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Abstract. For a subshift (X, σX) and a subadditive sequence F = {log fn}∞n=1
on X, we study equivalent conditions for the existence of h ∈ C(X) such that
limn→∞(1/n)

∫
log fn dμ = ∫

h dμ for every invariant measure μ on X. For this
purpose, we first we study necessary and sufficient conditions for F to be an asymptotically
additive sequence in terms of certain properties for periodic points. For a factor map π :
X → Y , where (X, σX) is an irreducible shift of finite type and (Y , σY ) is a subshift, apply-
ing our results and the results obtained by Cuneo [Additive, almost additive and asymp-
totically additive potential sequences are equivalent. Comm. Math. Phys. 37 (3) (2020),
2579–2595] on asymptotically additive sequences, we study the existence of h with regard
to a subadditive sequence associated to a relative pressure function. This leads to a char-
acterization of the existence of a certain type of continuous compensation function for a
factor map between subshifts. As an application, we study the projection πμ of an invariant
weak Gibbs measure μ for a continuous function on an irreducible shift of finite type.
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1. Introduction
The thermodynamic formalism for sequences of continuous functions generalizes the
formalism for continuous functions and has been applied to solve some dimension
problems in non-conformal dynamical systems. The equilibrium states for sequences of
continuous functions are the equilibrium states for Borel measurable functions in general.
In [10] Falconer introduced the thermodynamic formalism for subadditive sequences to
study repellers of non-conformal transformations. Cao, Feng and Huang in [6] established
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the theory for subadditive sequences wherein the variational principle was obtained for
compact dynamical systems. Asymptotically additive sequences, which generalize the
almost additive sequences studied by Barreira [2] and Mummert [18], were also introduced
by Feng and Huang [13]. The properties of equilibrium states for sequences of continuous
functions, such as uniqueness, the (generalized) Gibbs property and mixing properties,
have been also studied (see, for example, [2, 12, 18]). Here, a natural question arises.

Question 1. Given a subadditive sequence F = {log fn}∞n=1 on a compact metric space X,
what are necessary and sufficient conditions for the existence of a continuous function h
on X such that

lim
n→∞

1
n

∫
log fn dμ =

∫
h dμ (1)

for every invariant Borel probability measure μ on X?

If such an h exists, then the thermodynamic formalism for such sequences F reduces to
the formalism for continuous functions. Cuneo [9, Theorem 1.2] proved that if a sequence
of continuous functions is asymptotically additive (see (4) for the definition), then there
always exists h ∈ C(X) satisfying (1) for every invariant measure μ on X. In this paper,
we study necessary conditions for a subadditive sequence F on an irreducible subshift
(X, σX) to have a continuous function h ∈ C(X) satisfying (1) for every invariant measure
μ on X. Using our results and the result obtained by Cuneo [9, Theorem 1.2], we give
some answers to Question 1 (Theorems 4.3, 6.9 and 7.8). Towards this end, we first
study conditions for a subadditive sequence on a subshift to be an asymptotically additive
sequence in terms of certain properties for periodic points. Given a subadditive sequence
F = {log fn}∞n=1 on X, if (1) holds for every invariant Borel probability measure μ on X,
then the sequence F̃ = {(1/n) log(fn/e

Snh)}∞n=1 converges (pointwise) to the zero function
0 for every periodic point of σX (see Proposition 3.1). We show in Theorems 4.3 and 4.4
that if the sequence F̃ converges (pointwise) to 0 for every periodic point of σX and F
satisfies a particular property for certain periodic points then F̃ converges to 0 everywhere;
moreover, it converges uniformly to 0 on X. This gives the asymptotic additivity of F. We
apply Theorem 4.3 when we study Question 1 with regard to a relative pressure function of
a continuous function (Theorems 6.9 and 7.8). In Proposition 3.1, Question 1 is studied in
a general form. Note that subadditive sequences are not asymptotically additive in general
(see Example 7.2 in §7).

In §6, we consider relative pressure functions in relation to compensation functions. Let
(X, σX), (Y , σY ) be subshifts and π : X → Y be a factor map. Let f ∈ C(X), n ∈ N and
δ > 0. For each y ∈ Y , define

Pn(σX, π , f , δ)(y) = sup
{ ∑

x∈E

e(Snf )(x) : E is an (n, δ) separated subset of π−1({y})
}

,

P(σX, π , f , δ)(y) = lim sup
n→∞

1
n

log Pn(σX, π , f , δ)(y),

P(σX, π , f )(y) = lim
δ→0

P(σX, π , f , δ)(y).
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The function P(σX, π , f ) : Y → R is the relative pressure function of f ∈ C(X) with
respect to (σX, σY , π). In general it is merely Borel measurable. In Theorem 6.9, for
an irreducible shift of finite type (X, σX), we study equivalent conditions for a relative
pressure function P(σX, π , f ) on Y to have a function h ∈ C(Y ) such that∫

P(σX, π , f ) dμ =
∫

h dμ for every μ ∈ M(Y , σY ) (2)

where M(Y , σY ) is the set of invariant Borel probability measures on Y. In general,
a relative pressure function P(σX, π , f ) is represented by a subadditive sequence
G = {log gn}∞n=1 of continuous functions on Y (see (32) for gn), that is, P(σX, π , f ) =
limn→∞(1/n) log gn almost everywhere with respect to every μ ∈ M(Y , σY ). The
sequence G satisfies an additional condition (see (D2) in §2.2) weaker than almost
additivity and it is not asymptotically additive in general. We prove that the subadditive
sequence G on Y associated to P(σX, π , f ) satisfies the particular property for certain
periodic points in Lemma 4.1(ii). Applying Theorem 4.3, we obtain in Theorem 6.9
that, for h ∈ C(Y ), uniform convergence of G̃ = {(1/n) log(gn/e

Snh)}∞n=1 to 0 on Y is
equivalent to pointwise convergence of G̃ to 0 for every periodic point of σY . In particular,
we obtain that (2) holds if and only if the sequence G associated to P(σX, π , f ) is
asymptotically additive. Moreover, if there exists an invariant weak Gibbs measure m for
f ∈ C(X), then (2) holds if and only if πm is an invariant weak Gibbs measure for some
continuous function on Y (Theorem 7.8). The properties of the sequence G associated to
P(σX, π , f ) under the existence of h in (2) are studied and a condition of non-existence
of such a continuous function is also studied (Corollary 6.11). These results are applied
directly to study the projection of an invariant weak Gibbs measure for a continuous
function on X in §7 (see Theorem 7.6 and Corollary 7.9). Note that in general if there
exists an invariant weak Gibbs measure m for f ∈ C(X), then πm is a weak Gibbs
equilibrium state for the subadditive sequence G associated to P(σX, π , f ).

