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We present orbit classification schemes for use as fast metrics for fusion alpha particle
losses implemented in the symplectic guiding-centre code SIMPLE. Two variants
respectively based on conservation of the parallel adiabatic invariant, and topology of
footprints in Poincaré sections are introduced. Like an existing approach based on the
Minkowski fractal dimension, those methods estimate whether a guiding-centre orbit is
regular and therefore expected to be confined for infinite time in the collisionless case, or
chaotic, which might lead to its loss. Compared with the existing approach, the required
orbit tracing time for the novel classifiers is shorter by at least an order of magnitude.
This enables massive sampling of orbits across the whole phase space to identify regular
and chaotic regions for the purpose stellarator optimization. Based on conservation of the
perpendicular invariant, we demonstrate how extended regular regions may act as radial
barriers for orbits from the chaotic regions on the radially inboard side. We propose to use
a quantified version of this property as a new metric for collisionless fusion alpha losses.
As pitch-angle scattering becomes only relevant after alphas have already deposited a
significant fraction of their energy, such a metric remains useful also for the case with
collisions. This is illustrated by comparison with collisional loss computations. Results
are presented for applications to two quasi-isodynamic configurations, a quasi-helical
configuration and two quasi-axisymmetric configurations. In addition, the Hamiltonian
action-angle formalism is used in quasi-axisymmetric configurations to investigate the
overlap of drift-orbit resonances leading to chaos. The respective analysis is performed
with the NEO-RT code originally developed for investigation of neoclassical toroidal
viscous torque in tokamak plasmas.
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1. Introduction

Minimizing the losses of fusion alpha particles is a major goal in the optimization of
stellarator magnetic confinement configurations for self-heated fusion plasmas. Recent
results (Goodman et al. 2022; Landreman, Buller & Drevlak 2022; Landreman &
Paul 2022; Paul et al. 2022) demonstrate that it is possible to achieve excellent
fusion alpha confinement in stellarator reactor configurations optimized towards precise
quasi-symmetry or quasi-isodynamicity. Retaining this quality of alpha confinement while
also fulfilling other objectives such as magnetohydrodynamic stability, low turbulent
transport or coil complexity is a major challenge. Therefore, criteria for good alpha
confinement that are more general than quasi-symmetry and quasi-isodynamicity are still
of high interest. Here, we present and assess such criteria.

One way to obtain alpha loss fractions in a stellarator configuration consists of directly
tracing guiding-centre orbits and (optionally) taking into account collisions via Monte
Carlo operators. The slowing-down time of fusion alphas is in the range of 0.1–0.5
seconds. To decide whether a single guiding-centre orbit remains confined during this time
typically requires tracing for >104 bounce periods. Numerical estimation of loss fractions
from a statistical ensemble of 104 particles and hundreds of time steps per period therefore
requires billions of magnetic field evaluations. Despite recent acceleration by symplectic
integration (Albert, Kasilov & Kernbichler 2020b) and Poincaré plot classification (Albert,
Kasilov & Kernbichler 2020a; Kamath 2022), direct computation of alpha losses remains
computationally expensive compared with other components of a stellarator optimization
loop. While there has been recent progress on accelerating prompt loss computations
(Velasco et al. 2021), there remains room for improvement of optimizing also late and
collisional alpha energy losses. Since pitch-angle scattering becomes relevant only after
alpha particles have slowed down significantly (see, e.g. Ho & Kulsrud 1986), collisionless
proxies can be useful also for this purpose.

To provide more efficient and accurate proxies, two novel classifiers are introduced and
their performance and reliability first assessed on a test case in the optimized stellarator
configuration of Drevlak et al. (2014). In the terminology of statistics, collisionless orbit
classification checks the hypothesis of whether a guiding-centre orbit is lost by first testing
the weaker hypothesis whether it is chaotic (potentially lost). This is done in a way
analogous to a screening test for a disease. If a classifier wrongly identifies a regular orbit
(never lost) as chaotic, this is known as a false positive or type I error. Another more
accurate (and expensive) test will subsequently be required to come to a final conclusion.
In our case, we directly check whether one of the pre-screened orbits deemed chaotic will
be finally lost. More type I errors produce more (computational) cost, but the final result
remains unchanged. In contrast, a wrong identification of a chaotic orbit as regular, is
known as a false negative or type II error. In that case, the orbit is prematurely counted
as confined, even though it may be lost later. While this kind of error must be avoided for
exact final results, it may also be permissible as long as the error rate is sufficiently small,
and the final error does not exceed statistical fluctuations. We compare two classifiers with
the existing Minkowski classifier in terms of these error modes. The first classifier is based
on topological properties of a subset of regular orbits in phase space, and the other one on
the variation of the parallel adiabatic invariant.

