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Abstract

Consider a sales contract, called a swing contract, between a seller and a buyer concerning
some underlying commodity, with the contract specifying that during some future time
interval the buyer will purchase an amount of the commodity between some specified
minimum and maximum values. The purchase price and capacity at each time point is
also prespecified in the contract. Assuming a random market price process and ignoring
the possibility of storage, we look for the maximal expected net gain for the buyer of such
a contract, and the strategy that achieves this maximal expected net gain. We study the
effects that various contract constraints and market price processes have on the optimal
strategy and on the contract value. We show how we can reduce the general swing contract
to a multiple exercising ofAmerican (Bermudan) style options. Also, in important special
cases, we give explicit expressions for the optimal contract value function and the optimal
strategy.

Keywords: Swing contract; American call option; optimal strategy; supermodular;
submodular
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1. Introduction

Swing contracts are widely used in the commodity markets, especially in the gas and
electricity markets. Under a swing contract, the buyer is obliged to buy a specified minimum
total amount of commodity, but has the freedom to buy up to a specified maximal total amount,
during a specified time period. However, the purchase pattern over the period is at the buyer’s
choice, with minimum and maximum limits at any single time. Also, the commodity purchase
prices (called strike prices) under the contract, specified at contract origination, may vary over
the period.

This type of contract provides both the buyer and seller partial security about the future
demand, supply, and pricing of the commodity. It also provides flexibility to the buyer on the
timing and the amount of purchase over the period.

Throughout the paper, we assume no storage of commodity. This assumption is realistic for
some commodities, such as electricity which has a high cost of storage. Also, we assume a
highly liquid market for the commodity, so that market price is readily available and realizable.
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2 S. M. ROSS AND Z. ZHU

The buyer’s net monetary gain from purchasing a unit amount of commodity at any time is
taken to be the spot market price minus the strike price at that time. In this paper we assume
that the buyer’s objective is to maximize the expected total (discounted) monetary gains and to
find the corresponding purchasing strategy that maximizes this expected total gain.

Barbieri and Garman [2], [3] gave descriptions of several variants of the swing contract,
without details on how to value them. Deng [6], Schwartz [12], and Schwartz and James [13]
provided some stochastic models of the spot market price processes. Carmona and Touzi [4],
and Carmona and Dayanic [5] obtained some structural results of the optimal strategy and the
value function for put swings by using a stopping time approach. Ali et al. [1] and Jaillet et al. [7]
considered swing contracts that allow the buyer to add or reduce purchase amounts from a base
amount, and gave numerical approximations of the maximal contract value by first using the
recombining trinomial or binomial tree approach to approximate the underlying commodity
market price process, and then applying brute force dynamic programming to calculate the
contract value. Pilipovic and Wengler [9] also discussed special cases of swing contracts which
can be solved with simple procedures. Keppo [8] gave a mathematical formulation for finding
the optimal strategy and the contract value function, assuming that the commodity could be
traded continuously; he also provided some upper and lower bounds for the contract value
function. In this paper we adopt Keppo’s definition of swing contracts, except now we assume
that the commodity is purchased at discrete-time grids. Algorithms to calculate the contract
value by utilizing the structural results in this paper, as well as techniques for approximating
continuous-time exercising contracts by their discrete-time counterparts, are contained in a
separate paper by the authors [11].

The paper is organized as follows. In Section 2 we give a mathematical description of the
swing contract, as well as the dynamic programming formulation for the contract value function
and the optimal strategy. In Section 3 we give some definitions that will be used throughout
the paper. In Section 4 we give structural results on how the contract constraints affect the
contract value and optimal strategy. In Section 5 we discuss how the spot market price affects
both the contract value and the corresponding optimal strategy. Section 6 combines the results
of Sections 4 and 5 to give a detailed description of the structure of the optimal strategy, as well
as explicit expressions in special cases. This section also includes applications and extensions
of results to the American call option. Section 7 includes the concluding remarks, possible
extensions, and areas of future research. Some technical proofs of the theorems are deferred to
Appendix A.

2. Model description and formulation

A swing contract normally specifies that over some future time grids 0 = t0 < t1 < · · · < tn
(where tn < T ), the buyer will buy a total amount of the commodity that is between u and
u + v. We call u the obligatory amount and v the bonus amount. It also specifies the price
Ki (called the strike price) for a unit amount of purchase at time ti , i = 0, . . . , n, where Ki

may be different from Kj if i �= j . The contract also specifies the single purchasing limit M ,
i.e. the amount of purchase at any time grid ti must be between 0 and M . (While we assume
that the commodities are in continuous form, we show that all results also apply to commodities
with discrete counts as well.) Other than these constraints, the buyer can choose any purchasing
amount at any time grid. The contract may also specify a lower purchasing limit at each time,
but this constraint can be eliminated simply by considering the extra purchasing amount beyond
this lower limit at each time.
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On the structure of a swing contract’s optimal value and optimal strategy 3