On the other hand, relative pressure functions are connected with compensation
functions. Given f ∈ C(X), Theorem 6.9 relates the question on the existence of h in (2)
with the existence of a compensation function f − h ◦ π for some h ∈ C(Y ). A function
F ∈ C(X) is a compensation function for a factor map π if

sup
μ∈M(X,σX)

{
hμ(σX) +

∫
F dμ +

∫
φ ◦ π dμ

}
= sup

ν∈M(Y ,σY )

{
hν(σY ) +

∫
φ dν

}
(3)

for every φ ∈ C(Y ). If F = G ◦ π , G ∈ C(Y ), then G ◦ π is a saturated compensation
function. The concept of compensation functions was introduced by Boyle and Tuncel
[5], and their properties were studied by Walters [28] in relation to relative pressure. The
existence of compensation functions has been studied [1, 24–26]. Shin [25, 26] proved that
a saturated compensation function does not always exist and gave a characterization for the
existence of a saturated compensation function for factor maps between shifts of finite type.
A function −h ◦ π ∈ C(X) is a saturated compensation function if and only if (2) holds for
f = 0. Our results connect the result obtained by Shin with the asymptotic additivity of the
sequence associated to P(σX, π , 0) (see Remark 6.10 and Corollary 7.1). Since saturated
compensation functions were applied to study the measures of full Hausdorff dimension
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of non-conformal repellers, studying the properties of equilibrium states for h in (2) would
help in the further study of certain dimension problems (see Example 7.4).

Section 5 deals with a particular class of subadditive sequences on subshifts satisfying
an additional property (see condition (C2)) weaker than almost additivity but stronger than
(D2). The result of Feng [12, Theorem 5.5] implies that there is a unique (generalized)
Gibbs equilibrium state for a subadditive sequence with bounded variation satisfying
property (C2). We study equivalent conditions for this type of sequence F = {log fn}∞n=1
on a subshift X to have a continuous function for which the unique Gibbs equilibrium state
is a weak Gibbs measure (Theorem 5.1). In this case, we obtain that for h ∈ C(X) uniform
convergence of the sequence of functions {(1/n) log(fn/e

Snh)}∞n=1 to 0 on X is equivalent
to pointwise convergence of the sequence to 0 on X. We note that it is not clear that the
condition for certain periodic points in Theorem 4.4(ii) is satisfied for this type of sequence
in general.

2. Background
2.1. Shift spaces. We give a brief summary of the basic definitions in symbolic dynam-
ics. (X, σX) is a one-sided subshift if X is a closed shift-invariant subset of {1, . . . , k}N for
some k ≥ 1, that is, σX(X) ⊆ X, where the shift σX : X → X is defined by (σX(x))i =
xi+1 for all i ∈ N, x = (xn)

∞
n=1 ∈ X. Define a metric d on X by d(x, x′) = 1/2k if xi = x′

i

for all 1 ≤ i ≤ k and xk+1 
= x′
k+1, d(x, x′) = 1 if x1 
= x′

1, and d(x, x′) = 0 otherwise.
Throughout this paper, we consider one-sided subshifts. Define a cylinder set [x1 . . . xn] of
length n in X by [x1 . . . xn] = {(zi)

∞
i=1 ∈ X : zi = xi for all 1 ≤ i ≤ n}. For each n ∈ N,

denote by Bn(X) the set of all n-blocks that appear in points in X. Define B0(X) = {ε},
where ε is the empty word of length 0. The language of X is the set B(X) = ⋃∞

n=0 Bn(X).
A subshift (X, σX) is irreducible if for any allowable words u, v ∈ B(X), there exists
w ∈ B(X) such that uwv ∈ B(X). A subshift has the weak specification property if there
exists p ∈ N such that for any allowable words u, v ∈ B(X), there exist 0 ≤ k ≤ p and
w ∈ Bk(X) such that uwv ∈ B(X). We call such p a weak specification number. A point
x ∈ X is a periodic point of σX if there exists l ∈ N such that σ l

X(x) = x.
Let (X, σX) and (Y , σY ) be subshifts. A shift of finite type (X, σX) is one-step if

there exists a set F of forbidden blocks of length less than or equal to 2 such that
X = {x ∈ {1, . . . , k}N : ω does not appear in x for any ω ∈ F }. A map π : X → Y is a
factor map if it is continuous, surjective and satisfies π ◦ σX = σY ◦ π . If, in addition,
the ith position of the image of x under π depends only on xi , then π is a one-block factor
map. Throughout the paper we assume that a shift of finite type (X, σX) is one-step and
π is a one-block factor map. Denote by M(X, σX) the collection of all σX-invariant Borel
probability measures on X and by Erg(X, σX) all ergodic members of M(X, σX).

2.2. Sequences of continuous functions. We give a brief summary on the basic results
on the sequences of continuous functions considered in this paper. Let (X, σX) be a
subshift on finitely many symbols. For each n ∈ N, let fn : X → R

+ be a continuous
function. A sequence F = {log fn}∞n=1 is almost additive if there exists a constant C ≥ 0
such that e−Cfn(x)fm(σn

Xx) ≤ fn+m(x) ≤ eCfn(x)fm(σn
Xx). In particular, if C = 0, then
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F is additive. The thermodynamic formalism for almost additive sequences was studied
in Barrera [2] and Mummert [18]. More generally, Feng and Huang [13] introduced
asymptotically additive sequences which generalize almost additive sequences. A sequence
F = {log fn}∞n=1 is asymptotically additive on X if for every ε > 0 there exists a continuous
function ρε such that

lim sup
n→∞

1
n
‖log fn − Snρε‖∞ < ε, (4)

where ‖·‖∞ is the supremum norm and (Snρε)(x) = ∑n−1
i=0 ρε(σ

i(x)) for each x ∈ X.
A sequence F = {log fn}∞n=1 is subadditive if F satisfies fn+m(x) ≤ fn(x)fm(σn

Xx).
The thermodynamic formalism for subadditive sequences was studied by Cao, Feng and
Huang [6].

We assume certain regularity conditions on sequences. A sequence F = {log fn}∞n=1
has bounded variation if there exists M ∈ R

+ such that sup{Mn : n ∈ N} ≤ M where

Mn = sup
{

fn(x)

fn(y)
: x, y ∈ X, xi = yi for 1 ≤ i ≤ n

}
. (5)

More generally, if limn→∞(1/n) log Mn = 0, then we say that F has tempered variation.
Without loss of generality, we assume Mn ≤ Mn+1 for all n ∈ N.

