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Edge-driven collapse of fluid holes
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We study the stability and collapse of holes at the wall in liquid layers on circular
bounded containers with various wettabilities. Three distinct wetting modes of the hole
are observed, which are related to the wettability of the container: when the substrate and
the inner wall of the container are superhydrophobic, a stable hole remains as the liquid
volume is continuously increased until the liquid layer covers the entire substrate; when
the substrate and the inner wall are hydrophobic, an eye-shaped hole remains stable as
the projected area of the hole exceeds a critical value Ac, however, the hole collapses if
the liquid volume is further increased; when the substrate is superhydrophobic but the
wall is hydrophilic, on increasing the liquid volume, the hole suddenly transfers into a
circular hole and is pushed against the wall, leaving the hole dwelling around the centre of
the container. Theoretical analyses and numerical simulations are conducted to establish
the phase diagram for different wetting modes. It is found that, in the second mode, Ac
increases with the size of the container but decreases with the contact angle of the substrate
and the wall. Furthermore, we experimentally investigate the dynamics of the hole. The
time evolution of the area of the hole obeys a scaling relationship A ∼ (t0 − t)1.1 after the
hole collapses at time t0.

Key words: contact lines, thin films

1. Introduction

Understanding the stability of liquid layers with holes is of fundamental importance for
numerous applications, such as coating, micropatterning and lithography (Schäffer et al.
2003; Weinstein & Ruschak 2004; Kumar 2015; Lee et al. 2016; Lohse 2018). Coating
processes aim to produce uniform thin films on the underlying solid substrate, but under
certain conditions, holes can form in the film. While some of these holes may disappear
naturally, others can persist as undesirable defects. Moreover, micropatterning through
dewetting has been employed to create desired features in a wide range of solid materials,
including metallic thin films (Ferrer, Halajko & Amatucci 2014) and soft rubber substrates
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(Martin, Buguin & Brochard-Wyart 2001). To further apply and expand this approach, a
comprehensive understanding of the statics and dynamics of thin liquid films with holes is
necessary. Immersion lithography, a technique that involves lithography under a water film
(with a refractive index of 1.33, rather than 1.00 for air) between the optical lens and the
wafer, the resolution of lithography can be improved by using a larger numerical aperture.
However, the presence of a hole in the liquid film, acting as a defect, can significantly
impact the quality of the final products. Furthermore, the hole may collapse and introduce
bubbles in the liquid film. Considering its importance, the wetting behaviour of a hole in
a liquid layer has attracted considerable attention over the past decades.

The pioneering studies of Lamb (1916) and Padday (1971) explored equilibrium
solutions for liquid–vapour systems with axisymmetric profiles in their comprehensive
works. Taylor & Michael (1973) conducted experimental and theoretical investigations
on axisymmetric holes in liquid layers. They discovered that, for an infinitely extended
film, the equilibrium solution of the liquid–vapour interface is energetically unstable.
Furthermore, they demonstrated that this equilibrium solution serves as a criterion to
determine the stability of a hole (whether it remains open or closes), which was verified
through experiments on holes in a mercury layer. However, experiments on a hole in a
water layer on paraffin wax (which exhibits moderate hydrophobicity) did not provide a
clear distinction regarding whether the hole would remain open or close. In addition, they
observed that holes of various sizes could remain stationary due to contact angle hysteresis.
Sharma & Ruckenstein (1990) conducted theoretical studies on the equilibrium and
stability of holes in liquid layers using energy criteria. Their findings revealed the existence
of two equilibrium solutions for holes with a certain contact angle, where the hole with
the larger radius is unconditionally stable and the one with the smaller radius is unstable.
Their analyses suggested that, in practice, if the radius of the hole exceeds a critical value,
the hole will remain open; otherwise, it will close. Moriarty & Schwartz (1993) employed
a lubrication model to investigate the stability and evolution of axisymmetric holes in
thin liquid layers bounded within a finite domain. Their numerical solution considered
the motion of the contact line at the edge of the hole and contact angle hysteresis. They
found that a hole slightly larger than the critical value for opening can dynamically close
due to the influences of contact angles. Wilson & Duffy (1996) employed an asymptotic
analysis to examine the equilibrium of axisymmetric holes in thin liquid layers. Their
study focused on infinitely extended liquid layers, considering the effects of gravity and
surface tension. López, Miksis & Bankoff (2001) conducted a theoretical study on the
motion of a thin viscous layer of fluid on a horizontal solid surface bounded laterally
by a hole and a vertical solid wall. By employing linear stability analysis, they found
that equilibrium solutions with small holes are unstable to axisymmetric disturbances for
a container of fixed diameter, while large holes become unstable to non-axisymmetric
disturbances. Zheng et al. (2018a,b) investigated the dynamics of a healing film driven by
surface tension, deriving a self-similar solution to describe the dynamics of the film’s
profile by employing the lubrication model. Lv, Eigenbrod & Hardt (2018) conducted
experimental and theoretical studies on the stability and dynamics of holes in bounded
liquid layers. They demonstrated that, for liquid layers with thicknesses of the order of
the capillary length, stable holes exist when the hole diameter exceeds a critical value
dc. Beyond this stability threshold, the hole collapses. They also found that dc increases
with the size of the container, while its dependence on the contact angle is weak. Ni et al.
(2021) investigated the behaviours of impact-induced holes on superhydrophobic surfaces.
They found that the holes primarily exhibit growth, stability or collapse depending on their
initial size, with the dynamics of the hole resulting from the interplay between capillary
force and hydrostatic pressure.
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Edge-driven collapse of fluid holes

In addition to the above studies that mainly focused on the equilibrium solution and
stability of the liquid–vapour interface, research on the dynamic closure of holes has
also been conducted, both experimentally and theoretically. Gratton & Minotti (1990)
developed a theoretical model based on lubrication theory to investigate the spreading
of viscous gravity currents over a rigid surface. They obtained a self-similar solution
of the second kind, describing the axisymmetric collapse of a viscous fluid towards the
origin within a finite domain. Diez, Gratton & Gratton (1992) conducted theoretical and
experimental investigations on the axisymmetric flow of highly viscous fluids towards
a central orifice. The flow in this scenario is governed by a balance between gravity
and viscous forces, with surface tension effects assumed to be small. They derived a
self-similar solution that matched well with experimental results when the hole radius
became sufficiently small compared with its initial radius. Dijksman et al. (2015)
investigated the dynamics of hole collapse in a liquid film experimentally and theoretically,
focusing on converging fluid films driven by both surface tension and gravitational forcing.
In contrast to the findings of Diez et al. (1992), Dijksman et al. (2015) also considered
situations where surface tension plays a dominant role in the spreading dynamics of
the flow in the liquid. Bostwick, Dijksman & Shearer (2017) investigated the collapse
dynamics of an axisymmetric hole in a thin film that wets the bottom of a rotating container
with vertical sidewalls, employing a lubrication theory. Their model accounted for the
effects of surface tension, gravity and the centrifugal force. They reported power-law forms
for the collapse time in limits where the capillary force and gravitational force played
dominant roles. Zheng et al. (2018a) conducted theoretical and experimental investigations
and presented a self-similar solution of the liquid–vapour profile of a hole in a spreading
liquid film. Bankoff et al. (2003) explored the dynamics of a hole in a thin viscous
film on a horizontal surface through experimental and theoretical studies. They observed
three different behaviours of the hole, influenced by the initial film thickness and the
diameter of the container. Factors such as hole diameter, front velocity, dynamic contact
angle and liquid–vapour interface related to the shrinking of the hole were investigated.
Their findings indicated that the final hole diameter increases as the initial fluid depth
decreases. Lv et al. (2018) investigated the dynamics of the hole and the evolution of
the liquid film profile after collapse. They identified distinct power-law relationships for
the diameter of the collapsing hole and the minimum thickness of the liquid film shortly
after collapse. Lu & Corvalan (2019) recently studied the dynamics of a non-axisymmetric
hole undergoing capillary collapse in a liquid sheet with small dynamic viscosity, using
scaling arguments and high-fidelity simulations. For low-viscosity fluids, they found two
distinct dynamical regimes: an initial inviscid regime and a final Stokes regime. The
authors demonstrated that the cross-over hole radii, marking transitions between these
two regimes, follow power-law relations with fluid viscosity. Furthermore, Lu et al.
(2019) employed scaling arguments supported by high-fidelity simulations to investigate
the dynamics of a non-axisymmetric hole in a high shear-thinning liquid sheet. They
discovered that shear-thinning effects accelerate the collapse of the hole by reducing the
viscosity near the moving front of the hole.