New classifiers are presented in § 2. Based on the increased computational performance
of these classifiers, it becomes possible to analyse the regular and chaotic regions with
a fine resolution across the whole phase space of collisionless fusion alpha orbits in a
stellarator configuration in comparably short time. Such analyses are presented in § 3
for five optimized stellarator reactor configurations (Subbotin et al. 2006; Drevlak et al.
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(a) (b)

FIGURE 1. Poincaré plot of ≈10.000 footprints in (θ, s) plane (a) and plot of (θ, J‖) pairs
for an ‘ideal’ orbit of a 3.5 MeV alpha particle in the QI stellarator reactor configuration of
Drevlak et al. (2014). First return invariant, Jr

‖, and bounce invariant Jb
‖ are shown with black and

grey dots, respectively.

2014, 2018; Henneberg et al. 2019; Landreman & Paul 2022). The results are compared
with direct computations of collisionless and collisional alpha particle and energy loss
fractions from the guiding-centre code SIMPLE (Albert et al. 2020a,b). Based on the
quasi-axisymmetric case, the role of orbital resonances is pointed out, with more details
described in a recent paper (Albert et al. 2022).

2. Methods

Here, we build on the idea of classification of collisionless orbits with help of Poincaré
plots. In an earlier work (Albert et al. 2020a), distinguishing regular and chaotic orbits
has been based on box counting as an estimate of the Minkowski fractal dimension. This
method required approximately 10 000 footprints in a Poincaré plot to work reliably. Our
aim is to devise alternative algorithms which will distinguish regular trapped orbits from
chaotic ones using a much lower number of footprints.

We start from ideal orbits, which approximately follow poloidally closed contours of
the parallel adiabatic invariant J‖ in quasi-isodynamic (QI) configurations (Gori, Lotz &
Nührenberg 1996). We call them ‘ideal’ because all orbits should be like this in a perfect
QI configuration. The same definition of ideal orbits applies also to the quasi-helical (QH)
configuration but not to the quasi-axisymmetric (QA) configuration where the symmetry
direction is toroidal and, therefore, contours must be closed toroidally, not poloidally. Up
to this change, the results for QI configurations apply also to QA configurations. Regular
orbits are a superset of ideal orbits, as their footprints are required to lie on closed curves
which are not necessarily single-valued functions of the relevant angle.

An example Poincaré plot of the banana tips (The Poincaré cut is a hypersurface of
parallel velocity v‖ = 0 with v‖ changing sign from negative to positive) of an ideal orbit
in QI configuration is shown in figure 1 in the (θ, s) plane, where s is a flux surface label
and θ is a poloidal angle. If θ is an angle in quasi-symmetry direction (toroidal angle in
case of QA configurations), and quasi-symmetry is perfect, banana tips of any orbit lie on
a curve s(θ) = const and therefore all orbits are ideal. Also in this figure, the lowest-order
parallel adiabatic invariant J‖ is shown that has been computed in two ways as follows:

Jr
‖ =

∫ τr

0
dt v2

‖, Jb
‖ = lim

ρL→0

∫ τb

0
dt v2

‖ . (2.1a,b)
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The ‘first return’ invariant Jr
‖ is computed along the real orbit with finite Larmor radius

(FLR) as an integral of the squared parallel velocity v2
‖ over the return time to the Poincaré

cut τr i.e. along the orbit connecting two subsequent footprints. The ‘bounce’ invariant
Jb

‖ is computed the usual way, along the field line, i.e. in the limit of zero Larmor radius
ρL. In the latter approximation, the orbit is closed within a bounce time τb which differs
from τr by first-order terms in Larmor radius, unless the FLR orbit undergoes a transition.
It can be seen that our ‘ideal’ orbit actually does not follow exactly the contours of either
of these two. Although the changes in lowest-order J‖ are within the fourth digit, they are
of the same order for both definitions. Actually, this variation is because lowest-order J‖
differs from the exact invariant by the first-order terms in Larmor radius (Hastie, Taylor &
Haas 1967). We will use this property later to introduce a classification method based on
the relative variation in J‖.

Despite small variations in J‖, it is clearly seen in figure 1 that all the
footprints are located on a smooth curve s = s(θ) – the cross-section of the
Kolmogorov-Arnold-Moser (KAM) surface (‘drift surface’) by the Poincaré cut v‖ = 0.
This curve is an invariant manifold of the Poincaré map, each mapping maps this curve
onto itself, but the points get displaced along the curve. Let us use this property for orbit
classification. According to Poincaré recurrence theorem, an orbit performing motion
within a closed volume returns to any small vicinity of the starting point after a finite
time, τR, which depends on the size of this vicinity, and it does this subsequently an infinite
number of times. Besides the vicinity size, the recurrence time τR depends also on the type
of the orbit. For the ideal regular orbits such as the one shown above it has a near-periodic
property which we discuss and use below.