A function f ∈ C(X) belongs to the Bowen class if the sequence F formed by setting
fn = eSn(f ) has bounded variation [29]. A function of summable variation belongs to the
Bowen class. In this paper, we consider the sequencesF satisfying the following properties.
(C1) The sequence F ′ := {log(fne

C)}∞n=1 is subadditive for some C ≥ 0.
(C2) There exist p ∈ N and D > 0 such that, given any u ∈ Bn(X), v ∈ Bm(X), n, m ∈

N, there exist 0 ≤ k ≤ p and w ∈ Bk(X) such that uwv ∈ Bn+m+k(X) and

sup{fn+m+k(x) : x ∈ [uwv]} ≥ D sup{fn(x) : x ∈ [u]} sup{fm(x) : x ∈ [v]}.
More generally, we have the following property.

(D2) There exist p ∈ N and a positive sequence {Dn,m}(n,m)∈N×N such that, given any
u ∈ Bn(X), v ∈ Bm(X), n, m ∈ N, there exist 0 ≤ k ≤ p and w ∈ Bk(X) such that
uwv ∈ Bn+m+k(X) and

sup{fn+m+k(x) : x ∈ [uwv]} ≥ Dn,m sup{fn(x) : x ∈ [u]} sup{fm(x) : x ∈ [v]},
where limn→∞(1/n) log Dn,m = limm→∞(1/m) log Dn,m = 0. Without loss of
generality, we assume that Dn,m ≥ Dn,m+1 and Dn,m ≥ Dn+1,m.

Remark 2.1. A sequence F = {log fn}∞n=1 satisfying (C1) is not always asymptotically
additive (see §7). Condition (C2) was introduced by Feng [11] where the thermodynamic
formalism of products of matrices was studied. The sequences satisfying (C1) and (C2)
with bounded variation generalize almost additive sequences with bounded variation on
subshifts with the weak specification property and have been applied to solve questions
concerning the Hausdorff dimensions of non-conformal repellers [12, 31]. See [14, 15] for
the non-compact case. We will study the sequences satisfying (C1) and (D2) in §§6 and 7.
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Let (X, σX) be a subshift and F = {log fn}∞n=1 be a subadditive sequence of continuous
functions on X. For each n ∈ N, define

Pn(F, δ) = sup
E

{ ∑
x∈E

fn(x) : E is an (n, δ) separated subset of X

}
.

The topological pressure for F is defined by

P(F ) = lim
δ→0

lim sup
n→∞

1
n

log Pn(F, δ). (6)

THEOREM 2.2. [6] Let (X, σX) be a subshift and F = {log fn}∞n=1 be a subadditive
sequence on X. Then

P(F ) = sup
μ∈M(X,σX)

{
hμ(X) + lim

n→∞
1
n

∫
log fn dμ

}
. (7)

A measure m ∈ M(X, σX) is an equilibrium state for F if the supremum in (7) is
attained at m.

Definition 2.3. Let (X, σX) be a subshift and F = {log fn}∞n=1 be a subadditive sequence
on X satisfying P(F ) 
= −∞. A measure μ ∈ M(X, σX) is a weak Gibbs measure for F
if there exists Cn > 0 such that

1
Cn

<
μ[x1 . . . xn]

e−nP (F )fn(x)
< Cn

where limn→∞(1/n) log Cn = 0, for every x ∈ X and n ∈ N. If there exists C > 0 such
that C = Cn for all n ∈ N, then μ is a Gibbs measure.

If μ is an invariant weak Gibbs measure for a subadditive sequence F, then it is an
equilibrium state for F. The result of Feng [12, Theorem 5.5] implies the uniqueness of
equilibrium states for a class of sequences satisfying (C1) and (C2).

THEOREM 2.4. [12] Let (X, σX) be a subshift and F = {log fn}∞n=1 be a sequence on X
satisfying (C1) and (C2) with bounded variation. Then there is a unique invariant Gibbs
measure for F and it is the unique equilibrium state for F.

Cuneo [9] showed that finding equilibrium states for asymptotically additive sequences
is equivalent to that for continuous functions.

THEOREM 2.5. (Special case of [9, Theorem 1.2]) Let (X, σX) be a subshift and F =
{log fn}∞n=1 be an asymptotically additive sequence on X. Then there exists f ∈ C(X)

such that

lim
n→∞

1
n
‖log fn − Snf ‖∞ = 0. (8)

Hence, if F is asymptotically additive, then there exists f ∈ C(X) such that
limn→∞(1/n)

∫
logfn dμ = ∫

f dμ for every μ ∈ M(X, σX). It is clear that (8) implies
that F is asymptotically additive.
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3. Subadditive sequences
In this section, we consider Question 1 from §1. Proposition 3.1 is valid for the case
when X is a compact metric space and T : X → X is a continuous transformation of X.
Proposition 3.1 will be applied in the next sections.

PROPOSITION 3.1. Let (X, σX) be a subshift and F = {log fn}∞n=1 a subadditive sequence
on X. For h ∈ C(X), the following conditions are equivalent.

(i)

lim
n→∞

1
n

∫
log fn dμ =

∫
h dμ

for every μ ∈ M(X, σX).
(ii)

lim
n→∞

1
n

∫
log fn dμ =

∫
h dμ

for every μ ∈ Erg(X, σX).
(iii)

lim
n→∞

1
n

log
(

fn(x)

e(Snh)(x)

)
= 0

μ-almost everywhere on X, for every μ ∈ Erg(X, σX).

Remark 3.2. Proposition 3.1 holds for a sequence F satisfying (C1) because
{log(eCfn)}∞n=1 is a subadditive sequence.

Proof. It is clear that (i) implies (ii). By the ergodic decomposition (see [13, Proposition
A.1(c)]), (ii) implies (i). Now we assume that (ii) holds. For a measure μ ∈ Erg(X, σX),
we obtain

lim
n→∞

1
n

∫
log

(
fn

e(Snh)

)
dμ = 0.

To see that this implies (iii), define rn(x) := fn(x)/e(Snh)(x). Then log rn ∈ L1(μ)

and {log rn}∞n=1 is a subadditive sequence of continuous functions on X. Since μ

is an ergodic measure, by Kingman’s subadditive ergodic theorem, we obtain that
limn→∞(1/n) log rn(x) = limn→∞(1/n)

∫
log rn dμ = 0μ-almost everywhere on X.

Now we assume that (iii) holds. Given μ ∈ Erg(X, σX), applying the subadditive ergodic
theorem to the sequence {log rn}∞n=1, we obtain

∫
lim

n→∞
1
n

log
(

fn

e(Snh)

)
dμ = lim

n→∞
1
n

∫
log

(
fn

e(Snh)

)
dμ

= lim
n→∞

(
1
n

∫
log fn dμ −

∫
h dμ

)
.

