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Abstract

In this research article, a metasurface (MTS)-loaded high-gain and broadband circularly
polarized (CP) monopole antenna is reported. The proposed antenna configuration consists
of a symmetric Y-shaped radiating monopole over a partial ground plane with extended
twin parasitic conducting strips (PCS) loaded with a MTS reflector. To achieve left-hand cir-
cular polarization characteristics, a metallic copper strip is utilized to short the partial ground
plane with one of the twin PCS [PCS(L)]. By using the grid-slotted sub patches on a rectangu-
lar MTS a reflector of 2λfa × 1.65λfa × 0.02λfa is placed just below the monopole radiator at a
height of 0.33λfa, which provides broadened impedance (IBW) and 3 dB axial ratio bandwidth
(ARBW) responses with high gain. The proposed prototype with an volumetric dimension
of 1.33λfa × 0.9λfa × 0.02λfa at fa = 5 GHz is designed and characterized. It exhibits a measured
IBW of 48.45% (3.57–5.89 GHz), ARBW of 25.25% (4.21–5.42 GHz), and CP gain of
> 8.35 dBic with the antenna efficiency of > 75% in the desired operating frequency bands.
The obtained performances of the proposed MTS antenna confirm its suitability for RF
energy harvesting application.

Introduction

With the development of RF applications in sub-6 GHz frequency bands, there is a significant
requirement of antennas operating in the spectrum (i.e., operating bands) like LTE (3.5 GHz),
Wi-Fi (5 GHz), WiMAX (3.5/5.5 GHz), ISM (5 GHz), 5G (5 GHz), and WLAN (IEEE 802.11
b/g/n/ac). Due to the availability of RF signals in the environment, RF front-ends are consid-
ered as the intrinsic part of communication system [1, 2]. Their effectiveness is assessed with
the features of circular polarization (CP) [2–4]. Hence, in this present context, different kinds
of antennas of numerous geometries have been investigated in [5–10]. But they exhibit narrow
bandwidth(s), low gain, and poor efficiency. To overcome such type of limitations, CP anten-
nas based on the metamaterials [11–14], slots [15–19], modification in the ground plane [20],
incorporation of fractal phenomena [21], and change in the feeding mechanism [22, 23] have
been reported. The implementation of metasurface (MTS) structures such as artificial mag-
netic conductors, electromagnetic bandgap structures, and reactive impedance surface are
used as possible solution. Thus, the several types of multi-layered antennas have been
explained in [24–34]. The antennas witness the limitations such as high profile, narrow imped-
ance bandwidth (IBW) responses, and poor CP performances, as shown in Table 1. In this
work, a MTS inspired circularly polarized symmetric Y-shaped printed monopole antenna
(SYPMA-MTS) is designed to achieve better antenna performances and overcomes the chal-
lenge of complexity, over the existing ones. The key contributions of this proposed work are
highlighted as follows:

(i) SYPMA is chosen as a radiator due to low-profile characteristics, less expensive, reason-
able efficiency, stable radiation pattern, good time domain utility, and easy to analyze.
Previously, antenna designs covering the Wi-Fi (5 GHz), Wi-MAX (3.5/5 GHz), ISM
(5 GHz), and 5G (5 GHz) bands have been discussed in [35–37], but the non-existence
of CP attributes fails to support their creditability from the applications point of
view [38].

(ii) The CP radiation is achieved by shorting a metallic copper strip between partial ground
plane and one of the twin parasitic conducting strips [PCS(L)]. Thus, a simple method is
proposed to achieve the CP radiation from the LP monopole radiator.

(iii) In the present literature, none of the papers reported in [5–37] have highlighted the intu-
ition for achieving CP traits [39, 40].

(iv) With incorporation of MTS reflector in a single-layer, there is a vital improvement of
IBW and axial ratio bandwidth (ARBW) responses (i.e. broadband features) with
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enhanced CP antenna gain of > 8.35 dBic, which offers better
performance over the reported ones.

(v) In the next part of analysis, new theoretical insights taking
into the account of 3 dB ARBW (BW3dB) and CP antenna
gain (G3dB) are presented to analyze the CP characteristics
of any type of CP antennas using the equations (2)–(5).

(vi) The proposed antenna (SYPMA-MTS) can be used for RF
energy harvesting (RF-EH) application. To test its capability
for such a instance, it is integrated with the CRLH-based rec-
tifier circuit, and the LC-based rectifier circuit, which is used
to evaluate the RF-to-DC conversion efficiency (η0) and DC
output voltage (Vout) at 5 GHz bands using ADS circuit solver.

