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1. Introduction. For any ring 8% we shall denote by 8%n the ring of all 
n X n matrices with elements from 8% and by 8?[x] the set of all polynomials 
in x with coefficients from 8$. 

O will denote the non-commutative four-dimensional division algebra of 
real quaternions with 1, ii, i2i i% as generators 

(ix
2 = i2

2 = — 1, iii2 = —HH = iz). 

We shall not distinguish between the real field 9Î and the subfield of O 
generated by 1. Also, we shall not distinguish between the complex field S and 
the subfield of Q generated by 1 and i\. 

If S5 is any subset of 8&n we shall denote the centralizer of 35 in 8%n by 
C(35) = \A e 8#n\ AD = DA, for all D G SJ . In particular, if A G 01 n, then 
C{A) is the set of all matrices in 8%n which commute with A and C2(A) = 
C(C(A)) is the set of all matrices in 8$n which commute with every matrix 
which commutes with A. If 3)i and ©2 are subsets of 8%n such that 3)i C J)2, 
then we observe that C(S)i) 2 C(®2). 

Our main purpose in this paper is to prove that C2(A) = 5Rf̂ 4] for any 
A Ç Q„.. This is a generalization of the following well-known result for matrices 
over a field. 

THEOREM 1. Let g be a field and A Ç %n. Then C2(A) = %[A] (2, Theorem 
5-19). 

The development in this paper will depend heavily upon the following 
theorem about matrices of quaternions due to Wiegmann (5, Theorem 1). 

THEOREM 2. For any A Ç £ln there exists a non-singular matrix P Ç £xn 

such that P~lAP = J Ç 6W is in Jordan canonical form with characteristic 
values (the diagonal elements of J) having non-negative imaginary parts. 

Since the diagonal blocks in the Jordan form may appear in any order, 
we have the following corollary to Theorem 2. 

COROLLARY 2.1. For any A Ç £X there exists a non-singular matrix P 6 Ow 

such that the matrix of Theorem 2 is 

P-^AP = J = Jn 0 
0 J22 
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where Jn has real entries and the characteristic values of J 22 have positive ima­
ginary parts. 

2. Commutativity in D n . We begin by investigating the structure of 
the subalgebra C2(J), where J is a Jordan canonical matrix of the type de­
scribed in Corollary 2.1. We shall then be led directly to the more general 
result about C2(A) for any A G £ln. 

THEOREM 3. Let 

J 
[Jn 0 1 
LO /22J 

a , C Q , 

be a Jordan canonical matrix, where Jn is real and J21 has characteristic values 
with positive imaginary parts. If A G C2(7), then 

(1) A G em, 

(2) A = 
An 0 
0 A22 

, where An has only real entries. 

Proof. C(J) 2 C(J) r\ g„; hence C2{J) Q C(C(J) r\ S J and, by Theorem 

1, o(j) r\ <& ç c(c(j) n s j ng , = e[/]. 
It remains to show that C2(J) P\ g„ = C2(/)- If A G C2(7), then ,4 com­

mutes with every matrix in C(J); in particular, ^4(^7) = (ix I)A, which, 
since the centralizer of i\ in Q is 6, implies that i G S r e C O n . Therefore, 
C2(7) C C2(J) r\ (En Q (£[/], which completes the proof of (1). 

If A G C2(J), then A £ <&[J] so that 4 has the form 

The matrix 

B 

\An 0 1 
LO A22]' 

-[VÎ] 
is in C(J); hence AB = BA and ^4n(i27) = (i21)An, which, since the 
centralizer of i2 in (S is 3?, implies that i n has only real entries, and the proof 
is complete. 

From Theorem 3 we have that 

(2.1) C2{J) C {p(J)\p(x) G S[x] and p(Jn) is real} C <£[/]. 

We shall show that if £(#) G S[x] such that p(Jn) is real, then we can find 
a real polynomial q(x) such that q(J) = £ ( / ) . 

THEOREM 4. Le£ 

LO Jr. 
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be a Jordan canonical matrix such that Jn is real and the characteristic values 
of J22 have positive imaginary parts. Let p(x) G E[x] such that p(Ju) is real. 
Then there exists a polynomial q(x) G dt[x] such that p(J) = q(J). 