Hence, we obtain (ii).
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4. Subadditive sequences which are asymptotically additive
Subadditive sequences are not always asymptotically additive. In this section we study
a class of subadditive sequences on shift spaces (compact spaces) which are also
asymptotically additive. The goal of this section is to characterize such sequences using a
particular property for periodic points. The results in this section are applied in §§6 and 7
to study relative pressure functions.

LEMMA 4.1. Let (X, σX) be a subshift and F = {log fn}∞n=1 be a sequence on X satisfying
(C1) with tempered variation. Suppose that F satisfies the following two conditions (i)
and (ii).
(i) There exists h ∈ C(X) such that

lim
n→∞

1
n

log
(

fn(x)

e(Snh)(x)

)
= 0

for every periodic point x ∈ X.
(ii) There exist k, N ∈ N and a sequence {Mn}∞n=1 of positive real numbers satisfying

limn→∞(1/n) log Mn = 0 such that, for given any u ∈ Bn(X), n ≥ N , there exist
0 ≤ q ≤ k and w ∈ Bq(X) such that z := (uw)∞ is a point in X satisfying

fj(n+q)(z) ≥ (Mn sup{fn(x) : x ∈ [u]})j (9)

for every j ∈ N.
Then F is an asymptotically additive sequence on X.

Remark 4.2. Let (X, σX) be an irreducible shift of finite type and k be a weak specification
number. Then for each u ∈ Bn(X) there exist 0 ≤ q ≤ k and w ∈ Bq(X) such that
(uw)∞ ∈ X.

Proof. Suppose that (i) and (ii) hold. We will show that

lim
n→∞

1
n

∥∥∥∥ log
(

fn

e(Snh)

)∥∥∥∥∞ = 0. (10)

Let k, Mn, N be defined as in (ii). For h ∈ C(X), let

Mh
n := sup

{
e(Snh)(x)

e(Snh)(x′) : xi = x′
i , 1 ≤ i ≤ n

}
(11)

for each n ∈ N and Ch := max0≤i≤k{(Sih)(x) : x ∈ X}, where (S0h)(x) := 1 for every
x ∈ X. Let ε > 0. Take N1 ∈ N large enough so that

1
n
| log(Mh

n eCh)| < ε,
1
n
| log Mn| < ε and

n

n + k
>

1
2

for all n > N1. Let N2 = max{N , N1} and let n ≥ N2. Then, for x1 . . . xn ∈ Bn(X),
there exists w ∈ Bq(X), 0 ≤ q ≤ k, such that y∗ := (x1, . . . , xn, w)∞ ∈ X satisfying (9).
Since y∗ is a periodic point, (i) implies that there exists N(y∗) ∈ N such that

1
i

∣∣∣∣ log
(

fi(y
∗)

e(Sih)(y∗)

)∣∣∣∣ < ε
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for all i > N(y∗). Take j > N(y∗). By (ii), for z ∈ [x1 . . . xn], we obtain

ε >
1

j (n + q)
log

(
fj(n+q)(y

∗)
e(Sj (n+q)h)(y∗)

)
≥ 1

j (n + q)
log

(
Mnfn(z)

Mh
n e(Snh)(z)eCh

)j

= 1
(n + q)

log Mn + 1
(n + q)

log
(

fn(z)

e(Snh)(z)

)
− 1

(n + q)
log(Mh

n eCh)

> −2ε + 1
n + q

log
(

fn(z)

e(Snh)(z)

)
> −2ε + n

n + q

(
1
n

log
(

fn(z)

e(Snh)(z)

))
.

Without loss of generality assume (1/n) log(fn(z)/e
(Snh)(z)) > 0. Hence, for

any x1 . . . xn ∈ Bn(X), n ≥ N2, z ∈ [x1 . . . xn], we obtain that (1/n) log(fn(z)/

e(Snh)(z)) < 6ε.
Next we show that there exists N ′ ∈ N such that, for all z ∈ [x1, . . . , xn], n ≥ N ′,

(1/n) log(fn(z)/e
(Snh)(z)) > −4ε. Since F has tempered variation, for each n ∈ N, let

MFn := sup{fn(x)/fn(x
′) : xi = x′

i , 1 ≤ i ≤ n}. Let CF := max0≤i≤k{fi(x) : x ∈ X},
where f0(x) := 1 for every x ∈ X, and C̄h := min0≤i≤k{(Sih)(x) : x ∈ X}. Let C be
defined as in (C1). Take N3 ∈ N large enough so that

1
n
| log(MFn Mh

nCFe−C̄h+2C)| < ε and
n

n + k
>

1
2

for all n > N3. Since F satisfies (C1), we obtain that

fj(n+q)(y
∗)

e(Sj (n+q)h)(y∗) ≤
(

CFMh
ne2C sup{fn(y) : y ∈ [x1 . . . xn]}

eC̄h sup{e(Snh)(y) : y ∈ [x1 . . . xn]}
)j

≤
(

CFMh
nMFn e2Cfn(z)

eC̄h+(Snh)(z)

)j

,

where in the last inequality z is a point from the cylinder set [x1 . . . xn]. Hence, for
j > N(y∗),

−ε <
1

j (n + q)
log

(
fj(n+q)(y

∗)
e(Sj (n+q)h)(y∗)

)

<
1

n + q
log

(
fn(z)

e(Snh)(z)

)
+ 1

n + q
log(MFn Mh

nCFe−C̄h+2C)

<
1

n + q
log

(
fn(z)

e(Snh)(z)

)
+ ε

= n

n + q

(
1
n

log
(

fn(z)

e(Snh)(z)

))
+ ε.

Without loss of generality assume (1/n) log(fn(z)/e
(Snh)(z)) < 0. For all z ∈ [x1 . . . xn],

n ≥ N3, we obtain that (1/n) log(fn(z)/e
(Snh)(z)) > −4ε. Hence, we obtain (10).

By Lemma 4.1, we obtain some conditions for a sequence F satisfying (C1) to be
asymptotically additive, assuming that Lemma 4.1(ii) is satisfied.
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THEOREM 4.3. Let (X, σX) be a subshift. Let F = {log fn}∞n=1 be a sequence on X
satisfying (C1) with tempered variation and Lemma 4.1(ii). Then the following statements
are equivalent for h ∈ C(X).

(i) F is asymptotically additive on X satisfying

lim
n→∞

1
n

∥∥∥∥ log
(

fn

e(Snh)

)∥∥∥∥∞
= 0.

