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Abstract

Survey questionnaires are commonly used by psychologists and social scientists to measure 

various latent traits of study subjects. Various causal inference methods such as the potential 

outcome framework and structural equation models have been used to infer causal effects. How-

ever, the majority of these methods assume the knowledge of true causal structure, which is 

unknown for many applications in psychological and social sciences. This calls for alternative 

causal approaches for analyzing such questionnaire data. Bayesian networks are a promising 

option as they do not require causal structure to be known a priori but learn it objectively 

from data. Although we have seen some recent successes in using Bayesian networks to dis-

cover causality for psychological questionnaire data, their techniques tend to suffer from causal 

non-identifiability with observational data. In this paper, we propose using a state-of-the-art 

Bayesian network that is proven to be fully identifiable for observational ordinal data. We 

develop a causal structure learning algorithm based on an asymptotically justified BIC score 

function, a hill-climbing search strategy, and the bootstrapping technique, which is able to not 

only identify a unique causal structure but also quantify the associated uncertainty. Using sim-

ulation studies, we demonstrate the power of the proposed learning algorithm by comparing 

it with alternative Bayesian network methods. For illustration, we consider a dataset from a 

psychological study of the functional relationships among the symptoms of obsessive-compulsive 

disorder and depression. Without any prior knowledge, the proposed algorithm reveals some 

plausible causal relationships. This paper is accompanied by a user-friendly open-source R 

package [name hidden] on CRAN.
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1 Introduction

Survey questionnaires are often used in social, psychological, and behavioral sciences to measure

various traits of individuals, which are otherwise hard to assess. For example, Posttraumatic

Stress Checklist is often used for measuring post-traumatic stress disorder symptoms, Yale-Brown

Obsessive-Compulsive Scale for obsessive compulsive disorder, and Quick Inventory of Depressive

Symptomatology for depression, just to name a few.

Various causal inference methods such as the potential outcome framework and structural equa-

tion models (SEMs) have been used to infer causal effects.

The potential outcome framework (Neyman, 1923; Rubin, 1974) is a widely used approach to

estimate the effects of treatments on outcomes from observational studies. It defines the treat-

ment/causal effect of an experiment unit by contrasting the outcome under the treatment and the

outcome under the control. The fundamental challenge of causal inference is that only one of the

two potential outcomes can be observed for each experimental unit. Naively using observed out-

comes alone to estimate (average) causal effects will be biased due to confounding effects. Properly

adjusting for confounders is therefore key to the success of the potential outcome framework.

An SEM refers to a set of stochastic equations describing the statistical causal relationships

among observed and latent variables (Jöreskog, 2005; Tarka, 2018). In the psychological field, the

latent variables represent latent psychological states or traits, which are believed to exist but difficult

to quantify or measure directly, and the observed variables are the “symptoms” or indicators of

the latent traits, which, by contrast, can be measured by questionnaires. An SEM is comprised

of two components: a measurement/factor model and a structural/path model. The measurement

model connects observed variables to latent variables whereas the structural model specifies the

relationships among the latent variables, which reflect the causal assumptions made by investigators.

Despite the success of these causal models, alternative causal approaches are called for due

to a few prominent limitations. First, both the potential outcome framework and SEMs typically

assume the causal relationships among observed/latent variables to be known a priori. For example,

in the potential outcome framework, one has to know which variables are treatments and which

variables are outcomes. However, in many psychological applications, the true causal relationships

are unknown, and the inferential results can be quite sensitive with respect to the misspecification
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of the causal relationships, which could lead to various practical issues such as the Haywood case

or the negative variance problem for SEMs (Bentler and Chou, 1987; Kolenikov and Bollen, 2012),

and, more seriously, causal effect estimation bias and misinterpretation (Kolenikov, 2011), which

are partially responsible for the replicability crisis in psychology and social science and cannot be

alleviated by increasing sample size (Vowels, 2021). Second, a latent variable in an SEM often causes

multiple symptoms, which implicitly assumes that the symptoms are conditionally independent of

each other given the latent variable. However, symptoms can affect each other directly. For example,

lack of appetite can cause weight loss and hence they are not independent of each other conditioned

on their common cause such as depression. Third, some SEMs can accommodate scenarios where

the causal relationships are only partially known. For example, the ordinal SEM (Luo et al., 2021,

OSEM) learns the causal structure among latent variables from the data. However, the casual

structure is not uniquely identifiable (i.e., multiple causal structures can fit the data equally well),

and, therefore, no definitive conclusion can be drawn from such methods.

An alternative class of models for causal analyses is Bayesian networks (Pearl, 1988, BNs), which

can overcome the aforementioned limitations of the potential outcome framework and SEMs because

BNs typically do not assume the underlying causal structure to be known a priori. BNs are a type

of probabilistic graphical model that can be used to represent and learn causal relationships of a set

of variables in an unbiased, objective, data-driven way. Many fields of science, such as neuroscience

(Shen et al., 2020), climate science (Ebert-Uphoff and Deng, 2012), and robotics (Lazkano et al.,

2007), have seen rapidly growing enthusiasm for using BNs to discover unknown causal structures.

For example, in systems biology, BNs have been shown to successfully recover gene regulatory

networks from observational, cross-sectional genomic data without any prior biological knowledge

(Friedman et al., 2000; Sachs et al., 2005; Chai et al., 2014; Choi et al., 2020; Zhou et al., 2023;

Choi and Ni, 2023).

The potential of BNs to characterize complex causal relationships for survey data in social and

behavior sciences has, however, only been demonstrated in a few recent works (McNally et al.,

2017; Fried et al., 2017; Bird et al., 2019; Luo et al., 2021; Briganti et al., 2022; Briganti, 2022).

Although they already provided compelling evidence that BNs are powerful causal analysis tools,

which complement the potential outcome framework and SEMs, their techniques tend to suffer

from causal non-identifiability with observational data. For example, Bird et al. (2019) wrote “as
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distinct causal models can lead to the same patterns, it is not possible to learn all the causal links

from observational data.” However, since the seminal paper (Shimizu et al., 2006) published in

2006, numerous BNs (e.g., Hoyer et al. 2009; Zhang and Hyvärinen 2009) have been proven to

be fully identifiable under various assumptions. Most relevant to the survey questionnaire data is

the recent development of ordinal BNs (Ni and Mallick, 2022). They theoretically proved that the

causal structure is fully identifiable by exploiting the ordinal nature of categorical data, which had

not been thought to be important for causal discovery, and empirically validated it with multiple

real datasets such as discretized protein expression data.