We will use Ch
i (u, v) to denote the subcontract that has the same parameters as the original

contract, except now the purchasing opportunities are limited to the time grids ti , . . . , th only
(so Cn

0 (u, v) is the original contract). We will omit the superscript h when h = n. So, after
the buyer purchases q units of commodity at time ti for subcontract Ch

i (u, v), the remaining
subcontract is Ch

i+1((u − q)+, v − (u − q)−), where x+ = max(x, 0) and x− = max(−x, 0).
For contract Ci(u, v), the amount of purchase at time ti must be in the feasible set Ui(u, v) =

[(u − (n − i)M)+, M ∧ (u + v)], where x ∧ y = min(x, y). We use Ri = [0, (n − i + 1)M]
to denote the range of the total amount that the buyer can possibly buy during [ti , tn], and use
Di to denote the total amounts that the buyer can possibly buy after time ti , i.e. Di = Ri+1.

The buyer’s net gain by purchasing one unit of commodity from the seller at time ti is Si −Ki,

where Si is the spot market price and Ki is the strike price. We will assume that the spot market
price process {S(t) : t ≥ 0} is a single-factor Markov process. This assumption is satisfied by
most price process models in the papers mentioned previously.

From the above discussions we see that the state of the system at time ti can be summarized
by the triplet (u, v, s), where s is the spot market price for the commodity at that time and the
remaining contract is Ci(u, v). Let r be the risk-free interest rate that, for simplicity, is assumed
to be constant throughout the paper.

Assuming that the buyer’s objective is to maximize his/her expected total (discounted) net
gain over the contract lifetime, let Hi(u, v, s) be the maximal expected total remaining net
gain (discounted to ti) when the state at time ti is (u, v, s) (so H0(u, v, s) is the contract value
function at contract origination). Define 1A = 1 if statement A is true, and 1A = 0 otherwise.
Then, at contract maturity, we have

Hn(u, v, s) = u(s − Kn) 1(s≤Kn) +((u + v) ∧ M)(s − Kn) 1(s>Kn) .

For j ≥ i, let S
i,s
j = [S(tj ) | S(ti) = s], where [X | A] denotes the random variable X

given that event A is true. Now, for i = 0, . . . , n − 1, we define θi+1 ≡ ti+1 − ti and

Vi(u, v, s) = E exp(−rθi+1)Hi+1(u, v, S
i,s
i+1).

Then the contract value function at time ti is

Hi(u, v, s) = max
q∈Ui(u,v)

{q(s − Ki) + Vi((u − q)+, v − (u − q)−, s)}.

We will use qi(u, v, s) to denote the maximizer in the above iteration formula. If there are
multiple solutions, the maximizer is defined to be the smallest solution.

3. Definitions and notation

We will use f (x) ↑x to mean that f is nondecreasing in x, where x may be single or
multidimensional, and use x ≤ y to mean that each component of x is smaller than or equal
to the corresponding component of y. We use f (x) ↑x a to mean that f is nondecreasing
in x (one-dimensional) and has limit a as x tends to ∞. We define f (x) ↓x and f (x) ↓x a

similarly.
We will use Ac to denote the complement of event A.

Definition. For a bivariate function f (x, y), define

1. f (x, y) to be submodular if

f (x + h1, y + h2) + f (x, y) ≤ f (x + h1, y) + f (x, y + h2) for all h1, h2 ≥ 0,
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and supermodular if

f (x + h1, y + h2) + f (x, y) ≥ f (x + h1, y) + f (x, y + h2) for all h1, h2 ≥ 0;

2. f ∈ F1 if

f (x + h, y) ≥ f (x, y + h) for all h ≥ 0,

and f ∈ F2 if

f (x + h, y) ≤ f (x, y + h) for all h ≥ 0;
3. f ∈ F12 if

f (x + h, y) − f (x, y) ∈ F2 for all h ≥ 0,

and f ∈ F21 if

f (x, y + h) − f (x, y) ∈ F1 for all h ≥ 0.

If f is twice differentiable then f being submodular resembles the condition ∂2f (x, y)/

∂x∂y ≤ 0 and f ∈ F12 resembles the condition ∂2f (x, y)/∂x2 ≤ ∂2f (x, y)/∂x∂y. Similarly,
f ∈ F21 resembles the condition ∂2f (x, y)/∂x∂y ≤ ∂2f (x, y)/∂y2.

4. Properties on contract constraints

4.1. Monotonicity

The results in this subsection are quite intuitive, however, they build the foundation for the
proof of linearity results that follow this subsection.

Theorem 1. For all i ≤ n and u ∈ Ri ,

Hi(u, v, s) ∈ F12

⋂
F21 and is submodular in (u, v),

Hi(u, v, s) is concave in (u, v) componentwise,

Hi(u, r − u, s) is concave in u ∈ [0, r],
qi(u, v, s) ↑(u,v) and qi(u, v, s) ∈ F1 as a function of (u, v).