Beyond the dynamics of the liquid–vapour interfaces, researchers have carried out
quantitative studies to rationalize the dependency of the hole diameter on time, i.e. d(t).
Previous works found that the time evolution of the collapse obeys a scaling law d ∼ tα ,
where the exponent α is controlled by the relative importance of various kinds of forces,
such as the capillary, gravitational, inertial and viscous forces, and the geometry of the
system. In their investigation of the dewetting dynamics in a thin viscous film, Redon,
Brochard-Wyart & Rondelez (1991) found that the time evolution of the diameter obeys
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d ∼ t, indicating a competition between capillary and viscous forces. The moving speed
dd/dt of the edge of the liquid film is independent of the diameter d or film thickness h,
but inversely proportional to viscosity and highly sensitive to the contact angle. Dijksman
et al. (2015) created a hole in a thin film by rotating an axisymmetric fluid reservoir. They
found a scaling law d ∼ t0.55 for the collapsing hole when the reservoir stopped rotating.
The influence of surface tension was considered to play an important role in their study.
In an experimental investigation conducted by Diez et al. (1992), a highly viscous liquid
was filled in the annular region between the outer wall of a circular basin and a concentric
circular retaining dam. By connecting the dam to an opening device that was rapidly raised
up, a hole was created, leading the surrounding viscous liquid to move towards the central
region. The time evolution of the diameter of the hole obeyed d ∼ t0.762, representing the
limit of pure gravitational driving flow. In the theoretical work of Bostwick et al. (2017),
the authors studied the evolution of a collapsing hole by employing a lubrication model.
They investigated both the capillary and gravity limits in their theory and found a scaling
law d ∼ t0.55 for small Bond numbers. For large Bond numbers, the limiting behaviour
was characterized by d ∼ t0.762. In their research, Zheng et al. (2018a) studied the healing
process of a completely wetting fluid film in a circular container. They obtained a scaling
law of d ∼ t0.49. Their theoretical and experimental results are in agreement with each
other. Lv et al. (2018) conducted experiments to measure the time evolution of a collapsing
hole in a water film with a characteristic thickness of the capillary length lc (de Gennes,
Brochard-Wyart & Quéré 2003). They discovered a scaling law of d ∼ t0.55. The simple
theories they developed indicate that, within their parameter space, the collapse of the hole
is triggered by surface tension, the subsequent closure process is driven by inertia and the
growth of the liquid column after hole closure is governed by the balance between the
capillary force and inertia.

Furthermore, extensive research has been conducted on the dynamics of dewetting.
Redon et al. (1991) investigated the dynamics of dewetting of silicone oils on low-energy
surfaces. Their findings revealed that the growth rate of the hole is unaffected by the
hole radius or film thickness, but is inversely proportional to the viscosity of the oil.
Furthermore, they found that the growth rate is highly sensitive to the equilibrium
liquid–solid contact angle. In another experimental study by Bischof et al. (1996), the
dewetting behaviour of thin liquid metal films on fused silica substrates was examined.
They observed heterogeneous nucleation of holes, which then expanded in diameter.
Furthermore, they observed an instability in the liquid film, resulting in the amplification
of surface waves with a characteristic wavelength. This observation is considered to be the
first instance of spinodal dewetting. Buguin, Vovelle & Brochard-Wyart (1999) conducted
experimental research on the dewetting of a water film from hydrophobic glass. They
found that the velocity of dewetting follows the Culick law (Culick 1960), which describes
the bursting of soap films, with the driving force including both capillarity and gravity.
Furthermore, they also presented the first observation of the shock as the rim surfs on
the immobile film at velocity larger than the velocity of gravity waves in shallow water.
Mulji & Chandra (2010) conducted experimental and theoretical investigations into the
rupture and dewetting of water films on solid surfaces. They introduced an air bubble to
puncture the water film, resulting in the formation of a hole. The growth or closure of
the hole depended on factors such as film thickness and the liquid–solid contact angle.
In a study by Kim & Kim (2018), they experimentally and theoretically investigated
dewetting on substrates with parallel microgrooves. They identified three modes of residue
morphologies, which were determined by the groove geometry and the equilibrium contact
angle. Kim, Kim & Kim (2019) conducted experimental and theoretical research on film
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Edge-driven collapse of fluid holes

(a) (b)

Water

Hole (air)

R1

R2

Figure 1. Schematic of the edge-driven collapsing hole in (a) top view and (b) side view. The circular boundary
is the wall of the container, the blue region and the white region confined by the container are water and air
phases, respectively. Here, R1 and R2 represent the radii of the two principal curvatures, i.e. (a) the azimuthal
curvature and (b) the meridional curvature.

dewetting by placing an alcohol drop above a thin aqueous film. They attributed the
dewetting process to Marangoni effects caused by spatial gradients in alcohol vapour
concentration. The researchers developed scaling laws to predict the dewetting rates of the
film by considering factors such as Marangoni stress, viscous shear stress and evaporation.
The results of their experiments were found to be consistent with their theory.

Despite extensive research on the equilibrium, stability and dynamics of a moving
hole in a liquid film, the investigations mentioned above have primarily focused on the
ideal case where the hole has an axisymmetric shape and is located at the centre of the
container. However, in practical scenarios, holes at the wall are more commonly formed,
and this aspect remains largely unexplored. As we know, the profile of the liquid–vapour
interface is governed by the Young–Laplace equation. When considering the influence of
gravitational force, exact analytical solutions of the Young–Laplace equation have only
been derived for two specific cases: (i) a fluid in a semi-infinite domain bounded by a
vertical plane wall, and (ii) a fluid between two vertical parallel walls. These solutions
were provided by Landau et al. (Landau & Lifshitz 1987; Lv & Shi 2018) and pertain to
wetting phenomena in two-dimensional space. However, for a three-dimensional problem
with a non-axisymmetric shape (i.e. a hole at the wall), no analytical solution currently
exists. This lack of an analytical solution poses greater challenges in theoretical analysis.

In the present paper, our objective is to provide a comprehensive understanding
of the stability and collapse of a hole at the wall in a water layer confined by a
substrate, as depicted in figure 1. To achieve this, we conduct experiments where water
is gently added to a film containing a hole at the wall. We observe three wetting
modes, which correspond to different wettabilities of the substrate and wall. Moreover,
to gain a deeper understanding of the configuration and flow dynamics within the
water layer, we performed numerical simulations by employing the surface evolver
(SE) and lattice Boltzmann method (LBM). Through a combination of experimental
observations, theoretical analysis and numerical simulations, we are able to elucidate that
the wetting characteristics of the substrate and wall play a crucial role in determining
the observed wetting modes. Moreover, we identified scaling laws that describe the final
stages of hole closure, and the corresponding scaling coefficients are determined through
experimentation. Additionally, the time evolution of the hole diameter revealed that the
dominant driving force behind the hole shrinkage is inertia. The main gold of our study is
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Syringe tube

Light source

Mirror

High-speed

camera

Container

Level pins

Substrate

Figure 2. Schematic illustration of the experimental set-up, which mainly consists of a light source, a
container composing a glass plate and a cylinder, a syringe tube, level pins, a mirror and a high-speed camera.

to identify wetting modes and quantify the stability limit of the hole at the wall. Addressing
this problem will contribute to a better understanding of related phenomena and potentially
lead to significant advancements in various industrial processes.

The paper is organized as follows: we report the experimental procedure and
observations in § 2. In § 3, by employing simulation approaches, we present simulation
results of SE and LBM as a supplement of experiment. Moreover, a phase diagram
illustrating the three observed wetting modes is presented. In § 4, we develop a theoretical
model for the equilibrium of the hole at the wall in liquid layers and determine the critical
hole area through theoretical analysis. In § 5, we particularly focus on the dynamics of the
water layer once the instability is triggered. Finally, we conclude the paper in § 6.

2. Experimental study

2.1. Experimental set-up and procedure
A schematic of the experimental set-up is depicted in figure 2. Prior to conducting our
experiments, we first level the set-up to ensure the platform is positioned horizontally.
This is achieved by employing level pins with a resolution of 0.01 mm, as depicted in
figure 2. To be precise, we place a level with a resolution of 0.1◦ onto the substrate and
carefully adjust the level pins until the substrate is levelled horizontally. We first prepare
a clean glass placed on a platform as a flat substrate, and the wettability of the upper
surface of the glass is adjustable by chemical treatment. We then place a cylinder on the
top of the glass to form a circular outer boundary. The glass plate and the cylinder form
a container. By employing a syringe tube connected to a syringe pump, deionized water
is very smoothly added into the container, and a water layer is generated. To get a better
visualization, a LED panel is horizontally placed on the top of the container as a uniform
light source. By employing a mirror with a tilt angle of 45◦, the photographs of the water
layer in the container are reflected to a camera, which is placed horizontally.

In our experiment, we use different sizes of the cylinder. Moreover, the wetting
properties of the glass plate and the inner wall of the cylinder are easily modified.
Therefore, we are able to present experiments with varying parameters, such as the contact
angle and the size of the water layer. A summary of the parameters of different experiments
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Edge-driven collapse of fluid holes

Material θ (deg.) θa (deg.) θr (deg.) �θ (deg.)