Furthermore, non-identifiable BNs such as the commonly used categorical BNs can lead to

unintended negative consequences if one is not careful in interpreting the inferred causal networks.

Because multiple causal networks can fit the data equally well for non-identifiable BNs, it would

be generally incorrect to interpret the causal relationships from a single causal network.

In this paper, we advocate the use of ordinal BNs in social and behavior sciences as a lot of

questionnaire data collected are naturally ordinal. We develop a causal structure learning algorithm

with bootstrapping, which aims to identify optimal causal structures with finite-sample uncertainty

quantification and large-sample guarantee. Using simulation studies, we demonstrate the power of

the proposed learning algorithm by comparing it with competing BNs. Subsequently, we apply

the ordinal BNs to a dataset of obsessive-compulsive disorder and depression, which reveals some

plausible causal relationships without resorting to any prior knowledge. For reproducibility and

broad applicability, we make a user-friendly R package [name hidden] freely available on CRAN.

Our main contributions are four-fold:

1. We develop a new causal structure learning algorithm with uncertainty quantification.

2. We make a new user-friendly R package available to the scientific community.

3. We introduce a novel application of ordinal BNs to psychological survey data.

4. We provide an asymptotic justification of our method, which guarantees the correctness of

the estimated causal graph for a large enough sample size.
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2 Overview of Probabilistic Graphical Models

Let X “ pX1, . . . , Xqq denote a vector of q random variables. For questionnaire data, Xj represents

the available choices of question j, e.g., Xj may take value from “Strongly Disagree”, “Disagree”,

“Neutral”, “Agree”, and “Strongly Agree” for a 5-point Likert scale question. For convenience, Xj

is often coded numerically, e.g., Xj P t1, 2, 3, 4, 5u; however, note that the actual number does not

have an absolute interpretation but its relative ordering is informative in the sense that Xj “ 1 is

closer to Xj “ 2 than to Xj “ 5. To represent the (causal or non-causal) dependencies among a set

of random variables, probabilistic graphical models are often used. Let G “ pV,Eq denote a graph

with a set of nodes V “ t1, . . . , qu corresponding to the random variables X and a set of edges E

representing the dependencies. The type of edges that the edge set E contains dictates the type

of dependencies that a graph can represent. We will restrict our discussion to two commonly used

types of graphs, undirected graphs and directed acyclic graphs, with a focus on the latter.

Undirected Graphs The edge set E of an undirected graph contains only non-directional

edges X ´ Y , which are useful for representing symmetric associations. The presence (absence) of

an edge between two variables indicates a statistically significant marginal correlation or partial

correlation (the lack thereof). For ordinal variables, the polychoric correlation may be used. Partial

correlation is often deemed more appropriate than marginal correlation as partial correlation is a

measure of conditional dependence accounting for all the other variables of interest and, therefore,

can avoid detecting spurious indirect association from marginal correlation. However, by design,

undirected graphs based on marginal or partial correlation cannot be used to represent causal

relationships, which are asymmetric and directional.

Directed Acyclic Graphs and Bayesian Networks The edge set E of a directed acyclic

graph (DAG) contains only directed edges or arrows X Ñ Y . In addition, we assume that there is

no directed cycle, i.e., one cannot return to the same node by following the arrows. A DAG, by itself,

is a pure mathematical object, which needs to be connected to data through probability models.

The most well-known probability model of such kind is the Bayesian network (BN) proposed by

Judea Pearl (Pearl, 1988). A BN is a pair B “ pG,P q where G is a DAG and P is a probability
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distribution that is linked to the DAG G through the BN factorization,

P pX|Gq “

q
ź

j“1

P pXj |Xpapjqq, (1)

where papjq “ tk P V |k Ñ ju is the parent set of node j and P pXj |Xpapjqq is the conditional

probability distribution of node j given its parents. For categorical variables, P pXj |Xpapjqq is con-

ditionally multinomial, typically specified by a conditional probability table. For example, if Xj P

tLow, Medium, Highu is an employee’s pay grade andXpapjq “ Xk P tElementary School, High School,

College, Advanced Degreesu is the employee’s education level, then P pXj |Xpapjqq “ P pXj |Xkq can

be specified by a 3 ˆ 4 conditional probability table with the first row and second column being

the probability P pXj “ Low|Xk “ High Schoolq that an employee is at the low pay grade if his/her

highest degree is high school. The BN factorization (1) implies a set of conditional independence

assertions, also known as the Markov property, which can be directly read off from G (Lauritzen,

1996). For instance, the probability distribution P must respect the following conditional inde-

pendence (known as the local Markov property): any variable is conditionally independent of its

non-descendants given its parents, Xj K Xndpjq|Xpapjq where ndpjq “ V ztjuzdepjq denotes the set

of non-descendants of node j with depjq “ tk P V |j Ñ ¨ ¨ ¨ Ñ ku being the set of descendants of

node j. Importantly, the reverse is also true, i.e., if a distribution P satisfies the local Markov

property of a DAG G, it must factorize with respect to G as in (1). For example, for the three-node

DAG (h) in Figure 1 where, say, X3 is an employee’s pay grade, X2 is the employee’s education

level, and X1 is the education level of the employee’s mother, specifying the joint distribution

of pX1, X2, X3q through the conditional distribution P pX3|X2q of the employee’s pay grade given

his/her education level, the conditional distribution P pX2|X1q of the employee’s education level

given his/her mother’s education level, and the marginal distribution P pX1q of the education level

of the employee’s mother is equivalent to assuming that the employee’s pay grade is independent

of the education level of the employee’s mother given the employee’s education level.