From Theorem 1 we obtain bounds on the general contract value function in terms of
Hi(u, 0, s) and Hi(0, v, s) for all feasible u and v.

Corollary 1. If u + v ∈ Ri then

u

u + v
Hi(u + v, 0, s) + v

u + v
Hi(0, u + v, s)

≤ Hi(u, v, s)

≤ min(Hi(0, u + v, s), Hi(0, v, s) + Hi(u, 0, s)).

Proof. The left-hand side inequality is immediate from the concavity of Hi(u, r − u, s) in
u. Obviously, Hi(u, v, s) ≤ Hi(0, u + v, s).

Now consider that a portfolio consists of one contract Ci(u, 0) and one contract Ci(0, v).
Since we can always choose the same purchase pattern for this portfolio as the one for Ci(u, v),
then Hi(u, v, s) ≤ Hi(u, 0, s) + Hi(0, v, s).
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On the structure of a swing contract’s optimal value and optimal strategy 5

Suppose that there are two swing contracts, C1,i (·, ·) (contract 1) and C2,i (·, ·) (contract 2).
The only difference between the two contracts is that, for contract 1 and some I ∈ {0, . . . , n},
there is an additional purchasing opportunity at time T̂ ∈ (tI , tI+1) (assuming that tn+1 = T ).

Let the value functions for contracts 1 and 2 be H 1
i and H 2

i , respectively. Then we have the
following result.

Theorem 2. For i = 0, . . . , I , j = 1, 2, and u ∈ Ri ,

H
j
i (u, v, s) is submodular in (u, j), and in (v, j) when u = 0,

q1
i (u, v, s) ≤ q2

i (u, v, s).

Proof. See Appendix A.

A Markov process is homogeneous if [S(t) | S(0) = x] has the same distribution as
[S(t0 + t) | S(t0) = x] for all t0.

By treating contract Ci(·, ·) as C1,i (·, ·) and contract Ci+1(·, ·) as C2,i (·, ·) in Theorem 2,
we have the following result.

Corollary 2. If Ki = K and θi = θ for all i, and the commodity price process {S(t) : t ≥ 0}
is a homogeneous Markov Process, then

Hi(u, v, s) is submodular in (i, u), and in (i, v) when u = 0,

qi(u, v, s) ↑i .

4.2. Linearity

Based on previous results, we will show that the problem of computing the contract value
and the optimal strategy can be reduced to the special case of when both u and v are multiples
of M . In this case the optimal strategy will be a ‘bang-bang’ strategy, i.e. at each time grid,
either we buy M , or we do not buy at all. To prove this, we need the following lemma.

Lemma 1. Assume that kM + jM + x + y ∈ Ri , where k and j are integers, and that
0 ≤ x, y ≤ M , then

Hi(kM + x, jM + y, s) is linear in x ∈ [0, M − y] and x ∈ [M − y, M],
Hi(kM + (M − y), jM + y, s) is linear in y ∈ [0, M],

Hi(kM, jM + y, s) is linear in y ∈ [0, M].
Let q0 = qi(kM + x, jM + y, s), then

q0 ∈ {0, x, x + y, M} if x + y ≤ M ,

q0 ∈ {0, x + y − M, x, M} if x + y ≥ M.

Proof. See Appendix A.

Remark. Lemma 1 shows that the optimal purchase amount would be among one of the four
special values. If the commodity is counted unit by unit (e.g. packages) instead of having
continuous form (e.g. electricity) then, by assuming that the commodities can be purchased
with fractional amount, the optimal purchase amount will still be an integer as long as u, v, and
M are integers. This is a strategy that is achievable under the constraint that the purchasing
amount cannot be fractional. So both forms of commodity will have the same optimal strategy
and contract value function. Because of this, we continue to assume that the commodity has
continuous form.
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6 S. M. ROSS AND Z. ZHU

From Lemma 1 we immediately find, when the obligatory and bonus amounts are both
multiples of the single purchasing limit M , that the optimal purchasing amount is equal to
either 0 or the maximum allowed amount M at that time.

Theorem 3. For all feasible integers k and j , qi(kM, jM, s) = 0 or M .

Lemma 1 allows us to reduce the general swing contract to one in which both u and v are
multiples of M .

Theorem 4. Under the same assumptions as in Lemma 1, if x + y ≤ M then

Hi(kM + x, jM + y, s) = M − x − y

M
Hi(kM, jM, s)

+ y

M
Hi(kM, (j + 1)M, s)

+ x

M
Hi((k + 1)M, jM, s).

If x + y ≥ M then

Hi(kM + x, jM + y, s) = M − y

M
Hi((k + 1)M, jM, s)

+ M − x

M
Hi(kM, (j + 1)M, s)

+ x + y − M

M
Hi((k + 1)M, (j + 1)M, s).

So, once we know the contract value function Hi(kM, jM, s) for all feasible integers k and
j , we can calculate the value of other swing contracts as well.