Plastic Petri dish 89.9 ± 3.6 102.7 ± 0.7 80.5 ± 1.6 22.2 ± 2.0
Glaco-treated glass 158.2 ± 3.0 163.3 ± 1.0 151.8 ± 2.4 11.5 ± 1.3
Hydrophobic-treated glass 116.0 ± 1.9 119.3 ± 1.3 105.8 ± 2.2 13.6 ± 2.7
Clean glass 29.7 ± 5.8 46.0 ± 2.2 17.1 ± 2.5 28.9 ± 3.5

Table 1. Wetting properties of the materials, obtained for water.

is given in table 1, where θ , θa and θr represent the apparent contact angle, advancing and
receding contact angles of water on the glass plate and the plastic Petri dish, respectively.
Here, �θ = θa − θr represents the contact angle hysteresis. Five containers with different
diameters d varying from 6.6 to 14.2 cm are employed. Typically, we first add a thin layer of
water with an initial height ∼ h∞/2, after that, we create a comparatively large hole near
the wall of the container by employing clean compressed air flow through a nozzle with an
inner diameter of 3 mm. Here, h∞ = 2lc sin(θ/2) is the thickness of an infinite unbounded
liquid layer, and lc ≈ 2.73 mm is the capillary length of water (de Gennes et al. 2003).
The outlet of the nozzle is placed approximately 2 cm away from the substrate. When the
hole at the wall has been created, we smoothly decline the flow rate of the nozzle until the
flow stops. Shortly after that, the hole reaches a stable equilibrium state and the water film
becomes static. We then smoothly add water (flow rate Q = 1 ml min−1 for most cases)
to the water film through a syringe tube. The smallest diameter of the container we use is
d = 6.6 cm, a simple calculation could estimate the growth rate of the water film height,
i.e. Q/(πd2/4) ≈ 292.3 μm min−1. Therefore, we neglect the influence of the disturbance
on the water film resulting from the supplied water.

2.2. Experimental observations

2.2.1. Three wetting modes of holes at the wall
In our experiments, the time evolution of the hole is obtained from the bottom view by
employing a high-speed camera. Moreover, we use a superhydrophobic glass plate (treated
by Glaco Mirror Coat ‘Zero’, Soft 99, Co., see Appendix A) as the substrate, whereas
we separately use three different kinds of wettability for the inner wall of the cylinder,
i.e. superhydrophobic, hydrophobic and hydrophilic glasses. As illustrated in figure 3,
typical experimental results of the wetting modes of holes at the wall are given, and three
unexpected wetting modes are observed and can be generalized as follows.

In figure 3(a) wetting mode I is presented. In this case, both the glass plate and
the inner wall of the container are superhydrophobic θ = 158.2 ± 3.0◦. When adding
water into the container, the hole is shrinking. Here, limited by the field of view of the
camera, the experimental visualization (figure 3a i–iv) contains incomplete photographs
of the container. Nevertheless, the main characteristic of the evolution of the hole can be
captured. Figure 3(a v–viii) gives the sketches of mode I to demonstrate the complete
view of the container, where the red arrows denote the flow direction of the front of
the liquid–vapour meniscus. Confined by the container and the liquid–vapour interface, a
crescent-shaped hole is formed. When more water is added to the liquid, the hole gradually
gets smaller until it disappears (see supplementary movie 1 available at https://doi.org/10.
1017/jfm.2023.753). In this case, the liquid film is always in a quasi-static state, which is
different from the collapse of a hole located at the centre of a container reported previously
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91.5 s0 s10 mm 163.1 s132.2 s

0 s 17.1 s

81.0 s0 s 108.0 s94.5 s

(a) (iv)(iii)(ii)(i)

(viii)(vii)(vi)(v)

(iv)(iii)(ii)(i)

(viii)(vii)(vi)(v)

(iv)(iii)(ii)(i)

(viii)(vii)(vi)(v)

(b)

(c)

13.0 s 17.0 s10 mm

10 mm

Figure 3. Three wetting modes of holes at the wall. (a) Mode I; (b) mode II; (c) mode III. For each mode,
panels (i–iv) are time-lapse images of the water layer with a hole, while panels (v–viii) are the schematics
of the experimental observations corresponding to panels (i–iv), respectively. The red arrows denote the flow
direction of the front of the liquid–vapour meniscus. The scale bar represents 10 mm.

(Diez et al. 1992; Wilson & Duffy 1996; Bankoff et al. 2003; Dijksman et al. 2015;
Bostwick et al. 2017; Lv et al. 2018; Zheng et al. 2018a,b).

In figure 3(b) wetting mode II is presented. In this case, the glass plate is
superhydrophobic (θ = 158.2 ± 3.0◦), while a cylindrical glass with a hydrophobic inner
wall (θ = 116.0 ± 1.9◦) is employed. In contrast to mode I, an eye-shaped hole is formed
(see supplementary movie 2). Here, the flow rate of the nozzle is Q = 0.1 ml min−1 when
adding water into the water film, which guarantees a very smooth shrinking of the hole. In
the beginning, the time evolution of the appearance of the hole is hardly observed by the
naked eye, i.e. from 0 to 13.0 s, therefore, the hole is in a quasi-static state in this regime.
However, as time progresses, the situation will change when the hole size approaches a
critical value. Since the geometrical shape of the hole is not regular, we use an area A(t) to
describe the geometry of the hole, where A(t) is the projected area of the hole. As the hole
area A(t) decreases to a critical value Ac, the hole is no longer able to hold its stability, but
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collapses, i.e. the area A(t) suddenly reduces to zero (from 17.0 to 17.1 s). The stability and
collapse of the hole in mode II are very similar to the observations of Lv et al. (2018).

In figure 3(c) wetting mode III is presented. In this case, the glass plate is
superhydrophobic (θ = 158.2 ± 3.0◦), while a cylindrical glass with a hydrophilic inner
wall (θ = 29.7 ± 5.8◦) is employed. The water film wets the inner wall of the cylinder as
much as possible but decreases the contact area with the substrate. Different from wetting
modes I and II, the front of the water film spreads more quickly along the inner wall of the
cylinder than on the glass plate (see supplementary movie 3), and a funnel-shaped hole
appears (from 0 to 94.5 s). Eventually, the left and right fronts of the water film merge at
the wall, and a transition from a hole at the wall to an inner hole happens, and the hole is
pushed a little further from the inner wall of the cylinder. Meanwhile, we observe that the
hole reshapes itself to a circle shape soon after the transition. This behaviour has not been
observed previously (Lv et al. 2018; Zheng et al. 2018a,b).

To the best of our knowledge, this is the first report of the different wetting behaviours of
the hole in the liquid layer. Although liquid layers were widely studied in the past, most of
them focused on the hole occurring in the centre of the container (Wilson & Duffy 1996;
Bankoff et al. 2003; Dijksman et al. 2015; Bostwick et al. 2017; Lv et al. 2018; Zheng
et al. 2018a,b), or the dependence of the collapse behaviours on the viscosity of the liquid
(Redon et al. 1991; Diez et al. 1992; Zheng et al. 2018a,b; Lu & Corvalan 2019; Lu et al.
2019) and the wettabilities of the container (Redon et al. 1991; Lv et al. 2018). Here, our
observations are distinguished from the previous experimental results.

2.2.2. Experimental analysis
In order to quantify the dynamics of the hole, we plot the relationship between the
instantaneous value of A and time (t0 − t), denoting t0 the moment when A = 0. As shown
in figures 4 and 5, we plot the results for modes I and II, respectively.

As shown in figure 4, we first demonstrate the behaviour of wetting mode I. Here,
Glaco-treated glasses are used as the planar substrate and the cylindrical wall of the
container, which provide an advancing contact angle θa = 163.3 ± 1.0◦ and a receding
contact angle θr = 151.8 ± 2.4◦. Selected frames are displayed in figure 4(a), showing the
time evolution of the hole shape in bottom view, indicating that the solid–liquid–vapour
three-phase contact lines gently move forwards. Based on the experimental data shown in
figure 4(b), it is found that the hole shrinks uniformly when water is added. Owing to the
contact line pinning, the curve is not as smooth as a straight line and there is jerky glide
motion observed in supplementary movie 1.