(ii)

lim
n→∞

1
n

∫
log fn dμ =

∫
h dμ

for every μ ∈ M(X, σX).
(iii)

lim
n→∞

1
n

log
(

fn(x)

e(Snh)(x)

)
= 0

for every periodic point x ∈ X.
(iv)

lim
n→∞

1
n

log
(

fn(x)

e(Snh)(x)

)
= 0

for every x ∈ X.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are clear by applying Theorem 2.5 and
Proposition 3.1. To see (iii) ⇒ (iv) ⇒ (i) , we apply Lemma 4.1.

In the next theorem we study an equivalent condition for a subadditive sequence F to
be an asymptotically additive sequence.

THEOREM 4.4. Let (X, σX) be an irreducible shift of finite type and F = {log fn}∞n=1 be
a sequence on X satisfying (C1) with tempered variation. Then F is asymptotically additive
on X if and only if the following two conditions hold.
(i) There exists h ∈ C(X) such that

lim
n→∞

1
n

log
(

fn(x)

e(Snh)(x)

)
= 0

for every periodic point x ∈ X.
(ii) There exist k ∈ N, c ≥ 0 and a sequence {Mn}∞n=1 of positive real numbers satisfying

limn→∞(1/n) log Mn = 0 such that the following property, which we refer to as
property (P), holds. For every 0 < ε < 1, there exists N ∈ N such that, given any
u ∈ Bn(X), n ≥ N , there exist 0 ≤ q ≤ k and w ∈ Bq(X) such that z := (uw)∞ is
a point in X satisfying

fj(n+q)(z) ≥ (Mne
−cnε)j (sup{fn(x) : x ∈ [u]})j (12)

for every j ∈ N.
Theorem 4.3 holds if we replace Lemma 4.1(ii) by condition (ii) above.
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Remark 4.5. Theorem 4.4(ii) is a generalization of Lemma 4.1(ii). If we set c = 0 in (12),
we obtain (9).

Proof. Assume that F is asymptotically additive. Then (i) is obvious and for a given 0 <

ε < 1 there exists N ∈ N such that for all n ≥ N ,

e−nε+(Snh)(x) < fn(x) < enε+(Snh)(x) (13)

for all x ∈ X. Since (X, σX) is an irreducible shift of finite type, let k be a weak
specification number. Then for x1 . . . xn ∈ Bn(X), n ≥ N , there exists w ∈ Bq(X), 0 ≤
q ≤ k, such that y∗ := (x1, . . . , xn, w)∞ ∈ X. Let C̄h, Mh

n and MFn be defined as in the
proof of Lemma 4.1. Then for any z ∈ [x1 . . . xn], j ∈ N,

f(n+q)j (y
∗) ≥ e−j (n+q)ε+(Sj (n+q)h)(y∗) ≥ e−j (n+q)ε ·

(
1

Mh
n

e(Snh)(z)eC̄h

)j

≥
(

1
Mh

n

e−2εn−kε+C̄h

)j

f
j
n (z) ≥

(
1

Mh
n

e−2εn−k+C̄h

)j

f
j
n (z).

Setting c = 2 and Mn = e−k+C̄h/(MFn Mh
n ), we obtain (ii). Now we show the reverse

implication. We slightly modify the proof of Lemma 4.1 by taking account of property (P).
We only consider the case when c > 0. Let Ch and Mh

n be defined as in the proof of Lemma
4.1. Let 0 < ε < 1 be fixed. By (ii), there exists N ′ ∈ N such that

−3c

2
ε <

1
n + i

log(e−ncεMn) < − c

2
ε,

1
n
| log(Mh

n eCh)| < ε and
n

n + k
>

1
2

for all n > N ′, 0 ≤ i ≤ k. In the proof of Lemma 4.1, define N2 := max{N , N ′}. Replac-
ing Mn by e−ncεMn in the proof of Lemma 4.1, we obtain that for any x1 . . . xn ∈
Bn(X), n ≥ N2, z ∈ [x1 . . . xn],

1
n

log
(

fn(z)

e(Snh)(z)

)
< (4 + 3c)ε.

Using the latter part of the proof of Lemma 4.1, we obtain the results.

5. Asymptotically additive sequences and subadditive sequences satisfying (C1) and (C2)
In this section, we study the sequences F on subshifts X with bounded variation satisfying
(C1) and (C2). Since there exists a unique Gibbs equilibrium state m for such a sequence
F (Theorem 2.4), we study the condition for m to be an invariant Gibbs measure for some
continuous function. In Theorem 5.6, we also characterize the form of sequences F in
terms of the properties of equilibrium states.

THEOREM 5.1. Let (X, σX) be a subshift and F = {log fn}∞n=1 be a sequence on X
satisfying (C1) and (C2) with bounded variation. Let m be the unique invariant Gibbs
measure for F. Then the following statements are equivalent.

(i) There exists h ∈ C(X) such that

lim
n→∞

1
n

log
(

fn(x)

e(Snh)(x)

)
= 0

for every x ∈ X.
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(ii) F is asymptotically additive on X.
(iii) The measure m is an invariant weak Gibbs measure for a continuous function on X.

Remark 5.2.
(1) There exists a sequence F which satisfies (C1), (C2) with bounded variation

satisfying Theorem 5.1(ii). On the other hand, there exists a sequence F with
bounded variation satisfying (C1) and (C2) without being asymptotically additive
(see §7).

(2) If h ∈ C(X) in (i) exists, then m is a unique equilibrium state for h.

To prove Theorem 5.1, we apply the following lemmas. We continue to use F and m
defined as in Theorem 5.1. In the next lemma we first study the relation between Theorem
5.1(i) and (ii).

LEMMA 5.3. Let (X, σX) be a subshift and F = {log fn}∞n=1 be a sequence on X satisfying
(C1) and (C2) with bounded variation. If there exists h ∈ C(X) such that

lim
n→∞

1
n

log
(

fn(x)

e(Snh)(x)

)
= 0 (14)

for every x ∈ X, then F is asymptotically additive on X.

Remark 5.4. Lemma 5.3 implies that if F satisfies the assumptions of the lemma then
uniform convergence of the sequence of functions {1/n log(fn/e

(Snh))}∞n=1 is equivalent
to pointwise convergence of the sequence of functions.

Proof. Let ε > 0. It is enough to show that there exists N ∈ N such that for any
z ∈ [u], u ∈ Bn(X), n > N ,

−ε <
1
n

log
(

fn(z)

e(Snh)(z)

)
< ε.