Causal DAGs and Causal BNs The arrows of a DAG do not have physical interpretations

and, consequently, a BN is merely a probability model that encodes certain conditional indepen-

dence assertions and factorizes in a certain fashion with respect to its associated DAG. To equip
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BNs with causal interpretations, we need to first define a causal DAG. A causal DAG is a DAG for

which the directed edges are causal. For example, DAG (h) in Figure 1 means that node 1 (e.g.,

blood pressure) is a direct cause of node 2 (e.g., heart attack), which is in turn a direct cause of node

3 (e.g., death), and node 1 is not a direct cause of node 3. Then we assume a probability distribution

P is causal Markov with respect to G, i.e., any variable is conditionally independent of its non-

effects given its direct causes, Xj K Xnepjq|Xdcpjq where dcpjq “ tk P V |k Ñ ju is the set of direct

causes of j and nepjq “ V ztjuzeffpjq is the set of non-effects of j with effpjq “ tk P V |j Ñ ¨ ¨ ¨ , ku.

For instance, in DAG (h), death is conditionally independent of blood pressure given the patient

has heart attack (although in real life, abnormal blood pressure can cause death in many ways other

than heart attack but the missing arrow between nodes 1 and 3 in DAG (h) excludes alternative

causal paths between blood pressure and death in this illustrative example).

Noticing the equivalence in definition between the parents pa(j) and the direct causes dcpjq,

and between the non-descendants ndpjq and the non-effects nepjq, one can immediately conclude

that the probability distribution P must factorize with respect to the causal DAG G as in (1) given

the causal Markov assumption. Such a pair of causal DAG G and probability distribution P is

called causal BN B “ pG,P q. While a non-causal BN says nothing about the true data-generating

mechanism, a causal BN does – first, root nodes (i.e., nodes without direct causes) are generated

independently from their marginal distributions, and then recursively, a node is generated from the

conditional distribution given its direct causes when all of its direct causes have been generated.

A causal BN entails not only the observational distribution P but also distributions subject to

various interventions. Formally, let Q Ă V and I Ă V denote the query and intervention sets, and

we are interested in calculating the distribution of XQ if we set XI to xI by intervention. Under

the Judea Pearl’s do-calculus paradigm (Pearl, 1988), that amounts to finding the interventional

probability distribution P pXQ|dopXI “ xIq, Gq where the do-operator dopXI “ xIq highlights the

fact that XI is set to xI by intervention, not observed to be xI . This interventional probability

distribution is generally not equal to the conditional distribution P pXQ|XI “ xI , Gq induced from

the joint observational distribution P pX|Gq. In fact, P pXQ|dopXI “ xIq, Gq “ P pXQ|XI “

xI , GIq where GI is a “mutilated” version of G with all incoming arrows to I removed. Intuitively,

when there is no intervention, the value of XI is influenced by its direct causes whereas when XI
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is set to a certain value by intervention, such a value only depends on the intervention1. Therefore,

in the presence of intervention, the incoming arrows to XI should be removed to reflect the fact

that XI is no longer influenced by its natural causes. Take DAG (t) in Figure 1 as an example.

From basic probability theory, the conditional distribution of X3 given that X2 is observed to be

x2 is P pX3|X2 “ x2q “
ř

X1
P pX3|X1, X2 “ x2qP pX1|X2 “ x2q. However, if X2 is not naturally

observed to be x2 but instead we set its value to x2 by intervention, the mutilated version of DAG

(t) is given by DAG (o) where the arrow from node 1 to node 2 is removed, and the interventional

distribution is

P pX3|dopX2 “ x2qq “
ÿ

X1

P pX3|X1, X2 “ x2qP pX1q, (2)

because X1 and X2 are marginally independent in DAG (o). Being able to derive various inter-

ventional distributions using causal BNs is crucial to social and behavior sciences as it does not

require real-world interventions, which may be expensive, unethical, or impossible to carry out. For

instance, let X1 denote age, X2 cortical thickness, and X3 intelligence in the study of the relation-

ship between brain structure and intelligence (Shaw et al., 2006). Suppose the causal relationships

of X1, X2, and X3 are represented by DAG (t). To identify the average causal effect of cortical

thickness on intelligence, i.e., ACE “ EpX3|dopX2 “ 1qq ´ EpX3|dopX2 “ 0qq (say, X2 “ 0 and 1

respectively represent thin and thick cortex), the gold standard would be to intervene on cortical

thickness, which, however, cannot be done. Causal BNs enable such causal effect estimation with-

out carrying out the actual intervention via (2); notice that the right-hand side of (2) does not

have the do-operator and hence can be calculated based on observational probability distribution

P alone.

Learning of Causal DAGs and BNs The preceding paragraphs concern the problem of rep-

resentation, i.e., given a causal DAG, how one can represent the (stochastic) data-generating mech-

anism using a probability model. The remaining question is whether one can learn the unknown

structure of DAG G given a sample generated from the probability model, x “ px1, . . . ,xnq „

P pX|Gq. One intuitive approach is to test for independence. For instance, consider three-node

1Such intervention is also known as the hard intervention in causal discovery literature.
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DAGs (there are 25 in total shown in Figure 1), and suppose DAG (h) in Figure 1 is the true

data-generating DAG and a large number of observations are available. Assuming causal faithful-

ness2, we sequentially test for independence (i) between X1 and X2, which comes to be dependent

X1 M X2 and hence eliminates all DAGs in the blue boxes as they all encode X1 K X2, (ii) between

X2 and X3, which comes to be dependent X2 M X3 and hence eliminates all DAGs in the green

boxes as they all encode X2 K X3, (iii) between X1 and X3, which eliminates DAG (k) in the yellow

box, and (iv) finally between X1 and X3 given X2, which comes to be independent X1 K X3|X2

and hence eliminates all DAGs in the purple boxes as they assert dependence X1 M X3|X2. This

example demonstrates that just by applying independence tests on observed data, one can nar-

row down from 25 possible DAGs to just three DAGs (h-j) that are plausible data-generating

mechanisms. This type of approach is called the constraint-based approach. The PC algorithm

(Spirtes et al., 2000) is perhaps the most well-known one. However, there are obvious drawbacks of

constraint-based approaches: apart from the additional assumption of faithfulness and conditional

independence tests generally lacking statistical power, most prominently, they generally can only

identify an equivalence class of DAGs, all of which encode exactly the same conditional indepen-

dence relationships; such DAGs and corresponding BNs are said to be Markov equivalent and the

equivalence classes are called Markov equivalence classes. In the three-node example, DAGs (h)-(j)

have the same set of conditional independencies, i.e., X1 K X3|X2 and none other. Therefore, one

cannot further narrow it down to the true data-generating DAG (h) even with an infinite sample.