Based on Theorems 3 and 4, we will assume that M = 1, and that u = k and v = j (both are
integers) in the following. So the contract becomes similar to that of the American call option,
though more complicated. The purchasing decision is now binary: either we buy or we wait
till the next purchasing opportunity.

5. Properties on the spot market price

In Section 4 we showed how the contract constraints affect the optimal strategy and contract
value function. All the results we have shown hold for all single-factor Markov price processes,
except in Corollary 2 where we needed the price processes to be homogeneous. Now we show
how the commodity price process affects the optimal strategy and the contract value function.

5.1. Preliminary

Before we proceed, it is convenient for us to introduce some basic concepts in probability
and stochastic ordering.

For any random vector X, let FX be its distribution function, i.e. FX(x) = P(X ≤ x) for all
x. Define X

d= Y if the random vectors X and Y have the same distribution function. Define

{X(t) : t ∈ A} d= {Y (t) : t ∈ A}
if

(X(t1), . . . , X(tn))
d= (Y (t1), . . . , Y (tn)) for all t1, . . . , tn ∈ A.
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On the structure of a swing contract’s optimal value and optimal strategy 7

Definition. For two random variables X and Y , define X ≤st Y if

FX(x) ≥ FY (x) for all x.

For a random variable set {Xz : z ≥ 0}, define Xz ↑st
z if

Xz1 ≤st Xz2 for all z1 ≤ z2.

Shaked and Shanthikumar [14, p. 4] provided the following result.

Lemma 2. X ≤st Y is equivalent to E f (X) ≤ E f (Y ) for any nondecreasing function f .

Definition. For a random sequence {Xn}n≥1, X, define Xn
d−→ X if FX(x) = limn→∞ FXn(x)

at all continuous points of FX(x).

For all time grids ti , we assume the following in the discussions below:

(a) S
i,0
i+1 = 0, S

i,s
i+1 ↑st

s ;

(b) E S
i,s
i+1 < ∞ and continuous in s;

(c) S
i,s
i+1

d−→ ∞ as s → ∞.

5.2. Monotonicity of the spot market price

Now we give the structural relationship between the optimal strategy and the spot market
price.

Theorem 5. On k ∈ Ri , the following assertions hold.

(a) If E exp(−rθi+1)S
i,s
i+1 − s ↓s for all i then Hi(k, j, s) − (k + j)(s − Ki) is submodular

in (k, s), and in (j, s) when k = 0; qi(k, j, s) ↑s .

(b) If E exp(−rθi+1)S
i,s
i+1 − s ↑s for all i then Hi(k, 0, s) − k(s − Ki) is supermodular in

(k, s); qi(k, 0, s) ↓s .

(c) If, for all i, E exp(−rθi+1)S
i,s
i+1 − s = 0 for all s then Hi(k, 0, s) − k(s − Ki) and

qi(k, 0, s) is the same for different s.

Proof. See Appendix A.

5.3. Examples

Assume that {Bt : t ≥ 0} is a standard Brownian motion started at 0, having drift parameter
0, and volatility parameter 1. Let {Ss

t }t≥0 be the market price process starting at s; we will
omit the superscript ‘s’ when it does not generate confusion. We will assume that Ss

t ↑st s for
all t . This assumption can be shown to be satisfied for all continuous Markov price processes,
including all the examples provided below.

Now we provide some concrete market price process examples within which the conditions
of Theorem 5 are satisfied. These examples and their extensions are widely used in various
commodity market price process models (see Section 1 for references).

Example 1. (Decaying price process.) Suppose that the price process St is described by

dSt = (rSt − δ(t, St )) dt + σ(t, St ) dBt ,

where δ and σ are bivariate measurable functions. If δ(t, s) ↑s then E e−rtSs
t − s ↓s for all t .

If δ(t, s) ↓s then E e−rtSs
t − s ↑s for all t .
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These results can be easily proved by combining Lemma 2 and

E e−rtSs
t − s = −

∫ t

0
e−rx E δ(x, Ss

x) dx.

When δ(t, s) = (κ(t) + r)s − κ(t)µ(t), we have the following result.

Example 2. (Mean reverting process.) If the price process follows

dSt = κ(t)(µ(t) − St ) dt + σ(t, St ) dBt , κ(t) ≥ 0,

where κ(·) ≥ 0 and µ(·) ≥ 0, then E e−rtSs
t − s ↓s for all t .

When δ(t, s) = (r − µ)s and σ(t, s) = σs, we have the following result.

Example 3. (Geometric Brownian motion.) If the price process follows

dSt = µSt dt + σSt dBt ,

where µ and σ are both constants, then E e−rtSs
t − s ↑s if µ ≥ r and E e−rtSs

t − s ↓s if µ ≤ r .

5.4. Boundary results

When current price is high enough, the optimal value function and strategy becomes simple,
as shown in Theorem 6. The results can be trivially proved by backward induction.

Theorem 6. For i ≤ n − 1 and k + j ∈ Ri , the following assertions hold.