As shown in figure 5(a), we demonstrate the behaviour of wetting mode II. Here, a
cylindrical hydrophobic glass is used as the wall of the container, which provides an
advancing contact angle θa = 119.3 ± 1.3◦ and a receding contact angle θr = 105.8 ±
2.2◦. Moreover, a planar Glaco-treated glass is used as the substrate, which provides an
advancing contact angle θa = 163.3 ± 1.0◦ and a receding contact angle θr = 151.8 ±
2.4◦. In figure 5(b), A is plotted as a function of time (t0 − t) for a range of box sizes, where
the data points were obtained by averaging five experiments with corresponding error bars.
Here, the plastic Petri dish is used as the container, which provides an advancing contact
angle θa = 102.7 ± 0.7◦ and a receding contact angle θr = 80.5 ± 1.6◦. Five different
containers with diameters d ranging from 6.6 to 14.2 cm have been employed. The curves
for wetting mode II shown in figure 5(b) contain two regimes. In the first regime, the
area of the hole decreases smoothly with time corresponding to the photographs from 0 to
13.0 s (see supplementary movie 2). In this process, the shrinking of the hole is due to the
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Figure 4. Wetting mode I. (a) Selected frames from the top view. Glaco-treated glasses are used as the planar
substrate and the cylindrical wall of the container. The scale bar represents 10 mm. (b) Time evolution of
the hole area in a liquid layer for wetting mode I. Glaco-treated glasses are used as the planar substrate and
the cylindrical wall of the container. The plot shows the instantaneous area A of the hole as a function of
time (t0 − t), where t0 is defined as the moment when A = 0. All the data points are average values of five
experiments with error bars representing the standard deviation.
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d = 6.6 cm d = 8.5 cm

d = 9.3 cm d = 11.5 cm

d = 14.2 cm

Figure 5. Wetting mode II. (a) Selected frames from the experiment of wetting mode II. A planar Glaco-treated
glass is used as the substrate, while a cylindrical hydrophobic glass is used as the wall of the container. The
scale bar represents 10 mm. (b) Evolution of the instantaneous area A with time (t0 − t) for wetting mode II.
t0 is defined as the moment when A = 0. A plastic Petri dish is used as the container. All the data points are
average values of five experiments with error bars representing the standard deviation. Five containers with a
diameter d ranging from 6.6 to 14.2 cm have been employed.

feeding of water. Since water is added at very small flow rate, the shrinking of the hole is
not obvious. Here, it is stressed that, when the feed is stopped, the shrinking of the hole
stops correspondingly and the liquid is in a static state. In this regard, the hole is considered
to be stable. However, when the hole shrinks to a critical size, a subsequent volume
increase will trigger the collapse of the hole. The second regime happens at this time.

973 A18-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

75
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.753


Edge-driven collapse of fluid holes

As shown in figure 5(b), the area of the hole steeply decreases with time corresponding
to the photographs from 17.0 to 17.1 s. During the second stage, the hole cannot remain
static even we stop adding water. In this process, the hole collapse is highly dynamic in
contrast to the first regime. Although containers with different sizes are used, the curves
in figure 5(b) have the same trend.

Before we carry out systematic theoretical analyses (see § 4) for these three wetting
modes, an intuitive understanding could be obtained. For the meniscus of the hole, there
are two principal curvatures, i.e. the azimuthal curvature (see the top view in figure 1a)
and the meridional curvature (see the side view in figure 1b). Therefore, for the wetting
mode I, as shown in figure 3(a), both the two curvatures are positive, which create a
pressure jump together to maintain the opening of the hole. As a result, the hole is able
to be stable until it closes. However, for the wetting mode II, as shown in figure 3(b), the
azimuthal curvature becomes negative to push the liquid to the hole. As additional liquid
is supplied, the increase of the azimuthal curvature is pronounced while the variations of
the meridional curvature and the hydrostatic pressure are relatively small. Therefore, the
collapse of the liquid layer is caused by the variation of the azimuthal curvature. Lastly,
for wetting mode III, as shown in figure 3(c), when adding enough liquid, the front liquid
menisci must merge together. To further decrease the energy of the system, the hole will
trend to become circular and meanwhile it seems the hole is pushed along the central
direction of the container.

3. Numerical study

Even though the above experiment results reveal three different wetting modes of holes at
the wall in the liquid layers, the experimental study is limited by the wetting properties of
the materials we used for the wall and the substrate of the container, thus, only a limited
number of experimental parameters are available. In order to expand the parameters, we
will employ numerical method to carry out more investigations in this section. Here, two
numerical methods, SE and LBM, are employed to simulate the behaviour of a bounded
liquid layer with a hole.

3.1. Surface evolver simulation
We first employ a public domain software package SE (Brakke 1992) to simulate holes at
the wall in liquid layers. The basic concept of SE is to minimize the energy and find the
equilibrium shape of a liquid volume surface with given parameters such as the surface
tension and stiffness, subjected to external forces (e.g. gravity, centrifugal force, magnetic
force) and constraints (e.g. volume conservation, contact angle, pinning of the contact
line). The SE has been widely applied to studying various interfacial phenomena (such
as morphologies of droplets and particles (Cho et al. 2005; Crawford, Lim & Gradecak
2013; Lv et al. 2014; Dević et al. 2019; Lv & Hardt 2021; Chu et al. 2023), foams (Kabla
& Debregeas 2007) as well as the equilibrium configuration of biomembranes (Michalet
2007; Sakashita et al. 2012), with excellent agreement with experimental results. However,
for our problem, SE could only simulate static or quasi-static problems and could not
take dynamic behaviour into consideration. As we analysed in § 2.1, the influence of the
flow rate on the evolution of the liquid layer is negligible and the liquid layer is in the
quasi-static state before collapse. Therefore, we propose the convenient simplification of
reducing the problem to a succession of quasi-static liquid profiles.

As shown in figure 6(a), we give the results of the configuration of the liquid film
simulated by SE. For a given volume Ω of the liquid layer, two configurations from
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Figure 6. Schematic sketch of SE simulation. (a) The evolution of a liquid layer simulated by SE. The yellow
and blue colours represent the liquid–vapour and solid–liquid interfaces, respectively. The two configurations
from different views in panels (a i,a ii) and (a iii,a iv) demonstrate the initial and the final configurations of the
liquid layer, respectively. (b) Results obtained from SE simulation showing dependency of A on Ω , with A and
Ω being the area of the hole and the volume of water, respectively. The contact angles of the substrate and the
wall are θs = 160◦ and θw = 90◦, respectively. The diameter of the container is d = 9 cm.

different views on the left and the right panels demonstrate the initial and the final
configurations of the liquid layer, respectively (for more details of the SE simulations,
see S1 in the supplementary information). Moreover, further information such as the areas
of the liquid–vapour and the solid–liquid interfaces, as well as the potential of the system,
can be extracted based on the final configuration. By the help of SE, a series of stable
liquid layers with different volumes Ω can be obtained.

As presented in figure 6(b), the relationship between the hole area A and the liquid
volume Ω is given. Here, the container diameter is fixed at d = 9 cm, and the contact
angles of the substrate and the wall of the container are set to θs = 160◦ and θw = 90◦,
respectively. Each point in figure 6(b) represents a static configuration of the system. It
is shown that the area of the hole A first decreases linearly with the volume Ω of the
liquid. However, when Ω exceeds a critical value Ωc (which corresponds to a critical area
Ac), we can never obtain a static liquid layer with a hole. Actually, we cannot precisely
determine the threshold of the collapse of the hole. Therefore, we artificially define the
threshold of the collapse of the hole in which a further 1 % increase in liquid volume will
trigger the hole closure. Thus, the last point (Ωc, Ac) in figure 6(b) is considered to be
the threshold accounting for the collapse of the hole. Close to the critical point, the linear
relation between A and Ω is not maintained and the slope of the simulation data suddenly
increases.

Moreover, the effect of the size of the container is investigated by considering five
diameters from d = 7 to 15 cm. For each diameter of the container with certain wettability,
a series of simulations with different liquid volumes are conducted. Specifically, we first
give a sufficiently small volume Ω of liquid (in other words, a liquid layer with a larger
hole) in our simulations and then obtain the equilibrium wetting state of the system. After
that, we continuously increase the liquid volume to find the corresponding equilibrium
wetting state, until we find the critical volume Ωc. Figure 7(a) shows the top views of
outcomes of d = 9 cm with different liquid volumes, from which we can see that an
eye-shaped hole appears in each case. Similarly, equilibrium wetting states of liquid layers
in containers with other diameters can be obtained. Figure 7(b) shows the outcomes of
SE simulations with different container diameters, and when given proper liquid volumes,
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d = 7 cm

18.2 ml

d = 9 cm

30.8 ml

d = 11 cm

46.5 ml

d = 13 cm

66.5 ml

d = 15 cm

88.0 ml

26.5 ml 27.5 ml 28.5 ml 29.5 ml 30.75 ml

(a) (i) (ii) (iii) (iv) (v)

(i) (ii) (iii) (iv) (v)(b)

Figure 7. The snapshots of liquid layer. The contact angles of the substrate and the wall are θs = 160◦ and
θw = 90◦, respectively. (a) Configuration of the liquid with the volume. The diameter of the container is fixed
at d = 9 cm. (b) The diameter of the container d ranges from 7 to 15 cm. The configurations correspond to the
thresholds of the collapse of the hole.

eye-shaped holes with similar shapes appear, which indicates that the wetting state of the
liquid is not affected by the size of the container.