This is clearly an unsatisfactory property of constraint-based approaches as DAGs (h)-(j) have very

different causal interpretations from each other.

Another major class of causal DAG learning approaches is score-based where one would assign a

score to each DAG and search for highly scored DAGs. Often, the score is based on some probability

model and depends on the likelihood. For example, the Bayesian information criterion (BIC) is

widely used,

BICpG|xq “ ´2
n

ÿ

i“1

log pP pxi|Gq ` K logpnq, (3)

2A distribution P is said to be faithful to a causal DAG G if all conditional independence relationships of P are
encoded in G through its Markov property.
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whereK is the number of model parameters and pP pxi|Gq is the joint distribution (1) evaluated at xi

given the maximum likelihood estimate of model parameters. BIC balances between the goodness-

of-fit of the causal BN to the observed data and the complexity of the model. For categorical

data, P pxi|Gq is specified by conditional probability tables as mentioned earlier. Unfortunately,

it can be shown that DAGs (h)-(j) are score-equivalent and are, thus, still indistinguishable from

each other just like constraint-based methods. We illustrate it with DAGs (h)&(i). Suppose again

DAG (h) is the true data-generating DAG and the corresponding conditional probability tables

are given in Figure 2(a). These conditional probability tables determine the joint probability

distribution of pX1, X2, X3q, for example, P pX1 “ 1, X2 “ 2, X3 “ 3q “ P pX1 “ 1qP pX2 “ 2|X1 “

1qP pX3 “ 3|X2 “ 2q “ 0.25 ˆ 0.19 ˆ 0.50 “ 0.024. However, the joint distribution P pX1, X2, X3q

can be factorized in a few other ways that are also compatible with the conditional independence

relationship X1 K X3|X2 encoded in DAG (h). For example, it can be factorized with respect

to DAG (i) in Figure 1 of which the conditional probability tables are shown in Figure 2(b).

Consequently, DAGs (h)&(i) have the same BIC score because they have the same maximized

likelihood and the same model complexity, and hence cannot be distinguished from each other.

This also applies to DAG (j) in Figure 1. More generally, Markov equivalent categorical BNs

(cBNs) are (BIC) score-equivalent. Therefore, score-based cBNs cannot differentiate DAGs that

are indistinguishable by the constraint-based methods. More discussion of categorical causal BNs

is provided in Section 6.

We remark that many existing DAG learning algorithms would return a single DAG even though

the underlying causal model is not fully identifiable (i.e., there exist equivalent DAGs). Practitioners

should be aware that the returned DAG is generally an arbitrary choice from its equivalence class

and there may, in fact most likely, exist many other DAGs that fit the data equally well and have

very different causal implications. Therefore, we recommend the use of identifiable causal models

(e.g., the ordinal BN in the next section) whenever possible.

3 Ordinal Bayesian Networks

Probability Model Since a lot of questionnaire data in social and behavior sciences are ordi-

nal, we propose the use of ordinal BNs (Ni and Mallick, 2022, oBN) to resolve the indeterminacy
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of Markov/score-equivalent BNs. Ni and Mallick (2022) theoretically studied the causal identifi-

ability of oBN and showcased its strength in constructing biological networks from observational,

discretized protein expression data. oBN can potentially have great utility for discovering causality

in questionnaire data. Let Xj P t1, . . . , Lju have Lj categories for j “ 1, . . . , q. Each condi-

tional distribution P
`

Xj |Xpapjq

˘

of (1) takes the form of an ordinal regression model of which the

cumulative distribution is given by, for ℓ “ 1, . . . , Lj ,

P pXj ď ℓ|Xpa(j)q “ F

¨

˝γjℓ ´
ÿ

kPpa(j)

βjkXk
´ αj

˛

‚,

where F is a link function such as probit and logistic, αj is an intercept, βjkXk
is a generic notation

of βjk1, . . . , βjkLk
for Xk “ 1, . . . , Lk, and γj1 ă ¨ ¨ ¨ ă γjLj “ 8 are a set of thresholds. We

set γj1 “ βjk1 “ 0 for ordinal regression parameter identifiability (Agresti, 2003). The implied

conditional probability distribution is given by,

P pXj “ ℓ|Xpa(j) “ xpa(j)q “ F pγjℓ ´
ÿ

kPpa(j)

βjkxk
´ αjq

´F pγj,ℓ´1 ´
ÿ

kPpa(j)

βjkxk
´ αjq,

for ℓ “ 1, . . . , Lj and xk P t1, . . . , Lku for k P pa(j).

To illustrate the identifiability of oBN, consider again the example in Figure 2. Let G1 and G2

be the DAGs in 2(a) and 2(b), respectively. While a cBN can be factorized in either direction, by

exploiting the ordinal nature of categorical data, an oBN does not admit such equivalent factoriza-

tion. In fact, the conditional probability tables in Figure 2(a) are those under the oBN with DAG

G1 and the following parameter values,

γ12 “ α1 “ 0.67,

γ22 “ 0.5, α2 “ 0.5, β212 “ ´0.5, β213 “ 0.75,

γ32 “ 0.5, α3 “ ´1, β322 “ 0.5, β323 “ ´0.75,

whereas there are no parameter values of the oBN with DAG G2 such that the implied observational

distribution P pX1, X2, X3|G2q is compatible with the conditional probability tables in Figure 2(b).

In other words, G1 and G2 are not score-equivalent as they have different likelihood functions.
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Statistical Inference We now develop a score-based DAG learning algorithm, which aims to

identify the best-scored DAG with uncertainty quantification. We score each DAG G with the BIC

(3) where the maximum likelihood estimate is obtained by gradient ascent, and the number of model

parameters is K “
ř

jPV pLj ´ 1`
ř

kPpapjqpLk ´ 1qq. To search for the best-scored DAG, we use an

iterative hill-climbing algorithm. We start from some initial DAG. At each iteration, we score all

the DAGs that are reachable from the current graph by a single edge addition, removal, or reversal.

