrak{D}_n$. This is a generalization of Theorem 1.

Theorem 5. For any $A \in \mathfrak{Q}_n$, $C^2(A) = \mathfrak{R}[A]$.

Proof. Let $A \in \mathfrak{Q}_n$. Using Corollary 2.1 we can find a non-singular matrix $P \in \mathfrak{Q}_n$ such that

$$P^{-1}AP = J = \begin{bmatrix} J_{11} & 0 \\ 0 & J_{22} \end{bmatrix}$$

is in Jordan canonical form, satisfying the hypotheses of Corollary 4.1. If $K \in C(J)$, then KJ = JK and $PKP^{-1} = PJP^{-1}PKP^{-1}$; hence

$$(PKP^{-1})A = A(PKP^{-1})$$

so that $PKP^{-1} \in C(A)$.

^{*}We are indebted to the referee for a helpful suggestion to shorten our original proof.

Choose $D \in C^2(A)$. Then

$$K(P^{-1}DP) = P^{-1}[(PKP^{-1})D]P = P^{-1}[D(PKP^{-1})]P = (P^{-1}DP)K$$

which shows that $P^{-1}DP \in C^2(J) = \Re[J]$.

Let $p(x) \in \mathfrak{N}[x]$ be such that $p(J) = P^{-1}DP$. Since p(x) has real coefficients, it follows that $D = P(p(J))P^{-1} = p(PJP^{-1}) = p(A)$, showing that $C^2(A) \subseteq \mathfrak{N}[A]$. The other inclusion is apparent and hence

$$C^2(A) = \mathfrak{R}[A].$$

3. Applications to functions on \mathfrak{D}_n . Theorem 6 has an interesting application to the theory of intrinsic functions on \mathfrak{D}_n . A function F, with range and domain in \mathfrak{D}_n , is said to be intrinsic if $F(\Omega A) = \Omega F(A)$ for every A in the domain of F and for every Ω in the group of automorphisms and antiautomorphisms of \mathfrak{D}_n . Intrinsic functions on a general linear algebra were motivated and studied by Rinehart (3, 4).

Let F be an intrinsic function on \mathfrak{Q}_n with A in the domain of F and $B \in C(A)$. If B^{-1} exists, then $B^{-1}F(A)B = F(B^{-1}AB) = F(B^{-1}BA) = F(A)$, which implies that F(A)B = BF(A). If B is singular, then we can find a real scalar r such that $(B + rI)^{-1}$ exists, and it follows, as above, that F(A)B = BF(A). Thus $F(A) \in C^2(A) = \mathfrak{R}[A]$. We have proved the following theorem.

THEOREM 6. If F is an intrinsic function on \mathbb{Q}_n and A is in the domain of F, then the functional value F(A) is a real polynomial in A.

Theorem 6 indicates the existence of an error in the characterization of intrinsic functions on \mathfrak{Q}_n given by Cullen (1). The example given in (1) to show that not every intrinsic function on \mathfrak{Q}_n has the property described in Theorem 6 is incorrect. The function described there can also be interpreted as a function from \mathfrak{C}_n to \mathfrak{C}_n , where \mathfrak{C}_n is interpreted as a $2n^2$ -dimensional algebra over \mathfrak{R} , and with this interpretation still provides an example of an intrinsic function, on an algebra \mathscr{A} , which is not a polyfunction (functional values are not polynomials in the argument with coefficients from the ground field).

REFERENCES

- C. G. Cullen, Intrinsic functions on matrices of real quaternions, Can. J. Math., 15 (1963), 456-466.
- 2. Matrices and linear transformations (Reading, Mass., 1966).
- R. F. Rinehart, Elements of a theory of intrinsic functions on algebras, Duke Math. J., 27 (1960), 1-19.
- 4. —— Intrinsic function on matrices, Duke Math. J., 28 (1961), 291–300.
- N. A. Wiegman, Some theorems on matrices with real quaternion elements, Can. J. Math., 7 (1955), 191-201.

University of Pittsburgh