Table 1. Performance characteristics of the proposed metasurface antenna (SYPMA-MTS) over the existing ones reported in the literature [5–37, 39, 40]

Ref. Antenna configuration IBW ARBW CP gain avg.

5. Embedded patch antenna Multi-bands 2.3% 4.4 dBic

6. Stacked patch antenna 27.7% 11.47% 4.5 dBic

7. Metamaterial antenna Multi-bands — —

8. PIFA reconfigurable antenna Multi-bands — —

9. Shorted patch antenna 3.25% 0.682% 3.8 dBic

10. Conventional monopole antenna 152% — —

11. CRLH-TL based antenna 0.62% 0.18% 6.97 dBic

12. ENG-TL based antenna 5.8% 1.2% 8.28 dBic

13. Metasurface-based metamaterial antenna 3.77% 1.86% 6.3 dBic

14. Metamaterial antenna 3.9% 2.2% 1 dBic

15. Slotted patch antenna 2% 0.7% 3.8 dBic

16. Microstrip patch antenna + parasitics 6% 3.3% 2.7 dBic

17. Slotted patch antenna 15.2% 3.2% 4.1 dBic

18. Slotted dielectric resonator antenna 20.79% 12.03% 4.71 dBic

19. Slotted dielectric resonator antenna 31% 18.2% 4.5 dBic

20. Conventional monopole antenna Multi-bands 5.1% 4.1 dBic

21. Conventional dielectric resonator antenna 35.59% 11.57% 2.68 dBic

22. Conventional dielectric resonator antenna 26.84% 17.59% 3.86 dBic

23. Microstrip patch antenna 1.8% 0.6% 4.2 dBic

24. Metasurface-based monopole antenna 16% 10% 5.5 dBic

25. Metasurface-based slotted antenna 22.6% 14.3% 4.2 dBic

26. Metasurface-based monopole antenna 33.7% 16.5% 5.8 dBic

27. Metasurface-based monopole antenna 34.3% 18.69% 5.1 dBic

28. Metasurface-based dipole antenna 16.8% 18% 4.8 dBic

29. Metasurface-based slotted antenna 29.41% 9.05% 6.34 dBic

30. Metasurface-based Eng-TL CSRR antenna 16.36% 11.93% 5.62 dBic

31. Metasurface-based reconfigurable antenna 31.6% 20.8% 6.9 dBic

32. Metasurface-based reconfigurable antenna 20.5% 15.5% 4.25 dBic

33. Metasurface-based reconfigurable antenna 25% 25% 6.6 dBic

34. Metasurface-based microstrip patch antenna 20.6% 17.4% 8 dBic

35. Conventional monopole antenna 154% — —

36. Conventional monopole antenna 167% — —

37. Conventional monopole antenna Multi-bands — —

39. Superstrate-based monopole antenna 114.9% 20.02% 6.82 dBic

40. Metasurface-based monopole antenna 57.21% 25.25% 4.92 dBic

P1. Y-shaped monopole antenna (SYPMA) 38.61% 6.82% 2.36 dBic

P2. SYPMA loaded with single-layered metasurface (MTS) Reflector 48.45% 25.25% 8.45 dBic

Ref., reference; IBW, − 10 dB impedance bandwidth; ARBW, 3 dB axial bandwidth; —, not reported.
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Fig. 1. Schematic configuration of the proposed broadband circularly polarized monopole antenna loaded with metasurface reflector. [The dimensions are as: WSUB = 1.33λ0, LSUB = 0.9λ0, WGND = 0.83λ0, LGND = 0.4λ0, LPCS(R) = 0.36λ0,
LPCS(L) = 0.36λ0, WPCS = 0.03λ0, PMCS = 0.05λ0, WA = 0.04λ0, LA = 0.6λ0, LF = 0.42λ0, WF = 0.05λ0, WRP = 1.78λ0, LRP = 1.48λ0, and S1 × S2 = 0.13λ0 × 0.09λ0, where λ0 = 60 mm.].
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Table 1 presents the comparative study of SYPMA-MTS over
the existing literatures in [5–37, 39, 40]. The utilization of MTS
is also applicable to the other CP antennas for performance
improvement in terms of broad 3 dB ARBW and CP antenna
gain with the improved front-to-back ratio (FBR). Their design
analogy, and its working mechanism, with corresponding out-
comes, and their interpretation from application perspective are
discussed in the subsequent sections.