We replace the current DAG by the DAG with the largest improvement (i.e., the largest decrease

in BIC). We claim the convergence of the algorithm when the BIC can no longer be improved. The

hill-climbing algorithm is summarized in Algorithm 1. Since BIC always improves at each iteration

by design, the algorithm is guaranteed to find a local optimum.

However, there are two drawbacks of Algorithm 1. First, the local optimum may not be the

global optimum due to the greedy nature of the hill-climbing algorithm. Therefore, we suggest

repeat the hill-climbing algorithm several times with random initial DAGs and pick the DAG with

the smallest BIC as shown in Algorithm 2.

Second, Algorithm 1 or 2 only provides a point estimate of DAG G without uncertainty quan-

tification. To assess the uncertainty, we propose to use the bootstrapping technique (Efron, 1992;

Friedman et al., 1999). Specifically, we first create a number B of bootstrap samples by sampling

without replacement from the original data x. Then, we apply Algorithm 2 to each bootstrap

sample. Finally, we compute the average adjacency matrix of the estimated DAG from each boot-

strap sample. An adjacency matrix A “ rAjks of DAG G is a binary matrix such that Ajk “ 1

if k Ñ j P E and Ajk “ 0 otherwise. Therefore, the average adjacency matrix, denoted by

P “ rPjks, can be interpreted as an approximate edge inclusion probability of k Ñ j. A value of

Pjk :“ 1
B

řB
b“1A

pbq

jk close to 0 or 1 indicates greater confidence of the absence or presence of k Ñ j

than a value close to 0.5 where the superscript pbq indexes the bootstrap samples. The hill-climbing

with multiple initial DAGs and bootstrapping is described in Algorithm 3 and implemented in the

R package [name hidden] freely available on CRAN.

Large Sample Property Now, we ask if we can correctly identify the data-generating DAG

when the sample size is large enough. Let G1 denote the true data-generating DAG with model

parameters θ‹
1 (i.e., α, β, γ’s in oBN). Let G2 denote any other DAG in the same Markov equivalence

12
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Algorithm 1 Hill-Climbing: rG,BICs “ HCpx, G0q

Input: data x, initial DAG G0

Set G “ G0, compute BIC(G|x), and set BIC‹=BIC(G|x)
repeat
Initialize Improvement “ false
for all graphs G1 reachable from G do
Compute BIC(G1|x)
if BIC(G1|x) ă BIC‹ then

Set G “ G1 and BIC‹=BIC(G1|x)
Set Improvement “ true

end if
end for

until Improvement is false
Output: estimated DAG G and its BIC “ BICpG|xq

Algorithm 2 Hill-Climbing with Multiple Initial DAGs: G “ HC-xpx, Rq

Input: data x, number of initial DAGs R
for r “ 1, . . . , R do
Randomly generate a DAG G0r

rGr,BICrs “ HCpx, G0rq

end for
Set G “ Gr with r “ argminr1 BICr1

Output: estimated G

Algorithm 3 Hill-Climbing with Multiple Initial DAGs and Bootstrapping: P “

HC-x-Bootpx, R,Bq

Input: data x, number of initial DAGs R, number of bootstrap samples B
for b “ 1, . . . , B do

Generate a bootstrap sample xb of x by sampling with replacement
Gb “ HC-xpxb, Rq

end for
Set P “ 1

B

řB
b“1A

b where Ab is the adjacency matrix of Gb

Output: estimated edge inclusion probability matrix P

13
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Figure 1: All possible three-node DAGs. The conditional independence assertion encoded by each
graph is shown at the top of each DAG.
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1

2 3
!(#$|#&) #& = 1 #& = 2 #& = 3
#$ = 1 0.31 0.69 0.23

#$ = 2 0.19 0.15 0.17

#, = 3 0.50 0.16 0.60

#& !(#&)
1 0.25

2 0.25

3 0.50

!(#,|#$) #$ = 1 #$ = 2 #$ = 3
#, = 1 0.84 0.31 0.77

#, = 2 0.09 0.19 0.12

#, = 3 0.07 0.50 0.11

(a)

!(#$|#&) #& = 1 #& = 2 #& = 3
#$ = 1 0.43 0.27 0.16

#$ = 2 0.07 0.27 0.52

#$ = 3 0.50 0.46 0.32

!(#,|#$) #$ = 1 #$ = 2 #$ = 3
#, = 1 0.21 0.28 0.27

#, = 2 0.47 0.22 0.09

#, = 3 0.32 0.50 0.64

1

2 3
#& !(#&)
1 0.72

2 0.12

3 0.16

(b)

Figure 2: Conditional probability tables from two Markov equivalent BNs.
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class with G1. Let θ
:
2 denote its pseudo-true parameter, i.e.,

θ:
2 “ argmax

θ

ÿ

X

P pX|G1, θ
‹
1q logP pX|G2, θq.

We show that the BIC ofG1 is asymptotically lower than that ofG2. Let ℓnpθ|Gq “
řn

i“1 logP pXi “

xi|G, θq denote the log-likelihood under DAGG and let pθ
pnq

1 and pθ
pnq

2 denote the maximum likelihood

estimators, which are consistent under some mild regularity conditions (Fahrmeir and Kaufmann,

1985), i.e., pθ
pnq

1
p

Ñθ‹
1 and pθ

pnq

2
p

Ñθ:
2 as n Ñ 8.

Take the Taylor expansion of ℓnpθ‹
1|G1q at pθ

pnq

1 ,

ℓnpθ‹
1|G1q “ ℓnppθ

pnq

1 |G1q ` pθ‹
1 ´ pθ

pnq

1 qJ Bℓnpθ|G1q

Bθ

ˇ

ˇ

ˇ

ˇ

pθ
pnq

1

`
1

2
pθ‹

1 ´ pθ
pnq

1 qJ B2ℓnpθ|G1q

Bθ2

ˇ

ˇ

ˇ

ˇ

ξpnq

pθ‹
1 ´ pθ

pnq

1 q,

“ ℓnppθ
pnq

1 |G1q `
1

2
pθ‹

1 ´ pθ
pnq

1 qJ B2ℓnpθ|G1q

Bθ2

ˇ

ˇ

ˇ

ˇ

ξpnq

pθ‹
1 ´ pθ

pnq

1 q

where ξpnq “ αθ‹
1`p1´αqpθ

pnq

1 with α P r0, 1s. Since pθ
pnq

1
p

Ñ θ‹
1, we have

1
nℓnppθ

pnq

1 |G1q´ 1
nℓnpθ‹

1|G1q
p

Ñ

0. By the law of large numbers,

1

n
ℓnpθ‹

1|G1q
p

Ñ ErlogP pX|G1, θ
‹
1qs,

where the expectation is taken overX with respect to its true data-generating distribution P pX|G1, θ
‹
1q.