Furthermore, the simulation data for containers with diameters d are shown in figure 8,
in which five diameters d ranging from 7 to 15 cm are presented with different colours and
shapes. Here, the wettability of the container is fixed, i.e. the contact angles of the substrate
and the wall of the container are θs = 160◦ and θw = 90◦, respectively. We can see that all
the data have similar trends no matter the value of the diameter of the container. However,
each set of the data has a group of thresholds (Ωc, Ac), and these thresholds depend on the
container diameter. The threshold values will be analysed theoretically in the following
sections.

Next, the influence of the wettability on the wetting property of the liquid layer is
systematically investigated. For the sake of simplicity, let the contact angles of the substrate
and the wall of the container have the same value, i.e. θs = θw. As shown in figure 9, we
consider contact angles ranging from 90◦ to 180◦. Here, the diameter of the container is
fixed at d = 9 cm. There is a remarkable difference of the wetting behaviour of the liquid
layer between different contact angles. Each set of the data has a group of thresholds
(Ωc, Ac), which depends on the contact angle. Moreover, the phase diagram of parameter
space can be divided into two parts, which correspond to wetting modes I and II, and the
boundary between mode I and mode II is θs = θw = 145◦ (see the dashed line). Here, we
artificially define the criterion to distinguish mode I and mode II based on the following:
when Ac is smaller than 1 % of the projected area of the container, it is mode I; otherwise,
it is mode II. In our SE simulations, when θs = θw > 145◦, we found Ac is very close to
zero and it is not visually discernible. However, when θs = θw < 145◦, when the hole area
is smaller than an obvious value of Ac (with a maximum value Ωc), we can never find a
stable liquid layer, i.e. a slight 1 % increase in liquid volume will trigger the closure of the
hole. The results shown in figure 9 demonstrate that the threshold value accounting for the
collapse of the hole is closely related to the wetting property of the container.
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Figure 8. Dependency of the hole area A on liquid volume Ω for various diameters of the container obtained
by SE simulations. In this case, a circular container with θs = 160◦ and θw = 90◦ has been considered, denoting
with θs and θw the contact angles of the substrate and the wall of the container, respectively. Different container
diameters d = 7 cm, 9 cm, 11 cm, 13 cm and 15 cm are employed.
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Figure 9. (a) Dependency of A on Ω for various wettabilities of the container obtained from SE simulations.
Here, a circular container with d = 9 cm has been considered, with contact angles of θs = θw = 90◦, 100◦,
110◦, 120◦, 130◦, 140◦, 150◦, 160◦, 170◦ and 180◦. The arrow indicates the direction in which the volume Ω is
increasing. (b) Snapshots of the liquid profile from the top view when the threshold of collapse is reached.
Examples with different contact angles θs = θw = 90◦, 120◦, 150◦ and 180◦ are demonstrated, which are
obtained from SE simulations.

Despite the influence of the wettability on the instability of the hole as discussed in
the above, the wettabilities of the substrate and the wall of the container have not been
considered separately. As shown in figure 10, we investigate the influence of the wettability
on the instability of the hole solely resulting from the substrate or the wall of the container.
The snapshots in figure 10 demonstrate the thresholds of instability of the liquid layer in
containers. Figure 10(a) shows a series of results where the contact angle of the container
substrate is fixed at θs = 160◦ while the contact angle of the container wall is varied as
θw = 60◦, 90◦ and 160◦. We can see that there exists an obvious eye-shaped hole for a
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Figure 10. Snapshots showing the thresholds of instability of the liquid layer in containers with different
contact angles. Here, the diameter of the container is d = 9 cm. (a) The contact angle of the substrate is fixed
at θs = 160◦ and the contact angle of the wall is varied as θw = 60◦, 90◦ and 160◦. (b) The contact angle of the
wall is fixed at θw = 90◦ and the contact angle of the substrate is varied as θs = 60◦, 90◦ and 160◦.

small value of θw when the threshold of instability is reached. However, with an increase
of θw, the size of the crescent-shaped hole becomes smaller and it is even indiscernible
when θw is large enough (i.e. θw = 160◦). Moreover, figure 10(b) shows the cases where
the contact angle of the container wall is fixed at θw = 90◦ while the contact angle of the
container substrate is varied as θs = 60◦, 90◦ and 160◦. We can see in this case that, even
though the value of θs is varied over a wide range, an obvious eye-shaped hole always
exists when the threshold of the instability is reached. In this regard, the instability of the
liquid layer is mainly influenced by θw rather than θs, and this conclusion is consistent
with our experimental observations in § 2.2 where the substrate is fixed but the wall of the
container is changed.

3.2. Lattice Boltzmann method
Although SE gives a distinct picture of wetting mode I and wetting mode II, wetting mode
III is still not considered. As shown in our experimental observations in § 2.2, wetting
mode III happens in a hydrophilic condition of the container and involves a dynamics
which is beyond the capability of SE (see the supplementary information). Therefore, we
employ another numerical method, i.e. LBM, to simulate wetting mode III. Details of how
we realize simulations via LBM is given in the supplementary information. Here, we only
demonstrate the main results.

As shown in figure 11, we perform simulations for two-phase flows under gravity
and surface tension. The simulations include the three wetting modes we have observed
in experiments, which are realized by assigning certain values of the contact angle to
the substrate and the wall of the container. Specifically, we assign (θs = 120◦, θw =
180◦), (θs = 120◦, θw = 90◦) and (θs = 120◦, θw = 35◦) in figures 11(a), 11(b) and
11(c), respectively. The snapshots demonstrate the time evolution of the liquid layers
with its volume. As shown in figure 11(a), when θw = 180◦, the hole is shrinking very
smoothly when feeding more liquid into the container, until the liquid layer entirely
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79.4% Ω0 91.9% Ω0 78.1% Ω0
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51.3% Ω0 80.0% Ω0 46.5% Ω0

Figure 11. Snapshots showing time evolution of liquid layer with its volume which are simulated by employing
LBM. The final volume of the liquid layer for each mode is defined as Ω0. Here, the contact angle of the
substrate of the container is fixed at θs = 120◦, while three different contact angles of the wall of the container
are simulated. The diameter of the container is d ≈ 60 mm. (a) Wetting mode I (θs = 120◦, θw = 180◦);
(b) wetting mode II (θs = 120◦, θw = 90◦); (c) wetting mode III (θs = 120◦, θw = 35◦).

fills the container. However, as shown in figure 11(b), when θw = 90◦, the hole is
shrinking smoothly in the first stage, and then reaches a critical state. After that, the hole
suddenly collapses with a further increase of the liquid volume. Furthermore, as shown in
figure 11(c), when θw = 35◦, with a continuous increase of the liquid volume, the liquid
first spreads along the junction of the substrate and the wall. When enough liquid is added,
the liquid forms a ring-like structure including a hole inside, but meanwhile the hole is
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Figure 12. Phase diagram illustrated in terms of θs and θw showing the wetting modes obtained by LBM
simulations. The triangles, squares and circles denote wetting modes I, II and III, respectively. The two dashed
curves represent the boundaries between the neighbouring wetting modes. The diameter of the container is
d ≈ 60 mm. The dashed line in the region for small θs (i.e. θs < 15◦) is an educated guess.

suddenly pushed into the central direction of the container. The simulation results (see
supplementary movies 4–6) very well reproduce the experimental observations. Here, it
is stressed that, in both the numerical simulations and experiments, despite the collapse
that causes the hole to be pushed towards the centre of the container, the hole consistently
maintains a certain distance from the wall and is not located right in the centre of the
container.

By employing LBM simulations, we systematically investigate the influence of
wettability on the wetting modes. The dots represent the simulation results as shown
in figure 12. Specifically, we fix the contact angle of the container substrate θs ranging
from 15◦ to 175◦, and we choose a high value of the contact angle of the container wall
θw = 175◦, then we obtain the results of wetting mode I. After that, we gradually decrease
the contact angle θw for each θs until wetting mode II appears. By employing this method,
we not only find the parameter regime of wetting mode I, we also find the boundary (the
upper dashed curve) between wetting modes I and II, which is determined by averaging
the neighbouring contact angles and the dashed curve is extended by employing a fitting.
After further decreasing the value of θw, we obtain the parameter regime of wetting mode
II, as well as the boundary between wetting modes II and III. After we obtain enough
data, we are able to plot a phase diagram in terms of the contact angles θw and θs which
includes the three wetting modes. Based on the results shown in figure 12, we can see the
wetting mode is mainly determined by the contact angle of the wall of the container, i.e.
θw. Generally, when θs takes a relatively large value (i.e. θs > 90◦), the two boundaries
occur at θw ≈ 45◦ and θw ≈ 145◦. However, when θs takes a relatively small value (i.e.
θs < 90◦), the situation is more complex, the regime of wetting mode II declines but the
regimes of wetting modes I and II increase.
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4. Theoretical model

In order to understand the underlying mechanisms, we carry out theoretical analyses in
the following. In our theoretical model, relevant factors such as the contact angles of the
substrate and the wall of the container, gravity as well as the sizes of the hole at the wall
and the container, will be considered. As mentioned in the above, since the influence of
the flow rate is negligible, we treat the wetting state of the liquid layer with a hole as
quasi-static. Therefore, the problem is simplified to a static problem.