Figure 2 shows a comparison of different types of non-ideal orbits. The orbits on
the left side (nonlinearly trapped in a resonance and transient regular orbit) are regular
and therefore absolutely confined despite being non-ideal. The orbit trapped deeply in a
drift-orbit resonance (see § 3.1) is similar to the non-ideal orbits shown in figures 4 and
5. Such orbits appear as narrow island chains and are thus prone to mis-classification due
to their similarity to ideal orbits and relatively low variations in the parallel invariant.
In contrast, the footprints of regular transient orbits, i.e. orbits which undergo trapping
class transitions of the second kind during their precession (see the next paragraph for
more details), switch between distinct islands in phase space. Since trapped resonant orbits
and transient regular orbits are both regular, mis-classification does not affect final results
for losses. Other non-ideal orbits (near separatrix of resonance and transient chaotic) are
potentially lost and have to be traced until their slowing down time in calculations of loss
statistics.

Here, we distinguish trapping classes by the number of local field minima traversed over
the first return time τr. With this definition, there are two kinds of trapping class transitions
possible during the precession. Within a transition of the first kind, minima are split (or
merged) at the bottom of the magnetic well so that the normalized perpendicular kinetic
energy, E⊥ = v2

⊥/v2, is smaller than the one at newly appearing (or disappearing) local
field maxima in the domain of bounce (first return) motion. These transitions have no effect
on the orbits and change the trapping class only formally. Within a forward transition of
the second kind (‘retrapping’), E⊥ reaches unity at some local maximum in the domain of
bounce motion thus splitting it into two domains with only one chosen then by the particle
in accordance with its bounce phase. This bounce phase θ 2 = 2πτ/τr parametrizes the
particle position along the magnetic field line, where τ is the time elapsed after
the previous return (see, e.g. Albert et al. 2016). The backward transition (‘detrapping’)
is the inverse process where the domain of bounce motion abruptly increases. In
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trapped in drift-orbit resonance(a) (b)

(c) (d)transient regular

near separatrix of resonance

transient chaotic

FIGURE 2. Examples of ‘non-ideal’ orbits for 3.5 MeV alphas in the QI configuration of
Drevlak et al. (2014) started from flux surface s = 0.6. Orbits nonlinearly trapped in a resonance
(a) and some transient orbits (c) are regular and therefore confined. In contrast, orbits close to a
resonance separatrix (b) and transient chaotic orbits (d) are possibly lost.

both transitions of the second kind, the guiding-centre orbit crosses the separatrix of
one-dimensional bounce motion (Kolesnichenko, Lutsenko & Tykhyy 2022) which results
in the abrupt change of the parallel adiabatic invariant. Thus, ‘transient’ orbits are defined
as those which undergo these class transitions of the second kind.

2.1. Topological orbit classifier
We now want to develop the first idea used to classify orbits based on the already
mentioned near-periodic property of the recurrence time τR for ideal orbits. Let us
first enumerate subsequent footprints (θk, sk) starting from k = 0 and fix the interval
θ0 < θ < θ1 between the first two footprints. An orbit will return to this interval after N1
mappings, where N1 is the first recurrence number. Subsequent recurrence numbers Nj are
defined such that θ0 < θNj < θ1. For an ‘ideal’ orbit, all Nj are inside the interval N1 − 1 ≤
Nj − Nj−1 ≤ N1. The proof is apparent from figure 3. The segment of the invariant line
between the initial two footprints 0 and 1 is mapped onto the segment between footprints
N1 − 1 and N1 after N1 − 1 Poincaré mappings. By a continuity argument, there exists
a point X within the original segment [0 : 1] which is mapped exactly onto point 0 after
N1 − 1 mappings. Therefore, all points of the segment [0 : 1] located between points X and
1 are mapped onto the sub-segment between points 0 and N1 performing a recurrence after
N1 − 1 mappings. Points located between points 0 and X are mapped onto the sub-segment

https://doi.org/10.1017/S0022377823000351 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000351


6 C.G. Albert and others

FIGURE 3. First two (red) and last two (blue) footprints of the mapping completing the first
recurrence. The point X is plotted in magenta.

between points N1 − 1 and 0. The latter points require one more mapping in order to
arrive in a sub-segment between points N1 and 1. These points perform a recurrence after
N1 mappings. Thus, if Nj−1 is a recurrence number j − 1 such that θ0 < θNj−1 < θ1, the
next recurrence number will be either Nj = Nj−1 + N1 − 1 or Nj = Nj−1 + N1, so that both
cases satisfy N1 − 1 ≤ Nj − Nj−1 ≤ N1 with j ≥ 2.