Therefore,

1

n
ℓnppθ

pnq

1 |G1q
p

ÑE rlogP pX|G1, θ
‹
1qs .

By a similar argument, we have

1

n
ℓnppθ

pnq

2 |G2q
p

ÑE
”

logP pX|G2, θ
:
2q

ı

.
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Hence,

1

n
ℓnppθ

pnq

1 |G1q ´
1

n
ℓnppθ

pnq

2 |G2q
p

ÑE

«

log
P pX|G1, θ

‹
1q

P pX|G2, θ
:
2q

ff

“ KLpP pX|G1, θ
‹
1q||P pX|G2, θ

:
2qq ą 0,

where KLp¨||¨q is the Kullback–Leibler divergence, which is nonnegative and is zero only when

P pX|G1, θ
‹
1q ” P pX|G2, θ

:
2q, which is impossible due to the causal identifiability result (Ni and

Mallick, 2022). Consequently,

ℓnppθ
pnq

1 |G1q ´ ℓnppθ
pnq

2 |G2q
p

Ñ 8.

Because two Markov equivalent DAGs must have the same skeleton (Verma and Pearl, 2022) and

hence the same model complexity, we have

BICpG1|xq ´ BICpG2|xq
p

Ñ ´8.

4 Simulation Studies

We assessed the empirical performance of oBN in recovering unknown DAG structure using sim-

ulations where the ground truth is known. We simulated data with q “ 10 categorical variables

each with 5 ordinal categories resembling the 5-point Likert scale questions. The true DAG was

generated randomly using the function “randomDAG” in R package pcalg with connecting proba-

bility 0.2 (Figure 3a). Its Markov equivalence class, represented by the completed partially directed

acyclic graph (CPDAG), is shown in Figure 3b where the bidirected edges are edges that can be

oriented in either direction without changing its conditional independence relationships. Given the

true DAG, the model parameters βjkℓ’s and αj ’s were independently generated from a centered

normal distribution with variance σ2. We considered 14 scenarios. The first 7 scenarios fixed sam-

ple size at n “ 500 and varied the signal strength σ “ 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, which covered

low to strong levels of signals. The other 7 scenarios fixed the signal strength at σ “ 2 and varied

the sample size n “ 500, 1000, 2000, 4000, 8000, 16000, 32000.
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Algorithm 1, implemented in R package [name hidden], was applied to each simulated dataset.

For comparison, we also ran the PC algorithm and the (nominal) cBN. For the PC algorithm, we

used a more recent version (Colombo et al., 2014) implemented as “pc.stable()” in the R package

bnlearn with the Jonckheere-Terpstra test designed for ordinal data and the type I error controlled

at 1%. For the cBN, we used the BIC scoring criterion and the hill-climbing search algorithm with

10 random starts. cBN is also available in the package bnlearn implemented as “hc()”.

As an error measure, we computed the structural hamming distance (SHD) between the esti-

mated graph and the simulation true DAG, which is the number of edge additions, deletions, or

reversals required to transform one graph to the other. Note that since cBN and PC can only iden-

tify CPDAG (i.e., equivalence classes), the smallest SHD that they can achieve is 4 (the number

of bidirected edges in Figure 3b). This error cannot be further reduced for cBN and PC even with

an infinite amount of data.

The SHD averaged over 50 repeat simulations are reported as functions of signal strength σ

(Figure 4a) and sample size n (Figure 4b). Several conclusions can be made. First, because oBN

is a fully identifiable model, its SHD quickly approached 0 as signal became stronger; such trend

was not observed for cBN and PC. Second, oBN consistently outperformed cBN and PC across all

signal levels and sample sizes, which stresses the importance of accounting for the ordinal nature of

questionnaire data for causal discovery, which had been overlooked in the literature. Third, when

the sample size was moderate (n “ 500), the performance of cBN and PC did not improve as the

signal strength increased whereas when the signal was strong σ “ 2, their performance improved as

sample size grew. Eventually, they might reach the irreducible error (SHD=4 in this example) but

that would require a huge amount of data and they cannot do better even with an infinite amount

of data. The size of the irreducible error depends on the true data-generating DAG, which could

be as large as the total number of edges, which is super-exponential in the number q of variables.

Fourth, for a large enough sample, oBN perfectly recovered the true DAG, empirically verifying

our asymptotic theory.

In summary, our simulation studies suggest that it is advantageous to exploit the ordinal nature

of survey questionnaire data for causal discovery. Considering oBN is conceptually similar to cBN

but with better theoretical and empirical properties for causal discovery, we hope to see a wider

adoption of oBNs in social and behavioral sciences. In the following, we conducted additional
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simulations to test the scalability and sensitivity of our method.

Scalability. We varied the number of variables q “ 10, 20, 30, 40, 50 while keeping the sample

size at n “ 500 and the signal strength at σ “ 2. The data generation process was the same as

before. The (normalized) SHD and the CPU time on a 2.9 GHz 6-Core Intel Core i9 CPU averaged

over 50 repeat simulations are reported as functions of q (Figure 5). As expected, the performance

for all methods deteriorated as q increased but the proposed oBN still outperformed both cBN and

PC, and the computation of oBN scaled reasonably well with q.

Sensitivity to link functions. We fitted the proposed model to the data that we simulated earlier

(with sample size n “ 500, number of variables q “ 10, signal strength σ “ 1, and the probit link

function) using probit, logistic, negative log-log, and complementary log-log link functions. The

average SHD between the estimated and true graphs based on 50 repeat simulations is reported in

Table 1, which shows our model is relatively robust – the SHDs are well within two standard errors

from each other.