(a) If E exp(−rθi+1)S
i,s
i+1 − s → ∞ for all i then

lim
s→∞

(
Hi(k, j, s) −

k+j−1∑
h=0

E exp(−r(tn−h − ti ))(S
i,s
n−h − Kn−h)

)
= 0.

Therefore, lims→∞ qi(k, j, s) = 0 if k + j ∈ Di .

(b) If E exp(−rθi+1)S
i,s
i+1 − s → −∞ for all i then

lim
s→∞

(
Hi(k, j, s) −

k+j−1∑
h=0

E exp(−r(ti+h − ti ))(S
s
i+h − Ki+h)

)
= 0.

Therefore, lims→∞ qi(k, j, s) = 1.

6. Optimal strategy structure

Combining the results from the previous sections, we will provide a detailed structure of
the optimal strategy in this section. Since the American call option (or more accurately, the
Bermudan option) is a special case of the swing contract with k = 0 and j = 1, then the results
we obtain here also apply to the American call option (with time-dependent strike prices).
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On the structure of a swing contract’s optimal value and optimal strategy 9

6.1. General swing contract

We have assumed that once the commodity price becomes 0, all its future prices will stay at
0. In this case the optimal strategy can be determined easily.

Let q0
i (k) = qi(k, 0, 0) for feasible k, clearly q0

i (k) = 0 if and only if exp(−rti)Ki is among
the k largest values of {exp(−rti+1)Ki+1, . . . , exp(−rtn)Kn}.

By Theorem 1 and Theorem 5, we immediately have the following result.

Lemma 3. If E exp(−rθi+1)S
i,s
i+1−s ↑s for all i then q0

i (k+j) = 0 implies that qi(k, j, s) = 0
for all s.

Combining Theorems 1, 5, and 6, and Lemma 3, we can prove the following result.

Theorem 7. When E exp(−rθi+1)S
i,s
i+1 − s ↓s −∞ for all i and k + j ∈ Ri ,

1. if q0
i (k) = 1 then qi(k, j, s) = 1 for all s ≥ 0;

2. if q0
i (k) = 0 then qi(k, j, s) = 1(s>si ) for some si .

When E exp(−rθi+1)S
i,s
i+1 − s ↑s ∞ for all i and k ∈ Ri ,

1. if q0
i (k) = 1 then qi(k, 0, s) = 1(s≤si ) for some si;

2. if q0
i (k) = 0 then qi(k, 0, s) = 0 for all s ≥ 0.

When E exp(−rθi+1)S
i,s
i+1 − s = 0 for all i, s, and k + j ∈ Ri ,

1. if q0
i (k) = 1 then qi(k, j, s) = 1 for all s ≥ 0;

2. if q0
i (k + j) = 0 then qi(k, j, s) = 0 for all s ≥ 0;

3. otherwise qi(k, j, s) = 1(s>si ) for some si .

Note that the si ≡ si(k, j) in Theorem 7 are finite and functions of (k, j). We omit this
functional relationship where it is evident. Based on Theorem 1, si(k, j) ↓(k,j).

Theorem 7 implies the following result.

Corollary 3. Assume that Ki = K for all i and that k ∈ Di .

1. If E exp(−rθi+1)S
i,s
i+1 ≥ s for all i and s then qi(k, 0, s) = qi(0, k, s) = 0 for all s.

2. If E exp(−rθi+1)S
i,s
i+1 − s ↓s −∞ for all i then qi(k, j, s) = 1(s>si ) for some si .

3. If E exp(−rθi+1)S
i,s
i+1 = s for all i and s then qi(k, j, s) = 1(s>si ,k+j=n−i+1) for some

si = si(k) ∈ (0, K] and si(0) = K .

6.2. American call option

In this subsection we assume that the market price process follows a geometric Brownian
motion, and we are interested in an American call option with time-dependent strike prices.

When µ ≥ r and the strike prices are equal at all times, the optimal strategy is well known:
wait till maturity and then buy if and only if the market price is above the strike price; when
the strike prices are different, we have the following ‘interval’ optimal strategy.
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Theorem 8. If µ > r , let Vi(s) = Vi(0, 1, s) and qi(s) = qi(0, 1, s). Then the following
assertions hold.

1. Vi(s) − s is convex in s and reaches a minimum at some si ∈ (0, ∞).

2. If Vi(si) ≥ si − Ki then qi(s) = 0 for all s ≥ 0, and if Vi(si) ≤ si − Ki then
qi(s) = 1(Ai<s<Bi) for some (Ai, Bi) satisfying 0 < Ai < si < Bi < ∞.

Theorem 8 implies that, under some situations, it is optimal to exercise the option immedi-
ately if and only if the current price is within some interval.

Proof of Theorem 8. See Appendix A.