By a similar argument, each second recurrence satisfies N2 − 1 ≤ N2k − N2(k−1) ≤ N2
with k ≥ 2, and, more generally, each n-th recurrence satisfies

Nn − 1 ≤ Nnk − Nn(k−1) ≤ Nn, (2.2)

with k ≥ 2. Note that a recurrence Nj approximately corresponds to j poloidal precession
turns (the higher j, the more accurate is this relation). Therefore, prompt orbit losses occur
within the first recurrence.

The simplest algorithm to detect ideal orbits using recurrence (2.2) for n = 1 is then
straightforward. Every orbit is followed over M precession turns, and after each turn j a
recurrence number Nj is checked to be within N1 − 1 ≤ Nj − Nj−1 ≤ N1. If this condition
is fulfilled for all M precession turns, an orbit is classified as ‘ideal’. Otherwise, it is
classified as ‘non-ideal’. The results of this classification are compared with classification
using Minkowski dimension in table 1. The table compares the classification of the orbits
for different numbers of precession turns.

As not all regular orbits are ideal, but all ideal orbits are regular, the topological classifier
may correctly identify a regular orbit as non-ideal (figure 2). This does not lead to errors
in the directly computed collisionless alpha loss result using the topological classifier for
speed up, but only increases computation time, as non-ideal/chaotic orbits are traced to
the end. In contrast, an orbit wrongly identified as ideal by the topological classifier leads
to an underestimation of losses.

In the absence of errors, all chaotic orbits should be identified as non-ideal, however,
this is not immediately the case. It can be seen that chaotic orbits wrongly counted as ideal
by the topological classifier disappear after 16–32 precession turns. However, depending
on the number of precession turns, some non-ideal, regular orbits are identified as ideal.
While this does not affect prediction of losses, it should be kept in mind for applications
where this distinction is important.

The single remaining mismatch after 32 turns in table 1 has been manually identified as
a simultaneous mis-classification of a regular non-ideal orbit due to a type I error by the
Minkowski method and a type II error by the topological classifier, see figure 4. With larger
sample sizes, an accurate classifier might require 128 turns. We have used this number
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Topological Minkowski

Precessions Class Regular Chaotic

2 ideal 307 20
non-ideal 6 50

4 ideal 302 8
non-ideal 11 62

8 ideal 296 3
non-ideal 17 67

16 ideal 289 2
non-ideal 24 68

32 ideal 285 1
non-ideal 28 69

128 ideal 277 0
non-ideal 36 70

TABLE 1. Comparison of classification by Minkowski dimension and by topological
classification using a simple recurrence relation.

here to demonstrate how the classification results stabilize when going towards a ‘large’
number of footprints. The number of footprints for one turn is approximately 40, therefore
one may require up to 4000 footprints – not much less than for the Minkowski classifier.
If one decides to tolerate some mis-classification, note that for 8 turns, there are still 3
unidentified orbits (error around 1 %). As expected, some orbits classified as regular by
Minkowski dimension are ‘non-ideal’ in the recurrence classification. Those orbits cannot
be ‘ideal’ orbits because ideal orbits in this algorithm can be misclassified only due to
numerical errors which are at the level of computer accuracy in our case.

The simplest topological classification algorithm may be improved in two ways. First,
by checking relations (2.2) for all possible n values which are allowed by the condition
2n < M, so that recurrence with the maximum n value is checked at least once. Second,
one may additionally check the monotonicity of the ordered footprint sequence described
below.

Let us order the recurrence numbers N1, N2, . . . , NM in increasing sequence with respect
to θ . Namely, we order their indices j = jk where k = 1, 2, . . . , M so that θ0 < θNj1

<

θNj2
< · · · < θNjM

< θ1. For an ideal orbit, this sequence is kept in all intervals between
the subsequent footprints,

θ0 < θNj1
< θNj2

< · · · < θNjM
< θ1 ⇒ θk < θNj1 +k < θNj2 +k < · · · < θNjM +k < θk+1, (2.3)

where k ≥ 1, and we assume no periodic boundaries within intervals [θk, θk+1]. Condition
(2.3) obviously follows from mapping of the continuous segment [θ0, θ1] onto the segment
[θk, θk+1] after k mappings in case the cross-section of the KAM surface is a simply
connected line defined by some single-valued function s = s(θ). We apply this additional
restriction to the orbits which have been qualified as ‘ideal’ by the improved (multiple)
recurrence classification, in order to remove further type II errors.

The result of additional classification using the monotonicity condition (2.3) is
compared with classification by Minkowski dimension in table 2. It can be seen that
all chaotic orbits are sorted out by this criterion already after 8 precession turns (the
remaining orbit is, as we remember, a mis-classification by the Minkowski dimension).
A manual study of the first 47 orbits classified by monotonicity condition as ‘ideal’ shows
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(b)

(d)

(a)

(c)

FIGURE 4. Poincaré plots in (θ, s) (a,c) and (θ, J‖) (b,d) planes for two regular orbits classified
as ‘ideal’ by condition (2.3). A typical ideal and therefore regular orbit is shown in the upper
panel, and a type I mis-classification by Minkowski dimension of a regular but non-ideal orbit is
shown in the lower panel.

that indeed, most of them are ideal, like the first orbit in figure 4. There is only one
exception of the type shown in the lower panel of figure 4. This orbit is re-classified as
non-ideal after 32 precession turns.