Probit Logistic Negative log-log Complementary log-log
0.26 (0.06) 0.30 (0.07) 0.32 (0.07) 0.28 (0.06)

Table 1: Sensitivity to the choice of link functions. The average (standard error) SHD is reported.
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(b) Simulation true CPDAG

Figure 3: Simulation true (a) DAG and (b) CPDAG. The (blue) bidirected edges in (b) are edges
that can be oriented in either direction in the Markov equivalence class represented by the CPDAG.
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Figure 4: Simulated survey data with ten 5-point Likert scale questions. Panel (a): Sample size
n “ 500 and signal strength varies from 0.25 to 2. Panel (b): Signal strength σ “ 2 and sample
size varies from 500 to 32000. In both panels, dotted lines indicate the irreducible error (SHD=4)
for an oracle cBN.
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Figure 5: Simulated survey data with varying number of 5-point Likert scale questions q “

10, 20, 30, 40, 50. The sample size is fixed at n “ 500 and the signal strength is fixed at σ “ 2. Left
panel: The SHD is normalized by dividing the raw SHD by the total number of edges in a complete
DAG (i.e., qpq´1q

2 ). Right panel: CPU time to convergence of oBN in seconds tested on a 2.9 GHz
6-Core Intel Core i9 CPU.
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5 Demonstration: OCD-Depression Data Analyses

To further demonstrate oBN, we analyzed the dataset from a psychological study of the functional

relationships between the symptoms of obsessive-compulsive disorder (OCD) and depression (Mc-

Nally et al., 2017). The dataset consists of n “ 408 participants’ responses to 10 five-point questions

from the Yale-Brown Obsessive-Compulsive Scale via Self-Report (Steketee et al., 1996) measuring

the OCD symptoms and 16 four-point questions from the Quick Inventory of Depressive Symp-

tomatology via Self-Report (Rush et al., 2003, QIDS-SR) measuring the depression symptoms.

Following Luo et al. (2021), we merged the questions about “decreased appetite” and “increased

appetite”, and the questions about “weight loss” and “weight gain” in QIDS-SR since they measure

the same depression symptoms. The resulting number of ordinal variables is q “ 24.

Algorithm 3 was applied to the dataset with R “ 10 random initial DAGs and B “ 500

bootstrap samples. For an illustration of the guaranteed convergence, we plot the BIC as a function

of iteration in one run of our algorithm in Figure 6, which converged at the 37th iteration.

23
50

0
24

00
0

24
50

0
25

00
0

25
50

0

Number of Iterations

B
IC

0 3 6 9 12 15 18 21 24 27 30 33 36

Figure 6: BIC as a function of iteration on the OCD-Depression data.

We also explored a more scalable version of oBN, a two-step hybrid algorithm. Particularly,

we first ran the PC algorithm to obtain a CPDAG, and then, for any pair of nodes with an

undetermined edge (i.e., the edge can be oriented in either direction), we ran the bivariate version

of oBN to determine its direction; the pseudocode is presented in Algorithm 4.

In Figure 7, we plot the estimated DAG from oBN with edge width proportional to the inclusion

probability; also see the list of all the significant edges (i.e., Pij ą 0.5) ranked by their inclusion

probabilities in Table 2. For brevity, we have adopted the same abbreviation of the symptoms as

21

https://doi.org/10.1017/psy.2024.11 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.11


Algorithm 4 PC+oBN: G “ PC-oBNpxq

Input: data x
Run PC algorithm on x and obtain a CPDAG rG
for each pair pj, kq with an undetermined edge in rG do
Run Algorithm 1 on the subset of data restricted to pXj , Xkq and orient the edge according to
the output

end for
Output: estimated DAG G

in McNally et al. (2017). Comparing to the estimated network by PC+oBN (Figure 8), all the

undetermined edges from the PC algorithm (Figure 9) were oriented consistently between oBN and

PC+oBN. For comparison, we also applied the PC algorithm with the Jonckheere-Terpstra test,

the cBN with BIC and hill-climbing, and the ordinal structural equation model (Luo et al., 2021,

OSEM) with the caveat that we do not know the underlying true causal relationships. Their results

are reported in Figures 9-11. Some interesting observations can be made.

Common to all the methods, the symptoms of OCD and the symptoms of depression were found

to be largely separated meaning that most of the symptoms of OCD do not directly cause most of

the symptoms of depression, and vice versa. This is perhaps not surprising given that OCD and

depression are different psychological disorders. oBN, cBN, and OSEM did simultaneously find one

bridge causal link between OCD (obdistress) and depression (sad). The existence of a bridge causal

link is plausible because many studies have suggested that more than one third of OCD patients

have concurrent depression (Nestadt et al., 2001; Abramowitz, 2004; Hong et al., 2004). cBN and

OSEM, due to their non-identifiability, could not determine the direction of that casual link whereas

oBN identified it to be obdistressÑsad. This again seems to agree with existing studies that OCD

symptoms often precede depression in individuals who suffer from both disorders (Anholt et al.,

2011; Meyer et al., 2014; Zandberg et al., 2015). Our finding suggests that controlling distress

caused by obsession may help alleviate or prevent depression symptoms.

Within the symptoms of OCD, on the one hand, the links among obsessive symptoms and

the links among compulsive symptoms are the links that tend to have the highest probabilities,

e.g., obinterferÑobdistress (0.846), obdistressÑobtime (0.98), and compinterf Ñcomptime (0.79).

This matches the hypothesized two dimensions of obsession and compulsion in theoretical models

(de Wildt et al., 2005). On the other hand, there also exist significant links from compulsion symp-
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toms to their obsession counterparts, including compinterf Ñobinterfer, comptimeÑobtime, and

compresisÑobresist, which are qualitatively consistent with previous network analyses (Carbonella,

2018; Cervin et al., 2020), although their network models are undirected/non-causal. According

to our results, one can potentially suppress obsession symptoms by suppressing the corresponding

compulsion symptoms but not vice versa.

Within the symptoms of depression, the link between sad and suicide was found by all the

methods but only oBN and PC+oBN were able to determine its direction sadÑsuicide (inclusion

probability=0.914 for oBN). It is well-known that persistent feeling of sadness is a major risk

factor for suicide (Angst et al., 1999; Br̊advik, 2018). Another expected link was appetiteÑweight,

of which the direction was again only identified by oBN and PC+oBN.

In summary, although the ground truth is not available, our data analyses, in our opinion,

support the usefulness of oBN for generating plausible psychological hypotheses in practice.