Antenna design

Proposed antenna configuration

Figure 1 shows schematics of proposed antenna, printed on a FR-4
substrate (ϵr = 4.4, tanδ = 0.018, hsub = 0.02λfa) with the overall
volumetric dimension of 1.33λfa × 0.9λfa × 0.02λfa (i.e. λfa is the
free-space guided wavelength at 5 GHz). Here, authors have shorted
the partial ground plane with one of the twin PCS [PCS(L)] of

Fig. 2. Effects on the antenna metrics due to variation in (a) LCS, (b) WCS, and (c) PMS.
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0.36λfa × 0.03λfa. It is separated by 0.019λfa from the upper edges of
conventional partial ground plane by using a metallic copper strip,
which is responsible for achieving CP radiation attributes. Then,

the rectangular-MTS reflector with a dimension of 2λfa ×
1.65λfa × 0.02λfa is placed below the Y-shaped radiating monopole
at a height of 0.33λfa, which is supported by the four plastic spacers.

Fig. 3. Evaluation of CP mechanism at 5 GHz (a) surface current distribution [approach-I], (b) maximum realized gain [approach-II], and (c) relative power
[approach-II] from normalized radiation pattern in the broadside direction for SYPMA.
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Parametric study

In this section, the design and its parametric analysis of proposed
CP monopole antenna without MTS reflector is performed using
CST microwave suite. Initially, the ground plane is optimized. It is
observed that, if a large ground plane is used, then the S11 and AR
will degrade, and there is a change of radiation pattern character-
istics. The 3 dB axial ratio (AR) shows greater sensitivity to the
width of the ground plane (WGND), because of their dependency
on horizontal components (horizontal currents). It is also sensi-
tive to (a) length of the PCS (LCS), (b) width of the PCS (WCS),
and (c) position of the metallic copper strip (PMS). Thus, the cur-
rent investigation dispenses that the variation of these geometrical
parameters often puts significant impact on S11 and AR proper-
ties. The variations due to the LCS on S11 and AR are highlighted
in Fig. 2(a). At LCS = 21.6 mm, the proposed antenna exhibits
wider IBW and ARBW. A similar analogy is highlighted in
Fig. 2(b), when WCS = 1.16 mm is considered. With the due
incorporation of twin PCS, impedance matching trait is improved.
Furthermore, the positioning of metallic copper strip (PMS) corre-
lates with the phenomenon of shorting in between partial ground
plane and PCS(L), which demonstrate the CP characteristics. In
Fig. 2(c), the variation in PMS and its impact on S11 and AR are
highlighted. When PMS = 2.5 mm, an optimum CP performance
is observed in the desired operating bands.

Since, the design intuition is to achieve effectiveness in its per-
formance, mutual inductance effects of the geometry that stabi-
lizes to an extent, and optimizes the antenna performance to
the final optimum with the objective to render out a simple, com-
pact, and low-profile characteristics without affecting the funda-
mental characteristics from its physical insights.

Analysis of CP characteristics

In this case, the understanding of CP mechanism is interpreted by
utilizing surface current distribution phenomenon [approach-I]
and far-field radiation pattern [approach-II]. In approach-I, the
understanding toward the existence of CP waves is often confirmed
by the simultaneous presence of both horizontal and vertical cur-
rents on the antenna surface. Subsequently, for approach-II, the
orientation of CP is observed by considering far-field analogy in
broadside direction (f=00 and θ = 00), through maximum CP
antenna gain [approach-II(a)] and relative power [approach-II
(b)] obtained from the normalized radiation pattern. The analysis
of CP mechanism is persuaded at fa = 5 GHz, and the outcomes
of both approaches are highlighted in Fig. 3. For approach-II(a),
it is observed that left-hand CP (LHCP) gain is 2.32 dBic and right-
hand CP (RHCP) gain of 2.2 dBic, which indicates that the pro-
posed monopole antenna is of LHCP type. Similarly, in
approach-II(b), it is observed that, LHCP is quite stronger than
RHCP by − 22.5 dBic. These combined results do confirm the
nature of antenna as LHCP orientation. From the above analysis,
it is inferred that approach-I correlates with the existence of CP
characteristics, whereas the approach-II gives idea about the nature
of CP for the proposed antenna.