The error mode is shown in figure 5 where an orbit close to the periodic orbit (invariant
axis) is plotted for 16, 32 and a much larger number of precession turns resulting in 609,
1217 and 8918 footprints, respectively. With 16 precession turns, the orbit is wrongly
identified as ideal by both, recurrence and monotonicity conditions. For 32 turns, the
version with multiple recurrence and monotonicity (2.3), becomes correct, while using
simple recurrence alone still leads to a mis-classification.

2.2. Parallel invariant classifier
A different classification method relies on the approximate conservation of the parallel
adiabatic invariant J‖ = Jr

‖. As we have seen, for the ideal orbits and island-type orbits
resulting from nonlinear trapping into the drift-orbit resonance, variation of J‖ is rather
small, below 1 %. More generally, also for most of non-ideal but regular orbits, the relative
variations in J‖ remain small. Exceptions are regular transient orbits (figure 2c) which are
rather rare. This is why this classifier may be used to distinguish regular from chaotic
orbits, rather than ideal from non-ideal ones.

Here, we have implemented classification with lowest-order J‖ via a condition of regular
orbits

|J(k)
‖ − J(1)

‖ | < ΔJ‖, (2.4)

where J(k)
‖ are the values of Jr

‖ defined by (2.1a) for the first return period starting from
footprint number k. The result of classification using the condition (2.4) with ΔJ‖ chosen
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Topological Minkowski

Precessions Class Regular Chaotic

2 ideal 307 20
non-ideal 6 50

4 ideal 291 3
non-ideal 22 67

8 ideal 281 1
non-ideal 32 69

16 ideal 271 1
non-ideal 42 69

32 ideal 265 0
non-ideal 48 70

128 ideal 258 0
non-ideal 55 70

TABLE 2. Comparison of classification by Minkowski dimension and by using the topological
classifier with multiple recurrence and monotonicity criteria.

(a)

0.54

0.56

0.58

0.6

0.62

0.64

s

(b)

0 2 4 6 1.4 1.6 1.8 2
0.6

0.61

0.62

0.63

0.64

s

FIGURE 5. Example of a regular non-ideal orbit that is mis-classified as ideal by the topological
classifier (zoomed view to the right). First 609, 1217 and 8918 footprints are plotted with red
circles, blue and black dots, respectively.

as 1 % of its initial value is shown in table 3. It can be seen that, starting from 4 precession
turns, the result of classification does not change, and only one chaotic orbit according
to Minkowski dimension is classified as regular by J‖ (this orbit is the same regular orbit
mis-classified by Minkowski dimension above). It can also be seen that there are 8 regular
orbits classified by condition (2.4) as chaotic. All these are regular transient orbits (see
figure 2c) constituting less than 3 % of all regular orbits.

2.3. Summary of classification
Up to now, we have introduced two disjoint pairs of orbits classes: regular/chaotic and
ideal/non-ideal. Ideal orbits are a subset of regular orbits, but non-ideal are not necessarily
chaotic. Besides that, a common classification splits the trapped particle population into
transient/non-transient. As mentioned above, transient means that an orbit undergoes
transitions of the second kind between trapping classes during its precession, thereby
abruptly changing its J‖ value (see § 2).
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J‖ Minkowski

Precessions Class Regular Chaotic

2 regular 305 3
chaotic 8 67

4 regular 305 1
chaotic 8 69

8 regular 305 1
chaotic 8 69

TABLE 3. Comparison of classification by Minkowski dimension and by using J‖. No more
changes appear for more than 4 precessions, up to at least 128 precessions.

regular

ideal

chaotic

transient

(Fig.1, Fig.4ab)

(Fig.2a, Fig.4cd)

(Fig.2c)

(Fig.2b)

(Fig.2d)

FIGURE 6. Taxonomy of orbits. Disjoint sets regular/chaotic, ideal/non-ideal and
transient/non-transient are shown with their overlap and reference to example figures. The
outermost regions are chaotic non-transient orbits.

Note, that in the bounce-averaged approximation (Velasco et al. 2021), only transient
orbits appear as chaotic. In the full guiding-centre model, where the bounce phase
is retained, transient orbits cannot only be chaotic (as for the ones studied, e.g. in
Kolesnichenko et al. 2022), but also regular. At the same time, ideal orbits are never
transient. A graphical summary of this taxonomy with reference to examples is given in
figure 6.