6 Discussion

We have demonstrated the functionality of oBNs as a useful alternative to the potential outcome

framework and SEMs for analyzing survey questionnaire data. oBNs can provide an unbiased causal

view of a complex system without any prior structural knowledge. Moreover, unlike other existing

BNs for categorical data, oBNs are fully identifiable with observational data alone.

Note that both cBN and oBN utilize the BIC score. Therefore, the difference between cBN and

oBN lies in the likelihood function and the model complexity. For oBN, the likelihood function is

specified by ordinal regression whereas for the cBN, it is specified by multinomial distribution. The

model complexity is different between the two methods, KoBN “
ř

jPV pLj ´ 1 `
ř

kPpapjqpLk ´ 1qq

for oBN and KcBN “
ř

jPV pLj ´ 1q
ś

kPpapjq Lk for cBN.

There also exist copula-based methods (Cui et al., 2016; Castelletti, 2024), which are quite flexi-

ble in incorporating different types of data including ordinal data. While the estimation procedures

are all very different from each other, the main theoretical difference between the proposed oBN

model and the copula-based methods is three-fold:

1. The learned causality or conditional independence is on the observed variable level for the

proposed oBN model and is on the latent variable level for the copula-based methods. For
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Table 2: OCD-Depression data. A list of significant edges identified by oBN ranked by inclusion
probabilities.

Significant Edge Probability

obdistress Ñ obtime 0.98

middle Ñ onset 0.972

compinterf Ñ obinterfer 0.946

sad Ñ suicide 0.914

concen Ñ retard 0.898

middle Ñ late 0.862

obinterfer Ñ obdistress 0.846

compinterf Ñ comptime 0.79

fatigue Ñ hypersom 0.758

comptime Ñ obtime 0.756

sad Ñ anhedonia 0.748

sad Ñ guilt 0.722

fatigue Ñ retard 0.716

obcontrol Ñ obresist 0.67

compresis Ñ obresist 0.636

compinterf Ñ compcont 0.624

appetite Ñ weight 0.596

late Ñ hypersom 0.588

anhedonia Ñ fatigue 0.58

compinterf Ñ compdis 0.554

obdistress Ñ obcontrol 0.53

obcontrol Ñ compcont 0.53

fatigue Ñ concen 0.528

compdis Ñ comptime 0.524

obdistress Ñ sad 0.514

concen Ñ agitation 0.508

compcont Ñ compresis 0.504
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Figure 7: Estimated OCD-Depression networks using oBN with 500 bootstrap samples. The edge
width is proportional to its probability. Nodes within the box are the ten OCD-related variables.
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Figure 8: Estimated OCD-Depression networks using PC+oBN. Nodes within the box are the ten
OCD-related variables.
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Figure 9: Estimated OCD-Depression networks using PC. The (blue) bidirected edges are edges of
which the directionality is undetermined. Nodes within the box are the ten OCD-related variables.
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Figure 10: Estimated OCD-Depression networks using cBN with BIC and hill-climbing. The (blue)
bidirected edges are edges of which the directionality is undetermined. Nodes within the box are
the ten OCD-related variables.
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Figure 11: Estimated OCD-Depression networks using OSEM. The (blue) bidirected edges are
edges of which the directionality is undetermined. Nodes within the box are the ten OCD-related
variables.
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discrete variables, the latter is not equivalent to the former.

2. For mixed data, the proposed oBN model needs to discretize the count/continuous data

whereas copula-based methods do not need to because of the latent continuous variable rep-

resentation.

3. The proposed oBN is uniquely identifiable whereas the copula-based methods are only iden-

tifiable up to the Markov equivalence class.

The proposed causal structure learning algorithms based on hill-climbing and bootstrapping

worked quite well in simulation studies and also generated some plausible causal hypotheses in the

real data. Although this paper focuses on causal structure learning, the discovered DAG structure

can be used to determine the causal effects. Following Castelletti et al. (2023), we define the causal

effect of Xk on Xj at level Xj “ y and Xk “ x using Xk “ 1 as the reference level for j, k P V ,

j ‰ k, y P t1, . . . , Lju, and x P t2, . . . , Lku as,

cj,kpy, xq “ P pXj “ y|dopXk “ xqq ´ P pXj “ y|dopXk “ 1qq

“
ÿ

zPXk

P pXj “ y|Xk “ x,Xpapkq “ zqP pXpapkq “ zq

´
ÿ

zPXk

P pXj “ y|Xk “ 1,Xpapkq “ zqP pXpapkq “ zq,

where Xk “
Ś

hPpapkqt1, . . . , Lhu. Given the estimated DAG and model parameters, the con-

ditional/marginal probabilities needed to compute the causal effect can be calculated using the

sum-product message passing algorithm (Koller and Friedman, 2009, Chapter 10).

We hope we have convinced researchers to start using oBNs instead of cBNs or PC for ordinal

questionnaire data. There are, of course, limitations of oBNs. First, feedbacks are not allowed

in BNs. This may partially explain the inconsistency of some of the causal directions (e.g., the

link between fatigue and hypersom) across the methods in the OCD-Depression data analyses. To

infer feedbacks, directed cyclic graphical models may be used. However, we are not aware of the

existence of such model for categorical data. Second, the learning algorithm has no guarantee for

global convergence. Although Algorithm 2 with multiple random initializations can help mitigate

this issue, a more principled solution would be via Bayesian causal structure learning algorithms
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(Choi et al., 2020), which have theoretical convergence guarantees. We leave it as future work since

the proposed algorithms in this paper already showed empirically favorable performance compared

to alternative methods. Third, the identifiability theory of Ni and Mallick (2022) requires the

causal sufficiency assumption, i.e., there is no unmeasured confounder, of which the validity is

difficult to check in practice. Fortunately, their sensitivity analyses provide some assurance that

oBN is reasonably robust with respect to the presence of unmeasured confounders. Moreover, the

large sample property of oBNs is established under the assumed parametric assumptions. Therefore,

users are advised to use domain knowledge to gauge the plausibility of the causal structure. Fourth,

oBNs are exploratory, not confirmatory. To confirm the causal hypotheses generated from oBNs,

one has to, ultimately, resort to clinical interventions, which is beyond the scope of this paper.
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