Implementation of metasurface reflector

The execution of MTS reflector at a height of 0.33λfa below the
SYPMA is implemented to achieve high CP antenna gain with
directional characteristics. The proposed MTS with surface area
of 1.78λfa × 1.48λfa is used as a reflector. It consists of grid-slotted

sub-patches of 12 × 12 cells, where each cell of 0.1λfa × 0.06λfa is
placed with an intermediate gap of 0.016λfa on the rectangular-
shaped PEC body with the overall dimension of 2λfa × 1.65λfa ×
0.02λfa, combined together to form the rectangular-shaped MTS
reflector. When this particular MTS layer comes in contact with
SYPMA, it redirects one-halves of the radiated waves in the
opposite direction. These radiated waves from SYPMA-MTS con-
sist of the waves directed from SYPMA and waves reflected from
the MTS reflector, transform the boresight radiation at both of
radiated planes toward directional radiation pattern, with a FBR
of –21.5 dBic and cross-polarization level of ≥−22.5 dBic at the
desired 5 GHz frequency bands.

In addition to above performances, average CP antenna gain is
significantly improved to 3.59 times, i.e., 2.35–8.45 dBic but
importantly, the IBW is improved to a fractional bandwidth of
48.45%, i.e., 1.08 times from 2.11 to 2.28 GHz and ARBW is
also improved toward fractional bandwidth of 25.25%, i.e., 4.03
times from 300MHz to 1.21 GHz. The insights behind achieving
out such type of improvements lies with the intuition that by
loading a MTS reflector layer, the dominant inductive coupling
process takes place and that resulted in broadening bandwidth
performances, i.e., IBW and 3 dB ARBW characteristics. Prior
to this, whenever grid-slotted patches are introduced as the MTS
layer, then there is the generation of higher-order modes [39],
which is significantly responsible for the improved antenna band-
width and its radiation strength.

A theoretical approach on analyzing CP characteristics

In the reported work, the theoretical insights [39] of 3 dB ARBW
(BW3dB) and CP antenna gain (G3dB) are presented for the complete
evaluation of antenna characteristics, especially for analyzing the CP
characteristics of any type of CP antennas, irrespective of the geom-
etry and frequency of operation. To understand such phenomena,
let us consider the criteria (Cr) in a general form, expressed as:

Cr = BW3dB × G3dB

100
(1)

Equation (1) is the basic form of the proposed criteria for ana-
lyzing CP attributes. It considers 3 dB axial bandwidth and CP

Table 2. Examination of metasurface-inspired CP antennas [24–34] w.r.t. the
proposed antenna (SYPMA-MTS) for the criteria: Cr1, Cr4

Ref. BW3dB G3dB(avg) G3dB(peak) Cr1 Cr4

24. 10% 5.5 dBic 6.67 dBic 0.55 0.67

25. 14.3% 4.2 dBic 4.8 dBic 0.61 0.68

26. 16.5% 5.8 dBic 5.8 dBic 0.95 0.95

27. 18.69% 5.1 dBic 6.1 dBic 0.95 1.14

28. 18% 4.8 dBic 6.8 dBic 0.86 1.22

29. 9.05% 6.34 dBic 6.34 dBic 0.57 0.57

30. 11.93% 5.62 dBic 5.94 dBic 0.67 0.71

31. 20.8% 6.9 dBic 6.9 dBic 1.43 1.43

32. 15.5% 4.25 dBic 4.25 dBic 0.65 0.65

33. 25% 6.6 dBic 6.6 dBic 1.65 1.65

34. 17.4% 8 dBic 8.3 dBic 1.39 1.44

P2. 25.25% 8.45 dBic 8.78 dBic 2.13 2.21
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antenna gain as the important parameters for RF front-end in
RF-EH [39]. With the segregation of CP antenna gain and its
evaluation in terms of (a) average (Gavg), (b) maximum (Gmax),
(c) minimum (Gmin), and (d) peak (Gpeak), the proposed criteria
(Cr) can be further derived as Cr1 to Cr4, shown in equations
(2) to (5):

Cr1 =
BW3dB × G3dB(avg)

100
(2)

Cr2 = BW3dB × G3dB(max)

100
(3)

Cr3 = BW3dB × G3dB(min)

100
(4)

Cr4 =
BW3dB × G3dB( peak)

100
(5)

Fig. 4. Characterization of proposed antenna in terms of (a) antenna prototype and far-field pattern setup in anechoic chamber, (b) S11 and axial ratio (AR), and (c)
antenna gain and efficiency.
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Fig. 5. Far-field radiation traits of SYPMA-MTS at (a) 4.5 GHz, (b) 5 GHz, with (c) 3D pattern at 4.5 and 5 GHz respectively.
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So, equations (2) to (5) are proposed for evaluating CP
antenna characteristics. Their corresponding outcomes are
shown in Table 2. Henceforth, an effective methodology is imple-
mented for analyzing the RF front-ends based upon the band-
width (ARBW) and CP gain characteristics.