From the analysis above we can conclude that in the considered test case in the QI
configuration of Drevlak et al. (2014), classification by J‖ is more accurate than by
Minkowski dimension with the current settings and much faster: it requires 4 precession
turns i.e. approximately 100–150 footprints in contrast to near 10 000 footprints needed for
the Minkowski dimension. The topological classifier with monotonicity reaches similar
performance. A disadvantage of the J‖ classifier is that the threshold has to be set by
hand based on empirical data. Despite recognizing some non-ideal regular orbits, transient
regular orbits are still classified as chaotic by the J‖ criterion. The topological classifier
only recognizes the subset of ideal orbits as regular, and thus requires more orbits to be
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traced to the end. In turn, when converged, the topological classifier requires no manual
tuning.

It should be noted that a classification without errors by any method would require
tracing orbits over infinite time. The main problem is presented by orbits close to
periodic orbits (invariant axes, where the footprints are mapped onto themselves after a
finite number of returns). According to the Poincaré–Birkhoff theorem (Lichtenberg &
Lieberman 1983) such orbits exist everywhere in the phase volume, including ergodic
regions. Such regular orbits have very low rotational transform if they are close to an
invariant axis. Thus a classifier can easily confuse them with ideal orbits, if the tracing time
is too short. This behaviour is shown in figure 5. The closer an orbit is to an invariant axis,
the longer it takes to correctly classify it. The same is true for chaotic orbits. In contrast to
regular orbits, chaotic orbits depart from an invariant axis according to an exponential law
(Lyapunov exponent). This departure can still be slow if they start very close to the axis.
This can lead to a mis-classification as regular, but fortunately, the amount of these orbits
is exponentially small.

3. Results and discussion

Figures 7–12 show the results from SIMPLE in the two new classifier modes as well as
the collisional mode for five optimized stellarator reactor configurations (Subbotin et al.
2006; Drevlak et al. 2014, 2018; Henneberg et al. 2019; Landreman & Paul 2022). For
each configuration, classification runs are performed for 500 000 collisionless trapped
alpha orbits started from banana tips (v‖ = 0) randomly distributed in plasma volume.
Classification results are scored on the rectangular 50 × 300 grid in starting banana tip
radius s and the normalized perpendicular invariant, J⊥ = v2

⊥Bmin/(v
2B) which takes

values ranging from zero for strongly passing orbits to 1 for orbits deeply trapped at the
global magnetic field minimum Bmin. As a result, each grid cell contains Ng good (ideal or
regular, depending on classifier), Na average (non-ideal or chaotic) and Nb bad (promptly
lost) orbits. The predominant orbit class C defined via these numbers as

C = (Ng − Nb)/(Ng + Na + Nb), (3.1)

is shown as a coloured pixel on this grid. Orbits are classified as promptly lost if they
leave the confinement region before a criterion can be computed. If they reach this point,
in the case of the J‖ criterion, orbits are counted as regular, if the relative variation in J‖
is below 1 %. Otherwise, they are counted as chaotic. For the topological classifier, orbits
are counted as ideal if they fulfil the recurrence and monotonicity criteria, and non-ideal
otherwise.

To interpret the classification plots in the upper part of figures 7–12 it is important to
recall from § 2 that, independently of the chosen thresholds, there exist regular non-ideal
orbits. If the classifier makes no error, there exist, however, no chaotic ideal orbits.
Completely regular regions and thus their subset of ideal regions guarantee collisionless
confinement. Furthermore, collisionless orbits move on contours of constant J⊥. This
means that whenever there exists a regular region with the same J⊥ at a radius outside
the initial position, this region will block the orbit from escaping. In the graphical
representation interpreted as a projection in phase space this means that orbits may only
evolve in the horizontal direction. Thus, regular/ideal regions plotted in bright yellow
act as loss barriers. For the purpose of optimizing a stellarator configuration in terms of
chaotic alpha losses, it should be sufficient to ‘pin down’ such barriers by maximizing the
fraction of regular or better ideal orbits on a few flux surfaces, e.g. at s = 0.25 and s = 0.5.
The reason why ideal orbits are preferable to just regular ones will become clear below.
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(a)

(c)

(b)

(d)

FIGURE 7. Quasi-isodynamic configuration of Subbotin et al. (2006). (a,b) show on an (s, J⊥)
grid the predominant orbit class (3.1) in the trapped region bounded from above (deeply trapped
−), and from below (trapped–passing boundary −−). Thin vertical lines at s = 0.25 mark
starting flux surface for loss computation in (c,d). (a) shows J‖ classification. Colour map for
predominantly regular (bright), chaotic (medium) and promptly lost (dark) orbits. (b) Analogous
to (a) for topological classification with ideal (bright), non-ideal (medium) and promptly lost
(dark). (c) Left axis: J⊥ for lost particles marked by dots and estimated loss distribution over time.
Normalized average kinetic energy (−·) of slowing-down particles. Right axis (red): collisional
confined fraction of particles (−−) and energy (−) over time. (d) Final lost energy fraction over
J⊥ for collisional (thick line) and collisionless (thin line) alpha particles. This configuration
shows only minimal collisionless losses near J⊥ = 0.55. This loss channel is marked by a
white arrow in (b). Another loss channel near J⊥ = 0.9 is blocked for collisionless orbits, but
not if collisions change J⊥ over time. Thin dashed lines in (c,d) mark the minimum J⊥ value
from (a,b).