Let p be defined as in (C2). Let mh := max0≤l≤p{e(Slh)(x) : x ∈ X}, where (S0h)(x) := 1
for every x ∈ X. Since h has tempered variation, let Mh

n be defined as in (11). Let M be
a constant defined as in the definition of bounded variation and D be defined as in (C2).
Then there exists N1 ∈ N such that
1
n

log M < ε,
1
n

log Mh
n < ε,

1
n

∣∣∣∣ log
1

mh

∣∣∣∣ < ε,
1
n
| log D| < ε and

n

n + p
>

1
2

,

(15)

for all n > N1. Take n > N1. Condition (C2) implies that for a given u ∈ Bn(X), there
exists w1 ∈ Bl1(X), 0 ≤ l1 ≤ p such that for any x ∈ [uw1u], z ∈ [u],

sup{f2n+l1(x) : x ∈ [uw1u]} ≥ D(sup{fn(x) : x ∈ [u]})2 ≥ Df 2
n (z).

Repeating this, given j ≥ 2, u ∈ Bn(X), there exist allowable words wi of length li , 1 ≤
i ≤ j − 1, 0 ≤ li ≤ p, such that uw1uw2u . . . uwj−1u is an allowable word of length
jn + ∑j−1

i=1 li satisfying that, for any x ∈ [uw1uw2u . . . uwj−1u] and z ∈ [u],

Mf
jn+∑j−1

i=1 li
(x) ≥ sup{f

jn+∑j−1
i=1 li

(x) : x ∈ [uw1uw2u . . . uwj−1u]} ≥ Dj−1fn(z)
j .

(16)
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By the additivity of the sequence {Snh}∞n=1,

e
(S

jn+∑j−1
i=1 li

h)(x) ≤ (Mh
n eSnh(z))jmh

j−1. (17)

Hence, by (16) and (17) we obtain for j ≥ 2, x ∈ [uw1uw2u . . . uwj−1u] and z ∈ [u],

f
jn+∑j−1

i=1 li
(x)

e
(S

jn+∑j−1
i=1 li

h)(x)
≥

(
1

Mh
n

)j(
fn(z)

e(Snh)(z)

)j(
D

mh

)j−1

· 1
M

. (18)

Let c1 = [uw1u], . . . , ci = [uw1uw2u . . . uwiu], i ∈ N. Then by Cantor’s intersec-
tion theorem

⋂
i∈N ci 
= ∅ and it consists of exactly one point in X. We call it x∗ ∈ X. For

each y ∈ X, define An(y) := fn(y)/e(Snh)(y). By assumption (14), there exists t (x∗) ∈ N,
which depends on x∗ such that for all i ≥ t (x∗),

−ε <
1
i

log Ai(x
∗) < ε.

Letting s(u, j) := ∑j−1
i=1 li , for j ≥ t (x∗) ≥ 2, and using (15) and (18), we obtain

ε >
1

jn + s(u, j)
log Ajn+s(u,j)(x

∗)

≥ 1
n + (1/j)s(u, j)

log
1

Mh
n

+ 1 − 1/j

n + (1/j)s(u, j)
log

1
mh

+ 1
jn + s(u, j)

log
1
M

+ n(j − 1)

jn + s(u, j)
· 1
n

log D + n

n + (1/j)s(u, j)
· 1
n

log An(z).

Without loss of generality, assume log An(z) > 0. By a simple calculation, we obtain that

1
n

log An(z) < 10ε (19)

for all n > N1, z ∈ [u], for any u ∈ Bn(X).
Next we will show that there exists N2 ∈ N such that

−6ε <
1
n

log An(z) (20)

for all n > N2, z ∈ [u] for any u ∈ Bn(X). Define f0(x) := 1. Let M := max0≤i≤p{fi(x) :
x ∈ X} and m1 := min0≤k≤p{e(Skh)(x) : x ∈ X}. Take N2 so that

1
n
| log(MMh

n )| < ε,
1
n

∣∣∣∣ log
(

Me2C

m1

)∣∣∣∣ < ε,
n

n + p
>

1
2

(21)

for all n > N2. For n > N2, let u ∈ Bn(X). Construct x ∈ [uw1uw2 . . . uwj−1u], j ≥ 2,
as in the above argument and let z ∈ [u]. Using (C1), it is easy to obtain for each j ≥ 2,

f
jn+∑j−1

i=1 li
(x) ≤ (Me2C)j−1(Mfn(z))

j (22)

and

e
(S

jn+∑j−1
i=1 li

h)(x) ≥
(

e(Snh)(z)

Mh
n

)j

(m1)
j−1. (23)
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Define x∗ ∈ X as before. For all j ≥ t (x∗), by using (21), (22) and (23), we obtain

−ε <
1

jn + s(u, j)
log Ajn+s(u,j)(x

∗) < 2ε + n

n + (1/j)s(u, j)
· 1
n

log An(z).

Without loss of generality, assuming that log An(z) < 0, we obtain (20) for all n > N2,
each z ∈ [u], u ∈ Bn(X). The result follows by (19) and (20).

LEMMA 5.5. Under the assumptions of Theorem 5.1, F is asymptotically additive if and
only if there exists a continuous function for which m is an invariant weak Gibbs measure.

Proof. Suppose F is asymptotically additive. Then by [9, Theorem 1.2] there exist h, un ∈
C(X), n ∈ N, such that fn(x) = e(Snh)(x)+un(x) satisfying limn→∞(1/n)||un||∞ = 0.
Since there exists a constant C > 0 such that

1
C

≤ m[x1 . . . xn]
e−nP (F )fn(x)

≤ C (24)

for each x ∈ [x1 . . . xn], replacing fn(x) by e(Snh)(x)+un(x), we obtain

1
Ce||un||∞ ≤ eun(x)

C
≤ m[x1 . . . xn]

e−nP (F )+(Snh)(x)
≤ Ceun(x) ≤ Ce||un||∞ .

Set An = Ce||un||∞ . Since limn→∞(1/n)
∫

log fn dμ = ∫
h dμ for every μ ∈ M(X, σX),

we obtain that P(F ) = P(h). Conversely, assume that m is an invariant weak Gibbs
measure for h̃ ∈ C(X). Hence, there exists Cn > 0 such that

1
Cn

≤ m[x1 . . . xn]

e−nP (h̃)+(Snh̃)(x)
≤ Cn (25)

for all x ∈ [x1 . . . xn], where limn→∞(1/n) log Cn = 0. Since m is the Gibbs measure
for F,

1
C

≤ m[x1 . . . xn]
e−nP (F )fn(x)

≤ C (26)

for some C > 0. Using (25) and (26), we obtain

1
CnC

≤ fn(x)

e(Sn(h̃−P (h̃)+P (F )))(x)
≤ CnC, (27)

for all x ∈ [x1 . . . xn]. Hence, by [9, Theorem 1.2], F is an asymptotically additive
sequence.

Proof of Theorem 5.1. By [9, Theorem 1.2], (ii) implies (i). Theorem 5.1 follows by
Lemmas 5.3 and 5.5.