Experimental results

To validate the performance of a proposed MTS loaded monopole
antenna, prototype is shown in Fig. 4(a) fabricated by using
ETS-PCBMATE prototyping machine. The S11 (dB) ismeasured by
using PNA X-series Microwave Network Analyzer (N5247A) from

Fig. 6. Application perspective. (a) Block diagram of RF energy harvesting mechanism, (b) CRLH-based GVD circuit (I), and (c) LC-based GVD circuit (II).
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the Keysight Technologies, whereas the AR (dB), antenna gain, radi-
ation pattern, and antenna efficiency are measured in the anechoic
chamber. Figure 4(b) presents the S11 and AR plots. It exhibits amea-
sured IBW and ARBW of 48.45% (3.57–5.84 GHz) and 25.25%
(4.21–5.42 GHz), which matches with that of the simulated
outcomes.

The average simulated and measured antenna gain are > 8.35 dBic
and antenna efficiency > 75% over the operating frequency bands, as
presented in Fig. 4(c). The proposed antenna has a peak gain
variation from 7.5 to 8.5 dBi. It is also observed that, MTS layer
has a better performance compared to earlier reported antennas in
[5–37, 39, 40], and witness better reflection properties due to the
presence of coupling effects [41] of inductance and capacitance,
which control the fringing fields to be effectively coupled out with
the radiated fields. Here, the radiation pattern at different frequencies
is measured in the anechoic chamber and their plots are presented
in Figs 5(a) and (b). For the proposed MTS inspired antenna, cen-
tered at fa = 4.5 and 5GHz, radiation plots for the principal planes
at f = 0° and f = 90° are highlighted with the directional pattern.
Owing to the MTS reflector, it possesses stable FBR ranging from
− 15 to − 21.5 dBic. Thus, the boresight radiation has a maximum
intensity along +z-axis shown in Fig. 5(c). Hence, SYPMA-MTS
has not only achieved performance trade-offs required from applica-
tion perspective but also the proposed antenna design concept is a
generic solution for achieving high CP performances.

Key design aspects of proposed antenna
• The size of printed monopole antenna (SYPMA) is less than the
size of MTS reflector. Due to reduction in its size, the effective
height is fixed at a gap of 0.33λfa, for better impedance match-
ing and stable boresight radiations.

• The radiator geometry in general reduces electrical footprint of
antenna size. It is difficult to excite antenna with MTS reflector,
that is why tuning of feeding mechanism and shorting process
have been transformed, which transduces excitation of energy
in an effective manner with the generation of CP characteristics.

• Here, the MTS reflector initiates the effective coupling process
[41]. Due to the presence of such type of ground configuration,
it emulsifies coupled energy into boresight radiation, so, there is
no spurious nulls. It assists for radiation strength, as IBW,
ARBW, and gain are enhanced with improved FBR. To demon-
strate the low-profile and effectiveness, gap between the struc-
tures is fixed at 0.33λfa, for the significant improvement of
CP antenna gain.

• The proposed antenna satisfies impedance performances,
antenna gain, radiation efficiency metrics from the application
perspective.

Investigation toward RF energy harvesting

The proposed MTS antenna (SYPMA-MTS) is integrated with the
CRLH and LC-based Greinacher voltage doubler circuits (GVDs),
where RF-to-DC conversion efficiency (η0, %) and DC output
voltage (Vout, V) are calculated by using the ADS solver. The com-
plete block diagram of RF-EH mechanism, and its corresponding
outcomes for the two different designed rectifier circuits are
shown in the Figs 6(a)–(c). In general, the selection of rectifier
topology [42–47] is important in RF energy harvester design.
Among the available and reported topologies of rectifier in litera-
ture, voltage doublers are considered as best choice for RF-to-DC
rectification, due to simplicity of design and better power

handling capability. In the another aspect, diode is considered
as the main rectifying element in a GVD, and it influences the
overall performance of the circuit. The parameters which play
an important part in the selection of the diode/s are series resist-
ance (Rs), junction capacitance (Jc), threshold voltage (Vt), and the
breakdown voltage (Vb). To select the best diodes operating at 5
GHz frequency bands, some commercially available RF-diodes are
listed along with their properties in Table 3.