From the computing time required for the present global analysis with the topological
method, this should be feasible in a few minutes of computing time on a single cluster
node and can be parallelized further easily.

3.1. The role of orbital resonances
Figure 11 is a special case to demonstrate the difference of lower-energy orbits of 35 keV
to alpha orbits at 3.5 MeV in figure 10. At lower energy, the orbit width decreases, and the
ideal orbit criterion converges towards the criterion of closed J‖ contours (Gori et al. 1996)
in the limit of infinitesimal orbit width. The latter criterion is valid for thermal ions and
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(a) (b)

(c) (d)

FIGURE 8. As in figure 7, but for the QI configuration of Drevlak et al. (2014). Here, non-ideal
orbits and losses extend over a region at the trapped–passing boundary near normalized
J⊥ = 0.7. The total collisional energy loss fraction slightly above 5 % matches the one in figure 4
of Drevlak et al. (2014), where starting distribution and plasma profiles have been modelled in
more detail.

usually fulfilled in a large fraction of phase space for devices close to omnigeneity (QI,
QH and QA). In contrast, for energetic fusion alphas at 3.5 MeV, no predominantly ideal
regions, and few regular regions, exist in this example. This behaviour is understood in
terms of overlapping drift-orbit resonances computed in the code NEO-RT (Albert et al.
2016, 2022) and plotted in figure 13. An orbital resonance occurs whenever the canonical
bounce frequency ωb and toroidal precession frequency Ωt fulfil the condition

m2ωb(J ) + m3Ωt(J ) = 0, (3.2)

with integer harmonics m2 and m3 in canonical angle variables. This resonance is
defined in the perfectly symmetric limit with three invariants of motion J – in this case
quasi-axisymmetry. The special case m2 = 0 where the orbit does not precess toroidally is
called a superbanana resonance. Generally, in a configuration close to perfect symmetry,
orbits perform nonlinear oscillations around such resonances that appear as island chains
in Poincaré plots (non-ideal, see figure 2(a,b). The amplitude of these oscillations is
known as the resonance width, and scales with the square root of the amplitude Hm of
the Hamiltonian perturbation δH in Fourier harmonics for canonical angles (Albert et al.
2016, 2022). In our case the perturbation scales linearly with the non-quasi-symmetric part
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(a) (b)

(c) (d)

FIGURE 9. As in figure 7, but for the QH configuration of Drevlak et al. (2018) with alpha
losses via a region of non-ideal orbits around normalized J⊥ = 0.85.

δB = B − B0 of the magnetic field module,

δH = (ωc0J⊥+mαv
2
0‖)

δB
B0

= H0

(
1 + mαv

2
0‖

2H0

)
δH
B0

, (3.3)

where quantities with subscript ‘0’ refer to their quasi-symmetric part.
Once the resonance width becomes of the order of the distance between resonances,

chaotic phase-space regions appear in between. The degree of overlap is measured by
the Chirikov criterion (Chirikov 1979). Intact KAM surfaces in between island chains of
resonances prevent crossing of chaotic orbits and are identified as footprints of ideal orbits.

For full alpha energy in figure 11, most orbital resonances overlap and produce
global chaos. At reduced energy, only the superbanana resonance remains. Nonlinear
oscillations around this resonance can be seen in the form of regular but non-ideal orbits in
figure 11(b). Further away from the resonance line on the inboard side, one may even notice
a region of prompt losses arising from nonlinear oscillations around the resonance over a
radial region that crosses the plasma boundary s = 1. Such orbits are barely trapped in the
resonance and perform wide oscillations over both, J‖ and s (figure 2b). Also a comparison
of the second QA configuration in figure 12 with 13(c) shows a banded structure for
isolated drift-orbit resonances, and a chaotic region from overlapping resonances near the
trapped–passing boundary.
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(b)(a)

(c) (d)

FIGURE 10. As in figure 7, but for the QA configuration of Henneberg et al. (2019). Most
trapped orbits are chaotic due to resonance overlap shown in figure 13(a), or promptly lost. Two
regions with a larger fraction of regular but non-ideal orbits block some losses.