7. Conclusion

In this paper we proved that we can transform the general swing contract into an American
style option that specifies the minimum and maximum numbers of exercising opportunities.
We have shown the monotonicity relationship between the optimal strategy and the contract
constraints as well as the market price processes. By examining the optimal strategy as the price
goes to ∞, we found that the optimal strategies for the swing contract have simple threshold
policies under some conditions on the market price process, and we gave widely used market
price process examples in which these conditions were satisfied. For an American call option,
when the discounted price process drifts upwards and the strike prices are time varying, we
showed that the optimal strategy is of interval type.

In a separate paper by the authors (see [11]), we utilized the structure of the optimal strategy
given in this paper to develop computational techniques for calculating the swing contract
value function. In that paper we also obtained bounds on how far our estimator is from the true
contract value. In the case when the commodity was purchased continuously (e.g. electricity)
over time, we showed how the swing contract value could be approximated by its discrete
counterpart. This paper also discussed the issue of a nonhomogeneous purchasing capacity and
interest rate.

The techniques we developed for proving properties of the swing contract can be extended
to other American style options with relatively few state variables as well. The swing contract
we considered in this paper is of call type; another group of swing contracts are put type, where
the contract owner has the right to sell commodity at specified strike prices. Parallel results can
be derived for the put type contracts.

Appendix A.

Following the same proof as Ross [10, p. 6], we have the following result.

Lemma 4. For a bivariate function f (x, y), the following assertions hold.

1. If f (x, y) is supermodular, and ax ↑x and bx ↑x , then ax ≤ bx for all x. Let f (x, yx) =
max{f (x, y) : y ∈ [ax, bx]}, then yx ↑x .

2. If f (x, y) is submodular, f (x, yx) = max{f (x, y) : y ∈ [a, b]}, where a and b are
constants. Then yx ↓x .

For bivariate functions f (x, y), a(x, y), and b(x, y), assume that

a(x, y) ≤ b(x, y) and U(x, y) = [a(x, y), b(x, y)].
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Let g(x, y) = f (x−q(x, y), y) = max{f (x−q, y) : q ∈ U(x, y)], then we have the following
result.

Lemma 5. (a) If f (x, y) is submodular and

a(x1, y2) = max(a(x1, y1), a(x2, y2) + x1 − x2) for all x1 ≤ x2, y1 ≤ y2, (1)

b(x2, y1) = min(b(x1, y1) + x2 − x1, b(x2, y2)) for all x1 ≤ x2, y1 ≤ y2, (2)

then g(x, y) is submodular in (x, y) and q(x, y) ↑y .

(b) If f (x, y) is supermodular, and a(x, y) and b(x, y) do not depend on y, i.e. a(x, y) = â(x)

and b(x, y) = b̂(x), then â(x) − x ↓x and b̂(x) − x ↓x imply that g(x, y) is supermodular in
(x, y), and q(x, y) ↓y .

Proof. Let U(x, y) = [a(x, y), b(x, y)].
(a) Note that conditions (1) and (2) imply that

a(x, y) − x ↓x, b(x, y) − x ↓x, a(x, y) ↑y, and b(x, y) ↑y . (3)

The submodularity of f (x, y) implies that f (x−q, y) is supermodular in (q, y), so q(x, y) ↑y ,
by Lemma 4.

For any x1 < x2 and y1 < y2, if x1 − q(x1, y1) ≥ x2 − q(x2, y2) then

a(x2, y1) ≤ a(x1, y1) + x2 − x1 (by (6))

≤ q(x1, y1) + x2 − x1

≤ min(b(x1, y1) + x2 − x1, q(x2, y2))

≤ min(b(x1, y1) + x2 − x1, b(x2, y2))

= b(x2, y1) (by (2)),

so q(x1, y1) + x2 − x1 ∈ U(x2, y1). Similarly, q(x2, y2) + x1 − x2 ∈ U(x1, y2).
Let t1 = q(x1, y1) + x2 − x1 and t2 = q(x2, y2) + x1 − x2; therefore,

g(x1, y1) + g(x2, y2) = f (x1 − q(x1, y1), y1) + f (x2 − q(x2, y2))

= f (x2 − t1, y1) + f (x1 − t2, y2)

≤ g(x2, y1) + g(x1, y2) (by definition).

Conversely, if x1 − q(x1, y1) < x2 − q(x2, y2), we can show, similar to the above proof,
that q(x1, y1) ∈ U(x1, y2) and q(x2, y2) ∈ U(x2, y1). Thus,

g(x1, y1) + g(x2, y2)

= f (x1 − q(x1, y1), y1) + f (x2 − q(x2, y2))

≤ f (x2 − q(x2, y2), y1) + f (x1 − q(x1, y1), y2) (by submodularity)

≤ g(x2, y1) + g(x1, y2) (by definition).

So, g(x, y) is submodular.