In this regard, the profile of the liquid–vapour interface is controlled by the
Young–Laplace equation (de Gennes et al. 2003)

�p = γ

(
1

R1
+ 1

R2

)
. (4.1)

When we choose any point on the liquid–vapour interface, �p is the pressure difference
between the two sides of the liquid–vapour interface, γ is surface tension and R1 and R2
are the two principal radii of curvature of the liquid–vapour interface. For example, when
we choose a point at the equator of the hole, 1/R1 and 1/R2 denote the azimuthal curvature
and the meridional curvature, respectively.

However, exact (non-trivial) solutions of the Young–Laplace equation including gravity
are limited to two specific cases: (i) a fluid in a semi-infinite domain bounded by a
vertical plane wall; (ii) a fluid between two vertical parallel walls (Landau & Lifshitz 1987;
Norbury, Sander & Scott 2005; Lv & Shi 2018). For an axisymmetric coordinate container
with a hole in the centre, asymptotic models for small contact angles were obtained in the
past (López et al. 2001; Lv et al. 2018). Since our problem is a non-axisymmetric system,
the asymptotic methods developed in the past (López et al. 2001; Lv et al. 2018) cannot be
directly applied to this study. In § 4.1, we will establish a simple model where the liquid
layer is considered to be flat. When we minimize the energy of the system, we can obtain
the static profile of the liquid layer. Moreover, the outcomes of the model will be presented
in § 4.2.

4.1. Theoretical model
Here, in our theoretical analysis, we consider the case of wetting modes I and II. To obtain
the potential of the system from a theoretical point of view, we assume on the one hand
that the liquid–vapour interface is perpendicular to both the substrate and the wall, and on
the other hand that the edge of the hole is circular, as sketched in figure 13. The former
assumption is based on the large ratio between the container diameter and the thickness
of the liquid layer. In the smallest container (d = 6.6 cm), the thickness of the liquid layer
is approximately 2lc ≈ 5.46 mm. Therefore, the ratio between the thickness and the width
of the liquid layer is approximately 0.08 (� 1), which suggests that the variation of the
meniscus thickness around the edge of the hole may have little influence on the energy
of the system (see the supplementary information). The latter assumption about a circular
shape of the hole is based on the observation in the experiments and simulations.

When additional liquid is fed into the liquid layer, at a specific time, the liquid has a
specific volume Ω . The free energy of the system can be written as E = Es + Eg = Alvγ +
Asl(γsl − γsv) + ρΩgh/2. Here, ρ and g represent the mass density of the liquid and
the gravitational acceleration respectively, Es = Alvγ + Asl(γsl − γsv) and Eg = ρΩgh/2
represent the surface energy and the gravity potential, respectively, with h being the
thickness of the liquid layer. Further, Alv and Asl represent the liquid–vapour area and the
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z
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(b)(a)

A3
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A1

Figure 13. Simplified liquid layer profile shown from oblique view (a) and top view (b). Relevant geometric
parameters are defined.

solid–liquid area respectively, and γ , γsl and γsv represent the liquid–vapour, solid–liquid
and solid–vapour interfacial tensions, respectively. The basic idea is that, for given
parameters such as d, ρ, g, γ , γsl and γsv , we will find the solution when the total energy
E reaches a minimum Emin under the constraint of the certain volume Ω , as well as the
geometric relationships as shown in figure 13(b). When we obtain a wetting state which
satisfies E = Emin, we find the equilibrium wetting state of the liquid layer.

The geometry parameters are presented in figure 13(b), in which α and β are the
half-angles of the liquid and the hole satisfying the relationship θw + α + β = π. In
addition, A1 represents the area of the upper liquid–vapour interface, which is equal to
the corresponding liquid–substrate interface, and A2 and A3 represent the areas of the side
liquid–vapour interface at the boundary of the hole and the area of the side liquid–wall
interface, respectively. These areas can be written as A1 = r2

1(π − α + sin α cos α) −
r2

2(β − sin β cos β), A2 = 2r2βh and A3 = 2r1(π − α)h, where r1 and r2 are the radii of
the liquid and the hole satisfying r1 sin α = r2 sin β.

Moreover, the surface energy Es consists of the liquid–vapour surface energy, the
solid–liquid and the solid–vapour surface energy, which can be written as

Es = A1γ + A1(γ
s
sl − γ s

sv) + A2γ + A3(γ
w
sl − γ w

sv)

= A1γ (1 − cos θs) + A2γ − A3γ cos θw, (4.2)

where the second equation uses the Young equation as cos θs = (γ s
sv − γ s

sl)/γ and
cos θw = (γ w

sv − γ w
sl )/γ . The superscripts s and w represent the substrate and the wall,

respectively.
For convenience, by employing the radius of the liquid layer r1 (in other words, the

radius of the container), we define dimensionless forms of the relevant geometric and
physical quantities

h̃ ≡ h
r1

, Ã1 ≡ A1

r2
1
, Ã2 ≡ A2

r2
1
, Ã3 ≡ A3

r2
1
,

Ω̃ ≡ Ω

r3
1
, Ẽs ≡ Es

r2
1γ

, Ẽg ≡ Eg

r2
1γ

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.3)
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and we rewrite Ã1, Ã2, Ã3, Ẽs and Ẽg into

Ã1 = (π − α + sin α cos α) − sin2 α

sin2 β
(β − sin β cos β) , (4.4)

Ã2 = 2
sin α

sin β
βh̃, (4.5)

Ã3 = 2 (π − α) h̃, (4.6)

Ẽs = Ã1 (1 − cos θs) + Ã2 − Ã3 cos θw, (4.7)

Ẽg = 1
2
Ω̃ h̃

(
r1

lc

)2

. (4.8)

In order to obtain the equilibrium profile of the liquid, we calculate the derivative of the
energy in term as α, and let

∂Ẽ
∂α

= ∂(Ẽs + Ẽg)

∂α
= 0. (4.9)

In addition, considering the constraint

Ω̃ = Ã1h̃ = constant, (4.10)

we have ∂Ω/∂α = 0, thus, the following relation can be obtained:

∂ h̃
∂α

= − h̃

Ã1

∂Ã1

∂α
. (4.11)

Substituting equations (4.4)–(4.8) and (4.11) into (4.9), we obtain the dimensionless
value of the liquid layer thickness

h̃ = ∂Ã1

∂α
(1 − cos θs)

{[
2β

sin α

sin β
− 2 (π − α) cos θw + 1

2
Ω̃

(
r1

lc

)2
]

1

Ã1

∂Ã1

∂α

+ 2
sin α

sin β
− 2β

sin2 β
(sin α cos β + cos α sin β) − 2 cos θw

}−1

, (4.12)

where

∂Ã1

∂α
= 2

sin2 α

sin2 β
− 2β

(
sin α cos α

sin2 β
+ sin2 α cos β

sin3 β

)
+ 2

sin α cos α cos β

sin β

+ cos2 α − sin2 α − 1. (4.13)

The solution of the problem is solved based on the following line of thought. Putting
(4.4) and (4.12) into (4.10), and considering θw + α + β = π, we can see there is only one
unknown parameter α. By employing a shooting method carried out by Matlab, α can be
obtained. Based on that, β can be obtained from θw + α + β = π, moreover, the other
unknown interested parameters such as h, Es and Eg can be obtained based on the (4.12),
(4.7) and (4.8).

It is stressed that, when θw = 180◦ (even though it is difficult to achieve in practical
cases, it is meaningful from a theoretical point of view), we cannot find the solution of

973 A18-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

75
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.753


Edge-driven collapse of fluid holes

600 800 1000 1200 1400 1600 1800
0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000

Ac

Ωc

50

100

150

200

250

300(a) (b)

90° 120° 150°

θ = 180°

7 9 11 13 15 cm

Ω/lc
3 Ω/lc

3

A/
l c2

Figure 14. Numerical solutions showing the dependence of Ω on A in dimensionless form. The dense data
are theoretical results whereas the black hollow circles are the results of SE simulations. (a) The container
diameter is fixed at d = 9 cm, and contact angles θs = θw ranging from 90◦, 120◦, 150◦ to 180◦ are considered.
(b) The contact angles are fixed at θs = 160◦ and θw = 90◦. Circular containers with five different diameters d
are employed, i.e. d = 7 cm, 9 cm, 11 cm, 13 cm, 15 cm. Here, Ωc and Ac respectively denote the critical values
of the liquid volume and the hole area at the onset of instability.

the problem based on (4.12) because some singularities exist in the algebraic equations.
Therefore, the condition for θw = 180◦ should be considered specifically, and the details
are shown in Appendix B. For this case, we obtain the following relationship:

h̃ = πr̃2 (1 − cos θs)

πr̃ + 1
2
Ω̃

(
r1

lc

)2 . (4.14)

Here, we emphasize that the theory developed in the above is exclusively applicable to the
quasi-static evolution of the hole in wetting modes I and II.