THEOREM 5.6. Let (X, σX) be a subshift and F = {log fn}∞n=1 be a sequence on X
satisfying (C1) and (C2) with bounded variation. Let m be the unique invariant Gibbs
measure for F. Suppose that one of the equivalent statements in Theorem 5.1 holds. Then
the following statements hold.
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(i) There exits a sequence {Cn,m}n,m∈N such that

1
Cn,m

≤ fn+m(x)

fn(x)fm(σn
Xx)

≤Cn,m, where lim
n→∞

1
n

log Cn,m = lim
m→∞

1
m

log Cn,m =0.

(28)

(ii) If m is a Gibbs measure for a continuous function, then F is an almost additive
sequence on X.

Hence, if there is no sequence {Cn,m}n,m∈N satisfying (28), then there exists no
continuous function for which m is an invariant weak Gibbs measure.

Remark 5.7.
(1) In Example 7.2, we study a sequence which satisfies (C1) and (C2) without (28).
(2) See [3, Theorem 1.14(ii)] for the result related to (i). (ii) was also obtained in [9, §4.1]

since m satisfies the quasi-Bernoulli property (see [9]).

Proof. Let h be defined as in Theorem 5.1(i). By the proofs of Lemmas 5.3 and 5.5, we
obtain that P(F ) = P(h) and m is an invariant weak Gibbs measure for h. Replacing h̃ by
h in (27), we obtain that

1
C3CnCmCn+m

≤ fn+m(x)

fn(x)fm(σn
Xx)

≤ C3Cn+mCnCm. (29)

Since limn→∞(1/n) log Cn = 0, by setting Cn,m := C3CnCmCn+m we obtain the first
statement. To obtain the second statement, we apply the latter part of the proof of Lemma
5.5. By replacing Cn in (25) and (27) by a constant, we obtain the second statement. The
last statement follows from Theorem 5.1.

6. Relation between the existence of a continuous compensation function and an asymp-
totically additive sequence
In this section we consider relative pressure functions P(σX, π , f ), where f ∈ C(X).
In general we can represent P(σX, π , f ) by using a subadditive sequence satisfying
(D2). What are necessary and sufficient conditions for the existence of h ∈ C(Y )

satisfying
∫
P(σX, π , f ) dm = ∫

h dm for each m ∈ M(Y , σY )? By [9, Theorem 2.1], if
P(σX, π , f ) is represented by an asymptotically additive sequence then we can find such
a function h. We will study necessary conditions for the existence of such a function h
and relate them with the existence of a compensation function for a factor map between
subshifts. To this end, we will apply the results from §4. We will study the property for
periodic points from Lemma 4.1(ii).

THEOREM 6.1. (Relativized variational principle [17]) Let (X, σX) and (Y , σY ) be sub-
shifts and π : X → Y be a one-block factor map. Let f ∈ C(X). Then for m ∈ M(Y , σY ),

∫
P(σX, π , f ) dm = sup

{
hμ(σX) − hm(σY ) +

∫
f dμ : μ ∈ M(X, σX), πμ = m

}
.

(30)
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Applying the relativized variational principle, we first study Borel measurable compen-
sation functions for factor maps between subshifts.

PROPOSITION 6.2. Let (X, σX) and (Y , σY ) be subshifts and π : X → Y be a one-block
factor map. For each f ∈ C(X), f − P(σX, π , f ) ◦ π is a Borel measurable compensa-
tion function for π .

Remark 6.3. In general, f − P(σX, π , f ) ◦ π is not continuous on X.

Proof. Let m ∈ M(Y , σY ) and φ ∈ C(Y ). Applying Theorem 6.1, we obtain

sup
{
hμ(σX)−

∫
P(σX, π , f ) ◦ π dμ +

∫
f dμ +

∫
φ ◦ π dμ : μ∈M(X, σX), πμ = m

}

= sup
{
hμ(σX) +

∫
f dμ : μ ∈ M(X, σX), πμ = m

}
−

∫
P(σX, π , f ) dm+

∫
φ dm

= hm(σY ) +
∫

φ dm.

Taking the supremum over m ∈ M(Y , σY ), we obtain

sup
{
hμ(σX) −

∫
P(σX, π , f ) ◦ π dμ +

∫
f dμ +

∫
φ ◦ π dμ : μ ∈ M(X, σX)

}

= sup
{
hm(σY ) +

∫
φ dm : m ∈ M(Y , σY )

}
. (31)

Let π : X → Y be a one-block factor map between subshifts. For y = (yi)
∞
i=1, let En(y)

be a set consisting of exactly one point from each cylinder [x1 . . . xn] in X such that
π(x1 . . . xn) = y1 . . . yn. For n ∈ N and f ∈ C(X), define

gn(y) = sup
En(y)

{ ∑
x∈En(y)

e(Snf )(x)

}
. (32)

The following result can be deduced by [12, Proposition 3.7(i)]. If (X, σX) and (Y , σY )

are subshifts and π : X → Y is a one-block factor map, then for f ∈ C(X),

P(σX, π , f )(y) = lim sup n→∞
1
n

log gn(y) (33)

μ-almost everywhere for every invariant Borel probability measure μ on Y. Equation (33)
was shown by Petersen and Shin [19] for the case when X is an irreducible shift of finite
type. The result for general subshifts is obtained by combining [12, Proposition 3.7(i)] and
the fact that P(σX, π , f )(y) ≤ lim supn→∞(1/n) log gn(y) for all y ∈ Y . Note that the
function P(σX, π , f ) is bounded on Y.

LEMMA 6.4. Let (X, σX) be a subshift with the weak specification property, (Y , σY ) be
a subshift and π : X → Y be a one-block factor map. If f ∈ C(X), then the sequence
G = {log gn}∞n=1 on Y satisfies (C1) and (D2) with bounded variation.
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Remark 6.5. In particular, the sequence {log gn}∞n=1 on Y satisfies (C1) and (C2) with
bounded variation if f ∈ C(X) is in the Bowen class (see [12, 14, 32]).