(b) Similar to the proof in part (a) with some inequalities reversed, we can show part (b). This
completes the proof.
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It is easy to check that f (x, y) ∈ F12 if and only if, for all h1, h2 > 0,

f (x, y + h2) + f (x + h1 + h2, y) ≤ f (x + h1, y + h2) + f (x + h1, y). (4)

Symmetrically, f (x, y) ∈ F21 if and only if, for all h1, h2 > 0,

f (x + h1, y) + f (x, y + h1 + h2) ≤ f (x + h2, y + h1) + f (x, y + h2). (5)

The interrelationships between submodularity, concavity, and the F12 and F21 properties are
given by the following result.

Lemma 6. For a bivariate function f (x, y), the following assertions hold.

(a) If f (x, y) ∈ F12
⋂

F21 then f (x, r − x) is concave in x ∈ [0, r].
(b) If f (x, y) ∈ F12 and if f (x, y) is submodular then f (x, y) is concave in x.

(c) If f (x, y) ∈ F21 and if f (x, y) is submodular then f (x, y) is concave in y.

Proof. (a) By adding (4) and (5), we obtain

f (x, y + h1 + h2) + f (x + h1 + h2, y) ≤ f (x + h1, y + h2) + f (x + h2, y + h1).

This is equivalent to the concavity of f (x, r − x).
Parts (b) and (c) can be proved similarly.

Lemma 7. (a) If f (x, y) ∈ F12 and, for all h1, h2 > 0,

max(a(x, y + h2), a(x + h1 + h2, y) − h1) = a(x + h2, y), (6)

min(b(x + h1 + h2, y), b(x, y + h2) + h1) = b(x + h1, y + h2), (7)

then g ∈ F12 and q(k, j) ∈ F1.

(b) If f (x, y) ∈ F12 ∩F21, f (x, y) is submodular, and a(x, y) = â(x) and b(x, y) = b̂(x +y),
then â(x) and b̂(x) ↑x imply that g(x, y) ∈ F21.

Proof. (a) If f (x, y) ∈ F12, let fz(x, q) = f (x − q, z − x) on x ≤ z, then fz(x, q) is
supermodular in (x, q). From the definition of q(x, y) we have

fz(x, q(x, z − x)) = max{fz(x, q) : a(x, z − x) ≤ q ≤ b(x, z − x)}.
Also, conditions (6) and (7) imply that

a(x, y) ∈ F1 and a(x + h, y) − h ↓h,

b(x, y) ∈ F1 and b(x + h, y) − h ↓h .

So, Lemma 4 implies that q(x, z − x) ↑x ; thus, q(x, y) ∈ F1.
For h1, h2 > 0, similar to the proof of Lemma 5, we can show that if q(x, y + h2) + h1 ≥

q(x+h1+h2, y) then q(x, y+h2) ∈ U(x+h2, y) and q(x+h1+h2, y) ∈ U(x+h1, y+h2). If
otherwise then q(x, y+h2)+h1 ∈ U(x+h1, y+h2) and q(x+h1+h2, y)−h1 ∈ U(x+h2, y).
Similar to the proof of Lemma 5, we can show that, in both cases,

g(x, y + h2) + g(x + h1 + h2, y) ≤ g(x + h2, y) + g(x + h1, y + h2).

So, g(x, y) ∈ F12.
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(b) For any h1, h2 > 0, let q1 = q(x + h2, y) and q2 = q(x, y + h1 + h2). If q1 ≥ q2 then
(omit checking of feasibility)

f (x − q2, y + h1 + h2) − f (x − q2, y + h2)

≤ f (x − q1, y + h1 + h2) − f (x − q1, y + h2) (by submodularity)

≤ f (x − q1 + h2, y + h1) − f (x − q1 + h2, y) (by f ∈ F21).

If q1 < q2 then (omit checking of feasibility)

f (x − q2, y + h1 + h2) − f (x + h2 − q2, y + h1)

≤ f (x − q1, y + h1 + h2) − f (x + h2 − q1, y + h1) (by f ∈ F12)

≤ f (x − q1, y + h1) − f (x − q1 + h2, y) (by f ∈ F21).

Thus, in both case, we have

g(x, y + h1 + h2) + g(x + h2, y) ≤ g(x, y + h1) + g(x + h2, y + h1),

by definition of g(x, y). Therefore, g(x, y) ∈ F21.

Proof of Theorem 1. The result is trivial for i = n. Suppose that Hi+1(u, v, s) ∈ F12 ∩ F21
and that Hi+1(u, v, s) is submodular in (u, v). Then Vi(u, v, s) satisfies the same properties.
So, we can show that

Vi(x
+, y − x−, s) ∈ F12 ∩ F21 and is submodular in feasible (x, y).

Lemmas 5 and 7 then give

Hi(u, v, s) ∈ F12 ∩ F21 and is submodular in (u, v).

Also, Lemmas 5 and 7 imply that q(u, v, s) ↑v , q(u, v, s) ∈ F1, which gives q(u, v, s) ↑u.
The concavity results follow directly from Lemma 6.