4.2. Results from the theoretical model
Since we have derived a simple model to obtain the equilibrium wetting state of the
liquid layers, as illustrated in figure 14, two cases are studied (the dense data): (i) liquid
layers in a circular container with diameter d = 9 cm, but with contact angles θs = θw
ranging from 90◦ to 180◦; (ii) liquid layers in a container with unchangeable wettability
(θs = 160◦ and θw = 90◦) but with diameters ranging from d = 7 cm to 15 cm. The black
hollow circles are numerical solutions obtained by SE with corresponding values of the
wettability and the size of the container. The good agreement between the theoretical and
SE results verifies the rationality of our assumptions in the simple theoretical model.
In figure 14(a), two shapes of curves are obtained: (i) when θs = θw = 90◦, 120◦ and
150◦, the dimensionless area A/l2c does not monotonically change with the dimensionless
volume Ω/l3c ; (ii) when θs = θw = 180◦, there is a monotonic relationship between
A/l2c and Ω/l3c . For the former case, when the hole area is relatively large, the liquid
volume Ω increases with decreasing A. However, there is a maximum volume Ωc which
corresponds to a critical value of Ac. According to the minimum-volume theorem proposed
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Figure 15. (a) Dependency of Ac on d on contact angle of θs = θw = 110◦. The red dots represent the
experimental results, while green squares represent the simulation results using SE. The black curve represents
the theoretical result with correcting coefficients (see the supplementary information). The experiments were
conducted in a plastic Petri dish with varying diameters: d = 6.6 cm, 8.5 cm, 9.3 cm, 11.5 cm and 14.2 cm.
(b) Dependency of Ac on the contact angle with d = 9 cm. Here, we let θs = θw. The green squares represent
the simulation results obtained by employing SE, and the black curve represents the theoretical result obtained
based on the simple model.

by Langbein (2002), the point (Ωc, Ac) corresponds to a point of instability. The smaller A
is energetically unstable, which cannot be obtained in experiment or simulation. In other
words, if A < Ac, solutions of (4.12) exist mathematically, but they are physically unstable
(Moriarty & Schwartz 1993). In our experiment, the volume of the liquid monotonically
increases until it reaches the maximum Ωc. At that point, a subsequent increase of liquid
fed by the syringe pump makes the volume exceed Ωc, where no stable solution exists,
so the hole collapses, and this case corresponds to the wetting mode II. Conversely, for
the latter case (θs = θw = 180◦), the volume Ω of the liquid monotonically increase with
decreasing A, and there is no threshold value (Ωc, Ac) corresponding to the instability of
the liquid layer. In other words, the hole will smoothly close instead of collapse, which
corresponds to the wetting mode I. Furthermore, more results of wetting mode II are
shown in figure 14(b), from which we can see that the threshold value (Ωc, Ac) depends
on the size of the container. However, we are not able to develop theories to quantify the
wetting behaviour of mode III concerning its asymmetric geometry, which remains an
open question for future studies.

As shown in figure 15, the critical value Ac is investigated from a different perspective.
Firstly, as shown in figure 15(a), we study the relation between Ac and the diameter of
the container d. In this case, the contact angles are fixed at θs = θw = 110◦, while the
diameters of the container are ranging from d = 6.6 to d = 14.2 cm. The red dots and
green squares represent the experimental results (see the supplementary information) and
simulation results of Ac which we have obtained by employing SE, and the black curve is
the theoretical result obtained based on the simple model. The simulation and theoretical
results are consistent with the experimental results. This shows that the critical value Ac
increases with the diameter d, which is consistent with the previous result where the hole
stays in the centre of the container (Lv et al. 2018). Secondly, as shown in figure 15(b), the
diameter of the container is fixed at d = 9 cm, while the contact angles are varied. Here,
we let θs = θw, and the angles range from 75◦ to 180◦. It is shown that the critical value Ac
decreases with the contact angle, whereas in the former work of Lv et al. (2018), there was
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Figure 16. Dependency of Ac on d, θs and θw. Value of (a) Ac as a function of the diameter d and (b) Ac as a
function of the contact angle θs. Here, we let θs = θw. Value of (c) Ac as a function of the contact angle θw with
different θs and (d) Ac as a function of the contact angle θs with different θw. In (c,d), the container diameter is
d = 9 cm.

a weak dependence of dc on the contact angle of the container when the hole is located in
the centre of the container.

In order to further study the role of the size and the wettability of the container, as
shown in figure 16, systematic investigation from different views are carried out. As shown
in figure 16(a), for specific values of θs and θw, Ac increases with d. When the contact
angle of the substrate is fixed, for example, θs = 150◦, Ac increases with decreasing θw.
As shown in figure 16(b), for the sake of simplicity, let θs = θw, then we can see that for a
fixed value of d, Ac decreases with θs (or θw). Moreover, for a fixed value of θs (or θw), Ac
increases with d. Furthermore, as shown in figure 16(c,d), for a specific container diameter
(d = 9 cm), we are able to study the influences of the contact angles of the substrate and
the wall. In figure 16(c), we can see that Ac decreases with θw for each θs. However, there
is no much difference of Ac for different values of θs, especially for larger values of θw,
which is consistent with the conclusions reported by Lv et al. (2018), where they fixed the
contact angle of the wall (θw ≈ 90◦), but changed the contact angle of the substrate. These
results indicate that the influence of θs on the instability is of secondary importance. In
figure 16(d), we can see that Ac decreases with θs for each θw. However, for a fixed value
of θs, the value of Ac remarkably changes with θw, which again demonstrates that θw plays
a dominant role accounting for the instability of the liquid layer.
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Figure 17. Time evolution of the hole area A in wetting mode II. Here, t is the time and t0 is defined as the
moment when the hole is completely closed. The red squares are experimental data with error bars, and the
black solid line is the best fit to the experimental data based on the scaling law of A ∼ (t0 − t)1.1.

5. Dynamic behaviour

When A falls below Ac, a highly dynamic behaviour sets in, as shown in figure 5. In this
section, we discuss the dynamics of the hole collapse in wetting mode II.

To better resolve the final moments of hole collapse, additional experiments were
performed with a high time resolution when t is approaching t0. Here, t0 stands for the
moment when the hole is completely closed. However, accurately determining the value of
t0 from experiments is very difficult due to the limited frame rate of the high-speed camera.
In other words, close to the singularity t0, for a single recording, the first frame chosen must
have either t > t0 or t < t0 with |t − t0| < δt. Here, δt represents the time interval between
two neighbouring frames (i.e. the first and the second frames), e.g. δt = 5 × 10−5 s when
the frame rate is 20 000 frames per second. For a single trial in the practical experiment, t0
is determined as the moment captured in the snapshot just prior to the closure of the hole.
Subsequently, we obtain the corresponding hole area A for (t0 − t). We then repeat the
same experiment five times and obtain the average value of these five hole areas to quantify
the evolution of the hole area. The time evolution of A is shown in figure 17 in a log–log
plot. We employed a high-speed camera to capture the final stage of the hole collapse under
20 000 frames per second. We performed experiments with a superhydrophobic substrate
(θs = 158.2 ± 3.0◦) and a hydrophobic wall (θw = 116.0 ± 1.9◦). It is noted that the hole
collapse predominantly obeys a scaling law A ≈ c1(t0 − t)α , and a careful analysis reveals
that an exponent α = 1.1 clearly fits better than an exponent of 1 (see supplementary
information). The value of the coefficient c1 is approximately 0.000428 m2 s−1.1. In
contrast to this work, Lv et al. (2018) selected the diameter d to describe the size of the hole
and found a scaling law d ∼ (t0 − t)0.55, which suggested that inertial effects dominate
during the hole collapse and the viscosity effects are negligible. Considering A ∼ d2, our
results are consistent with the work of Lv et al. (2018). Moreover, we can estimate the
Reynolds number Re ≈ 500 in our experiment, which reveals that inertial effects dominate
and distinguishes our conclusion from Dijksman et al. (2015) and Bostwick et al. (2017),
where the viscous–capillary effects dominate.