Proof* Let r i, r2, . . . , rs be the distinct characteristic values of Ju (all 
real) and let Xi, X2, . . . , A* be the distinct characteristic values of J22 (non-
real with positive imaginary parts). Let the largest simple Jordan block 
associated with rt be kt X kt and let the largest simple Jordan block associ­
ated with \j be lj X lj. 

Since X;- ^ X;-, let q(x) G (£[#] be the unique polynomial (Lagrange-Her-
mite interpolation polynomial) of degree less than ^kt + 2^11 which satisfies 

(2.2) q{n\rt) = p(n\rt)y i = 1, 2, . . . , 5; n = 0, 1, . . . , kt - 1, 

q(m)(Xj)=pm(\j)\ J = 1 /; 

qim\h) =pm(h)> m = 0,l,...Jj-l. 

The first two of these inequalities imply that p(J) = q(J) (2, p. 178). Now 
the polynomial q(x) is easily seen to fulfil the relations (2.2), e.g. 

The uniqueness of q(x) thus implies that q(x) = q(x) and hence that 
q(x) G 9?[x]. 

From equation (2.1) and Theorem 4 we have 

COROLLARY 4.1. If 

> - [0" ° J: 22 

w a Jordan canonical matrix such that Ju is real and the characteristic values 
of J22 have positive imaginary parts, then C2(J) = 9Î[/]. 

We conclude this section by showing that the conclusions of Corollary 4.1 
hold for any A G Ow. This is a generalization of Theorem 1. 

THEOREM 5. For any A G Q„, C2(A) = dt[A]. 

Proof. Let A G Qw. Using Corollary 2.1 we can find a non-singular matrix 
P ÇQW such that 

~Jn 0 
P-'AP = J = 

0 72: 

is in Jordan canonical form, satisfying the hypotheses of Corollary 4.1. If 
K G C(J), then KJ = J X and P X P " 1 = PJP-1 PKP-1; hence 

(PKP'1) A = A (PKP-1) 
so that PiLP- 1 G C(i4). 

*We are indebted to the referee for a helpful suggestion to shorten our original proof. 
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Choose D G C2(A). Then 

K(P-WP) = P-i[(PKP-^)D}P = P-l[D(PKP-^)]P = (P~1DP)K 

which shows that P~WP € C2(I) = Wl 
Let p(x) G dî[x] be such that p(J) = P~lDP. Since £ 0 ) has real co­

efficients, it follows that D = P ( ^ ( J ) ) P - 1 = piPJP-1) = p(A), showing 
that C2(A) C 9Î[^4], The other inclusion is apparent and hence 

0{A) = 9Î[^]. 

3» Applications to functions on Q n . Theorem 6 has an interesting 
application to the theory of intrinsic functions on £ln. A function F, with 
range and domain in Qw, is said to be intrinsic if F(iïA) = QF(A) for every 4̂ 
in the domain of F and for every 12 in the group of automorphisms and anti-
automorphisms of Qw. Intrinsic functions on a general linear algebra were 
motivated and studied by Rinehart (3, 4). 

Let F be an intrinsic function on Qw with A in the domain of F and B G C(A). 
If B-1 exists, then B'1F(A)B = F(B~lAB) = F(B~lBA) = P ( ^ ) , which 
implies that F(A)B = BF(A). If 5 is singular, then we can find a real scalar 
r such that (B + r / ) _ 1 exists, and it follows, as above, that F{A)B = BF{A). 
Thus F (A) G C2(A) = 9Î[^4]. We have proved the following theorem. 

THEOREM 6. If F is an intrinsic function on £ln and A is in the domain of 
F, then the functional value F (A) is a real polynomial in A. 

Theorem 6 indicates the existence of an error in the characterization of 
intrinsic functions on £ln given by Cullen (1). The example given in (1) to 
show that not every intrinsic function on Ow has the property described in 
Theorem 6 is incorrect. The function described there can also be interpreted 
as a function from Sw to En, where Sre is interpreted as a 2w2-dimensional 
algebra over 9Î, and with this interpretation still provides an example of an 
intrinsic function, on an algebra sf, which is not a polyfunction (functional 
values are not polynomials in the argument with coefficients from the ground 
field). 
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