In Table 3, SMS-7630 has the minimum value for Vt, which
implies that, it will turn ON for the minimum input power,
and is considered as a best choice for harvesting DC power
from the low-level ambient RF signals. In such a scenario, the
impedance matching network is of huge significance for main-
taining the overall efficiency (η0) of the circuit. In this concurrent
analysis, CRLH-TL and LC-based matching GVD circuits are pro-
posed and investigated for the 5 GHz bands.

In general, CRLH type of matching circuit is a combination of
microstrip line as RH part and lumped components as LH part,
considered as the intermediate part of multi-stage GVD. In gen-
eral, the component values associated with them are computed by
the methodology followed in [48]. A LC type of matching circuit
is introduced to avoid the tedious calculations in reducing the
complexity [39].

Considering implementation, a large-signal S-parameter circuit
simulation environment is setup in the ADS solver to determine
the various outcomes associated with the RF-EH application.
Here, the η0 is calculated by considering equation (6), where the
CRLH and LC-based multi-stage rectifier circuit/s reported for
the first time in the literature are analyzed for the input power

Table 3. Commercially available Schottky diodes for rectification

Diode series Rs Jc Vt Vb

HSMS-2860 6 Ω 0.18 V 0.65 V 7 V

HSMS-8202 14 Ω 0.26 V 0.35 V 4 V

SMS-7630 20 Ω 0.14 V 0.34 V 2 V

SMS-7621 12 Ω 0.1 V 0.55 V 3 V

MA-40417 4.9 Ω 0.04 V 0.65 V 11 V

Table 4. Performance characteristics of SYPMA-MTS integrated with the
proposed rectifier circuits (I, II) over existing ones in [39, 40, 48–54]

Ref. Antenna gain Pin η0 Vout

39. 6.82 dBic (CP) 5 dBm 19% 1.5 V

40. 4.92 dBic (CP) 5 dBm 25% —

48. 5.85 dBic (CP) 5 dBm 50% —

49. 7.8 dBi (LP) 5 dBm 5% 0.5 V

50. 6.9 dBi (LP) 5 dBm — 0.1 V

51. 7.3 dBi (LP) 5 dBm 14% 1.1 V

52. 5.01 dBic (CP) 5 dBm 43% 1.16 V

53. 5.5 dBi (LP) 5 dBm 5% 0.2 V

54. 2.6 dBi (LP) 5 dBm 55% —

P2. 8.45 dBic (CP) 5 dBm 43% (I) 1.7 V (I)

8.45 dBic (CP) 5 dBm 61% (II) 2.1 V (II)
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levels (Pin) from − 10 to + 20 dBm respectively, which covers the
possibility of low-input power levels at 5 GHz.

h0(%) =
Pload

Pincident
= V2

out

Pin × Rload
(6)

On the final note, at Pin = 5 dBm, Vout is 1.7 V, with η0 as 43%
for CRLH-based GVD circuit (I), whereas, Vout is 2.1 V, with η0 as
61% for LC-based GVD circuit (II). Here, the maximum attainable
Vout is 5.39 V (for I) and 5.4 V (for II), along with the maximum
attainable η0 as 56.28% (for I) and 73.82% (for II) are presented in
Figs 6(b) and (c). By looking into the prospective of earlier RF-EH
system designs [39, 40, 48–54], the proposed antenna + rectifier
design reported here, especially LC-based GVD circuit (II), depicts
higher outcomes over the existing literatures, as shown in Table 4.

Conclusion

This research paper highlights about a high-gain and broadband
circularly polarized printed monopole antenna loaded with the
MTS reflector. It achieves effectiveness due to its simple configur-
ation and operates with the features of 45.48% IBW and 25.25%
ARBW responses. By loading the MTS reflector, CP perfor-
mances, antenna gain, and the radiation parameters are improved.
The peak antenna gain lies between 7.5 and 8.5 dBi with direc-
tional characteristics, and improved FBR of − 21.5 dBic. The
antenna efficiency of > 75% in their designated bands is also
observed. To test its potential utility toward the RF-EH
application, CRLH and LC-based GVDs are integrated with the
antenna system. The LC-based GVD circuit (II) is more effective
than CRLH-based GVD circuit (I) with Vout of 2.1 V, η0 as
61%, and Vout of 1.7 V, η0 as 43%, which proposes effective
solution toward implementing rectifiers than those reported in
[39, 40, 48–54].
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