973 A18-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

75
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.753


Edge-driven collapse of fluid holes

It is encouraging to compare the hole collapse in our experiment with the final stages
of the pinch-off of air bubbles in an inviscid liquid. The latter has been studied quite
extensively. Longuet-Higgins, Kerman & Lunde (1991) established a two-dimensional
model to describe the pinch-off dynamics of an air bubble releasing from an underwater
nozzle. It is shown that the inertia dominates, while the surface tension, viscosity and the
influence of the gas are negligible. A power law d ∼ t0.5 for the evolution is reported,
which is supported by simulations and experiments (Longuet-Higgins et al. 1991; Oguz
& Prosperetti 1993; Burton, Waldrep & Taborek 2005). In the experimental work of
Thoroddsen, Etoh & Takehara (2007), the pinch-off of a bubble in water was studied by
employing an ultra-high-speed video imaging and a power-law behaviour d ∼ t0.57±0.03

was found. Gordillo et al. (2005) studied axisymmetric bubble pinch-off in a low-viscosity
liquid (e.g. air in water) at high Reynolds numbers, in which the bubble minimum radius
(d/2) decreases as (t0 − t) ∼ (d/2)2

√
− ln(d/2)2. Eggers et al. (2007) studied the collapse

of an axisymmetric cavity or bubble inside a fluid of small viscosity, like water, in
which the gas inside the cavity and the fluid viscosity are neglected. They reported a
scaling law with the exponent very slowly approaching a universal value according to
α = 1/2 + 1/[4

√− ln(t0 − t)]. The variance of the exponent reveals that the dynamics of
inviscid bubble pinch-off is not universal, and the exact value depends weakly on initial
conditions. The two remaining terms in their equation are inertia, revealing that the inertia
effect dominates the dynamics of bubble pinch-off. In agreement with Eggers et al. (2007),
our results obtained a scaling law A ∼ (t0 − t)1.1, indicating that the hole collapse in liquid
layers is dominated by inertia, and that viscosity can be ignored.

To further confirm the effects of the viscosity, the Ohnesorge number Oh = η/(ργ l)1/2,
which relates the viscous forces to inertial and surface tension forces, can be estimated. In
our experiment, Oh ≈ 1.1 × 10−3 in which the material properties of pure water at 25 ◦C
(η = 0.891 × 10−3 Pa s, ρ = 997.1 kg m−3, γ = 0.072 N m−1) were used and l = √

A1 =
10 mm was chosen. Even though the hole shrinks to the typical length l = 0.04 mm, i.e.
the resolution limit of our camera, Oh ≈ 1.6 × 10−2. These analyses suggest the viscosity
effect is negligible.

6. Conclusion

We have presented a combined experimental, numerical and theoretical study of the
stability and dynamics of holes at the wall in bounded liquid layers. This study has
identified three different wetting modes of holes in liquid layers, depending on the
wettabilities of the container. In particular, we found that a hole could maintain stable,
could become unstable or could transfer to an inner hole. The first two wetting modes are
related to the stability of the holes.

The configuration of the hole is determined by minimizing the energy of the liquid
system. In wetting mode I, a stable solution for the liquid–vapour interface exists even for
holes with very small areas. In wetting mode II, the evolution of the hole is controlled by
a critical value of the hole area below which no stable solution exists. It is found that the
critical area increases with increasing container size and decreasing contact angle from
the numerical and theoretical results. The contact angle consists of two parts, the wall and
the substrate. We found that the relation between Ac and contact angle would be weak
when the contact angle of substrate is large corresponding to the conclusion drawn by Lv
et al. (2018). The phase diagram of different wetting modes is given by employing LBM
simulation.
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The dynamics of the hole collapse is studied using high-speed imaging techniques.
A scaling law A ∼ t1.1 is found, indicating that the inertia effect dominates the collapse.
The findings reported here have provided a deeper insight into many industrial processes,
such as coating, lithography and spraying etc.

However, questions remain. The mechanics behind wetting mode III is still uncertain,
especially the interesting dynamic behaviour. Even though we have developed a simple
theoretical model and the theoretical results are consistent with the SE and LBM
simulation results, however, this model is built based on a uniform thickness of the liquid
film, exact solutions of the profile of the liquid film remain unknown. These questions
deserve dedicated studies in the future.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2023.753.
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Appendix A. Materials and experimental method

The superhydrophobic glass surfaces were prepared by coating the glass plate with
silanized silica nanobeads with diameter 30 nm dispersed in isopropanol (Glaco, Soft99)
(Vakarelski et al. 2012; Dupeux et al. 2014), which provides water contact angles θa =
163.3 ± 21.0◦ and θr = 151.8 ± 22.4◦.

Appendix B. Theoretical model for θw = 180◦

In this appendix, we present theoretical model for θw = 180◦. Due to its special contact
angle θw, the liquid profile is different from other contact angles (see figure 18). For the
sake of simplicity, we choose an approach in which we assume that the liquid film has a
uniform thickness.

At a specific time, we assume the liquid has a specific volume Ω . The free energy of
the system can be written as E = Es + Eg = Alvγ + Asl(γsl − γsg) + ρΩgh/2. As shown
in figure 18, Alv = A1 + A2 = πr2 + 2πrh, Asl = A1 = πr2, thus the free energy can be
written as

E = Es + Eg

= (A1 + A2) γ + A1 (−γ cos θs) + ρΩgh/2

= A1γ (1 − cos θs) + A2γ + ρΩgh/2. (B1)
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(b)(a)

A1

A2

r

θw = 180°

A1

r1

Figure 18. Simplified liquid layer profile for θw = 180◦ shown in (a) three-dimensional view and (b) top view.

Introducing the radius of the container r1, we define the dimensionless forms of the
relevant geometrical and physical quantities

r̃ ≡ r
r1

, h̃ ≡ h
r1

, Ã1 ≡ A1

r2
1
, Ã2 ≡ A2

r2
1
, Ω̃ ≡ Ω

r3
1
, Ẽ ≡ E

r2
1γ

, (B2a–f )

and we rewrite (B1) into

Ẽ = Ã1 (1 − cos θs) + Ã2 + 1
2
Ω̃ h̃

(
r1

lc

)2

= πr̃2 (1 − cos θs) + 2πr̃h̃ + 1
2
Ω̃ h̃

(
r1

lc

)2

. (B3)

In order to obtain the equilibrium profile of the liquid, we minimize the free energy

∂Ẽ

∂ h̃
=

∂
(

Ẽs + Ẽg

)
∂ h̃

= 0, (B4)

and we consider the constraint Ω = constant

∂Ã1

∂ h̃
= − Ã1

h̃
,

∂ r̃

∂ h̃
= − r̃

2h̃
. (B5a,b)

Putting (B3) into (B4) and using the relation in (B5a,b)

h̃ = πr̃2 (1 − cos θs)

πr̃ + 1
2
Ω̃

(
r1

lc

)2 , (B6)

and we obtain the equation for θw = 180◦.

Appendix C. Supplemental curves of theoretical model

To study the influence of the contact angle of substrate and wall on the configuration
of the liquid film, we will present more results obtained by the theoretical model in this
appendix. As shown in figures 19 and 20, respectively, two cases are studied here based on
the theoretical model derived in § 4.1: (i) liquid layers in a circular container with diameter
d = 9 cm and contact angle θs = 150◦, but with varying contact angles from θw = 60◦ to
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Figure 19. Numerical solutions of (4.12) and (4.14) showing (a) the dependence of Ω on A and (b) the
dependence of E on A. The box size is fixed to d = 9 cm, and the contact angle of substrate θs = 150◦, while
the contact angle of wall varies from θw = 60◦ to 180◦.
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Figure 20. Numerical solutions of (4.12) showing (a) the dependence of Ω on A and (b) the dependence of
E on A. The box size is fixed to d = 9 cm, and the contact angle of wall θw = 90◦, while the contact angle of
substrate varies from θs = 30◦ to 180◦.

180◦; (ii) liquid layers in a circular container with diameter d = 9 cm and contact angle
θw = 90◦, but with varying contact angles from θs = 30◦ to 180◦.

As shown in figure 19(a), the curves of different θw collapse at the initial stage.
The curves separate until the point of instability, representing different critical values
of Ac. In addition, the shape of θw = 180◦ is very different from the others, due to its
correspondence to wetting mode I. In other words, θw has limited influence on the initial
stage, i.e. the stable stage, but it mainly affects the point of instabilities. The instability will
happen later when θw increases. However, even though liquid films with different θs have
almost the same area at the initial stage, the effect of θs on E makes films have different
surface energies. Therefore, the curves separate at the initial stage in figure 19(b), but are
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Edge-driven collapse of fluid holes

parallel to each other. The influence of contact angle of substrate θs is shown in figure 20.
In contrast to figure 19(a), the curves in figure 20(a) do not collapse, but are parallel to
each other. The contact angle of the substrate θs mainly affects the initial stage of the liquid
films, but has little effect on the point of instabilities.
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