(a) (b)

FIGURE 11. As in figure 10(a,b) but with particle energy reduced by a factor 100 (35 keV
alphas). Compared with figure 10, larger regular/ideal regions are visible. A non-ideal region
is visible around the superbanana resonance in figure 13(b).
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(a) (b)

(c) (d)

FIGURE 12. Quasi-axisymmetric configuration of Landreman & Paul (2022) as in figure 7. The
resonance structure matches figure 13(c) and the small deviation from quasi-symmetry prevents
resonance overlap and therefore chaos. Prompt losses at s ≥ 0.5 are from wide banana orbits.

3.2. Classifiers as proxies for collisional losses
A comparison of J‖ classifier with the topological classifier shows that the fact that regular
orbits are a superset of ideal orbits is mostly reflected. Visually, this means, that the left
plots show larger bright yellow regions than the right plots. An exception is seen, e.g.
in figure 12 in the deeply trapped region. Here, the choice of a relative threshold of 1 %
in J‖ variations breaks down for very short banana orbits and leads to type I errors of
this classifier that identify too many orbits as chaotic. This is proven by the topological
classifier that identifies mostly ideal orbits in this region, and demonstrates that careful
tuning of the J‖ classifier is necessary.

The final judgment of the usefulness of the new classifiers and the kind of visualization
discussed above is made based on collisionless and collisional direct loss computations
in the lower panels of figures 7–12. Collisional computations are based on a relatively
simple background model of constant temperature T = 10 keV for all species, and electron
density of ne = 1014 cm−3 in a fusion plasma with a 50:50 D-T mixture. The left plots show
the distribution of collisional alpha particle losses over time and initial J⊥. The right plots
show the final lost energy fraction of collisional and collisionless computations. In all
tested configurations, the loss channels of chaotic/non-ideal and promptly lost alpha orbits
are reflected in the distribution of losses over J⊥.
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(a) (b) (c)

FIGURE 13. Orbital resonance lines (Albert et al. 2022) for QA configurations from (a)
figure 10, (b) figure 11 and (c) figure 12 in the thin orbit limit (Albert et al. 2016) of NEO-RT
(precise values of J⊥ and shape of resonances may differ from full orbits). Colours indicate
different canonical bounce harmonics, and error bars show the linear resonance width.

4. Conclusion

From the investigations in this work, we can conclude that collisionless and collisional
fusion alpha losses in stellarators are prevented by regular phase-space regions acting
as radial barriers. In turn, transitions between trapping classes and overlap of drift-orbit
resonances introduce chaotic regions that act as loss channels. In particular, overlap of
resonances whose width scales with the square root of the perturbation amplitude leads to
chaotic losses similar to those induced in tokamaks by toroidal field ripples. This analogy
is seen in QA configurations and is expected to hold also in other quasi-symmetric as
well as QI devices. Relevant regions in phase space can be efficiently charted by massive
classification runs in SIMPLE after 1 % of the tracing time of a direct computation of
loss fractions. In contrast to their superset of regular orbits that can also produce island
chains in phase space, ideal orbits correspond to KAM surfaces that are more robust to
perturbations. Ideal orbits are a natural generalization of closed J‖ contours (Gori et al.
1996). They can be identified at similar computational cost by the presented topological
classifier without manual adjustments. We therefore propose to use the fraction of ideal
orbits on a selection of flux surfaces as a metric for stellarator optimization.

In contrast to alpha particle confinement metrics based on the bounce-averaged motion
(Gori et al. 1996; Nemov et al. 2005; Velasco et al. 2021; LeViness et al. 2023), classifiers
presented here are based on real orbits retaining their actual radial widths which can be
compatible with plasma radius (see Albert et al. 2022; Landreman & Paul 2022) and,
more importantly, bounce phases. Therefore, they naturally take into account drift-orbit
resonances which may lead to chaotization of the orbits and respective additional losses.
Such losses can be significant in stellarator configurations produced from real modular
coils which result in short scale magnetic field modulations too small to create additional
local wells (and thus significantly enhance bounce-averaged transport) but sufficient to
generate resonant transport and respective losses. The later can be seen from the resonance
condition (3.2) where the banana precession frequency Ωt being formally a higher-order
quantity in Larmor radius than the bounce frequency ωb can normally (m3 ∼ m2) match the
resonance condition only for a small number of particles near class transition boundaries
where ωb drops. In case m3 
 m2 realized for configurations where the precession
direction is across the planes of modular coils (e.g. the case with toroidal field ripple
in tokamaks) the resonance condition can be realized also for the bulk trapped particles.
An exception are quasi-poloidally symmetric (Spong et al. 2001) or QI configurations
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where the precession direction is mostly within the modular coil planes. For the latter
configurations even with real modular coils, as considered here (see also Sánchez et al.
2022), the effect of drift-orbit resonances is less significant. Nevertheless, the metrics
proposed here can be useful for coil optimization also in those configuration types.
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