Proof of Theorem 2. First we show that, for u + h ∈ RI ,

H 1
I (u, v, s) + H 2

I (u + h, v, s) ≤ H 1
I (u + h, v, s) + H 2

I (u, v, s). (8)

If I = n, we compare s and Kn at time n.
If s ≤ Kn, suppose that the optimal purchasing amount for C2,n(u + h, v) and C1,n(u, v)

are x and y, respectively (clearly x = u + h). Then x − h and y + h are feasible purchasing
amounts for contracts C2,n(u, v) and C1,n(u + h, v), since u + h ∈ Rn and y ≤ u. Also, the
remaining obligatory and bonus amounts for C1,n(u + h, v) and C1,n(u, v) will be equal. So
(8) holds under the optimal strategy of C1,n(u + h, v) and C2,n(u, v).

If s > Kn, let x be the optimal purchasing amount for C1,n(u, v). If x ≤ M − h then we
can buy an x + h amount for C1,n(u + h, v); if x > M − h then we can buy an M amount
for C1,n(u + h, v) and its remaining obligatory amount becomes 0 (since C2,n(u + h, v) will
purchase at least u+h at time n for fulfilling obligation, implying that u+h ≤ M), its remaining
bonus amount is more than that of C1,n(u, v). In both cases it is easy to show that the total
payoff for corresponding contracts on the left-hand side of (8) is less than or equal to the total
payoff for corresponding contracts on the right-hand side at both time n and time n + 1. So (8)
holds again under the optimal strategy of C1,n(u + h, v).
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For I < n. By purchasing the same amount for C1,I (u + h, v) (maybe suboptimal) as for
C1,I (u, v) under the optimal strategy at time T̂ and then using the concavity of HI+1(x

+, y −
x−, s) in x ∈ [−y, (n − i)M] (Theorem 1), we obtain

V 2
I (u + h, v, s) + V 1

I (u, v, s) ≤ V 2
I (u, v, s) + V 1

I (u + h, v, s).

Then (8) follows from Lemma 5. Similarly,

H 1
I (0, v, s) + H 2

I (0, v + h, s) ≤ H 1
I (0, v + h, s) + H 2

I (0, v, s).

All the results then follow by backward induction with respect to i and Lemma 5.

Proof of Lemma 1. The results are trivial for i = n. Suppose that Hi+1(u, v, s) satisfy the
properties of this lemma. Then Vi(u, v, s) also satisfies these piecewise linear properties.

So, for k ≥ 1 and x ∈ [0, M − y], we obtain q0 ∈ {0, x, x + y, M}. Therefore,

Hi(kM + x, jM + y, s) = max(Vi(kM + x, jM + y, s),

Vi(kM, jM + y, s) + x(s − Ki),

Vi(kM − y, jM + y, s) + (x + y)(s − Ki),

Vi((k − 1)M + x, jM + y, s) + M(s − Ki)).

By induction, all the above four parts are linear in x ∈ [0, M − y], and so they are convex
on that set. Since the maximal of convex functions are convex, Hi(kM + x, jM + y, s) is
therefore convex in x ∈ [0, M − y]. But we have shown that Hi(u, v, s) is concave in u (by
Theorem 1), so

Hi(kM + x, jM + y, s) is linear in x ∈ [0, M − y].
Similarly, we can show that Hi(0, jM + y, s) is linear in y ∈ [0, M]. From this we can

prove that Hi(x, jM + y, s) (that is, k = 0) is linear in x ∈ [0, M − y].
The linearity and q0 ∈ {0, (x + y) − M, x, M} in x ∈ [M − y, M] can be proved similarly.
For state (kM+(M−y), jM+y, s), we have q0 ∈ {0, M−y, M}; for state (kM, jM+y, s),

we have q0 ∈ {0, y, M}. Then, similarly to the proof of the previous part, we can show the
remaining results.

Proof of Theorem 5. The case in which

E exp(−rθi+1)S
i,s
i+1 − s ↓s or E exp(−rθi+1)S

i,s
i+1 − s ↑s

can be shown by backward induction and Lemma 5.
Now if E exp(−rθi+1)S

i,s
i+1 − s does not depend on s for all i then, from parts (a) and (b), we

find that qi(k, 0, s) is both nondecreasing and nonincreasing in s, and that H̄i(k, 0, s) is both
submodular and supermodular in (k, s). Thus, both qi(k, 0, s) and H̄i(k, 0, s) − H̄i(k − 1, 0, s)

do not depend on s for all feasible k. Since H̄i(0, 0, s) = 0, by induction on k upwardly, we
can prove that H̄i(k, 0, s) is constant for all k.

Proof of Theorem 8. The convexity of Vi(s) (thus Vi(s)− s) is immediate by induction. We
can show that Vi(s) has derivative 0 at s = 0, therefore, Vi(s) − s is decreasing around 0.
Also, Theorem 6 implies that lims→∞(Vi(s) − s) = ∞. So, there exists a unique minimum
for Vi(s) − s in s ∈ (0, ∞). All the results then follow trivially.
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