Proof. First we show that G = {log gn}∞n=1 satisfies (C1). Let y = (y1, . . . , yn, . . . ,
yn+m, . . .) ∈ Y . For each x ∈ En+m(y), define Sx by Sx := {x′ ∈ En+m(y) : x′

i = xi , 1 ≤
i ≤ n}. Take a point x∗ ∈ Sx such that e(Snf )(x∗) = max{e(Snf )(z) : z ∈ Sx}. Then we can
construct a set En(y) such that x∗ ∈ En(y). In a similar manner, for each x ∈ En+m(y),
define Sσnx by Sσnx := {x′ ∈ En+m(y) : x′

i = xi , n + 1 ≤ i ≤ m + n} and take a point
x∗∗ ∈ Sσnx such that e(Smf )(σnx∗∗) = max{e(Smf )(z) : z ∈ Sσnx}. Then we can construct a
set Em(σny) such that σnx∗∗ ∈ Em(σny). Hence, we obtain gn+m(y) ≤ gn(y)gm(σny).
Next we show that G = {log gn}∞n=1 satisfies (D2). We modify slightly the arguments
found in [14] (see also [12]) by taking account of the tempered variation of f, and we
write a proof for completeness. Given u ∈ Bn(Y ) and v ∈ Bm(Y ), let x1 . . . xn ∈ Bn(X)

such that π(x1 . . . xn) = u and let z1 . . . zm ∈ Bm(X) such that π(z1 . . . zm) = v. Let
p be a weak specification number of X. Then there exists w̃ ∈ Bk(X), 0 ≤ k ≤ p, such
that x1 . . . xnw̃z1 . . . zm ∈ Bn+m+k(X). Hence, if x ∈ [x1 . . . xnw̃z1 . . . zm], by letting
m = min0≤k≤p{e(Skf )(x) : x ∈ X}, where e(S0f )(x) := 1 for all x ∈ X, we obtain

e(Sn+k+mf )(x) ≥ me(Snf )(x)e(Smf )(σn+kx). (34)

For n ∈ N, let Mn := sup{e(Snf )(x)/e(Snf )(x′) : xi = x′
i , 1 ≤ i ≤ n}. Since X has the weak

specification, Y also satisfies the weak specification property with specification number p.
Define S by S = {w ∈ Bk(Y ) : 0 ≤ k ≤ p, uwv ∈ B(Y )} and let yw be a point from the
cylinder set [uwv]. Then

∑
w∈S

∑
x∈En+m+|w|(yw)

e(Sn+m+|w|f )(x) ≥
∑

x∈[x1...xnw̃z1...zm],
π(x1...xnw̃z1...zm)∈[uwv]

me(Snf )(x)e(Smf )(σn+kx)

≥ m

MnMm

( ∑
π(x1...xn)=u

sup
x∈[x1...xn]

e(Snf )(x)

)( ∑
π(z1...zm)=v

sup
z∈[z1...zm]

e(Smf )(z)

)

≥ m

MnMm

sup{gn(y) : y ∈ [u]} sup{gm(y) : y ∈ [v]}.

Hence,
∑
w∈S

gn+m+|w|(yw) ≥ m

MnMm

sup{gn(y) : y ∈ [u]} sup{gm(y) : y ∈ [v]}.

Hence, there exits w̄ ∈ S such that

gn+m+|w̄|(yw̄) ≥ m

MnMm|S| sup{gn(y) : y ∈ [u]} sup{gn(y) : y ∈ [v]}.

If Y is a subshift on l symbols, then |S| ≤ lp. Hence, G satisfies (D2) by setting Dn,m =
m/(lpMnMm). By the definition of G, clearly G has bounded variation.

LEMMA 6.6. [28] Let (X, σX) and (Y , σY ) be subshifts and π : X → Y be a one-block
factor map. Given f ∈ C(X), the following statements are equivalent for h ∈ C(Y ).
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(i) f − h ◦ π is a compensation function for π .
(ii)

∫
P(σX, π , f − h ◦ π) dm = 0 for each m ∈ M(Y , σY ).

(iii) m({y ∈ Y : P(σX, π , f − h ◦ π)(y) = 0}) = 1 for each m ∈ M(Y , σY ).

LEMMA 6.7. Let (X, σX) and (Y , σY ) be subshifts and π : X → Y be a one-block factor
map. Given f ∈ C(X), the following statement for h ∈ C(Y ) is equivalent to the equivalent
statements in Lemma 6.6:∫

P(σX, π , f ) dm =
∫

h dm for each m ∈ M(Y , σY ).

Proof. Suppose that the equation in Lemma 6.7 holds for every m ∈ M(Y , σY ). Then (31)
implies that f − h ◦ π is a compensation function for π . Suppose that Lemma 6.6(iii)
holds. Then (33) implies that m-almost everywhere,

P(σX, π , f − h ◦ π)(y) = lim sup
n→∞

1
n

log
(

gn(y)

e(Snh)(y)

)
,

where gn(y) is defined as in (32). Since {log gn}∞n=1 is subadditive, {log(gn/e
Snh)}∞n=1

is subadditive. Applying the subadditive ergodic theorem, we obtain, for each m ∈
M(Y , σY ),∫

P(σX, π , f − h ◦ π) dm =
∫

lim sup
n→∞

1
n

log
(

gn

eSnh

)
dm

= lim
n→∞

1
n

∫
log

(
gn

eSnh

)
dm

= lim
n→∞

1
n

∫
log gn dm −

∫
h dm = 0.

Hence, we obtain Lemma 6.7.

LEMMA 6.8. Let m ∈ M(Y , σY ). Then

P(σX, π , f − h ◦ π)(y) = lim
n→∞

1
n

log
(

gn(y)

e(Snh)(y)

)

m-almost everywhere on Y.

Proof. The result follows by the subadditive ergodic theorem.

The main result of this section is the next theorem which relates the existence of
a continuous compensation function for a factor map with the asymptotically additive
property of the sequences G = {log gn}∞n=1. Given f ∈ C(X), we continue to use gn as
defined in equation (32).

THEOREM 6.9. Let (X, σX) be an irreducible shift of finite type and (Y , σY ) be a subshift.
Let π : X → Y be a one-block factor map and f ∈ C(X). Then the following statements
are equivalent for h ∈ C(Y ).
(i) P(σX, π , f − h ◦ π)(y) = 0 for every periodic point y ∈ Y ; equivalently,

lim
n→∞

1
n

log
(

gn(y)

e(Snh)(y)

)
= 0

for every periodic point y ∈ Y .
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(ii) The function f − h ◦ π is a compensation function for π .
(iii)

lim
n→∞

1
n

log
(

gn(y)

e(Snh)(y)

)
= 0

for every y ∈ Y .
(iv) The sequence G = {log gn}∞n=1 is asymptotically additive on Y satisfying

lim
n→∞

1
n

∥∥∥∥ log
(

gn

e(Snh)

)∥∥∥∥∞
= 0.

(v)
∫

P(σX, π , f ) dm = ∫
h dm for all m ∈ M(Y , σY ).

Remark 6.10.
(1) Theorem 6.9(i) with f = 0 is equivalent to the condition found by Shin [26, Theorem

3.5] for the existence of a saturated compensation function between two-sided
irreducible shifts of finite type (see §7). Hence, by [26, Theorem 3.5], Theorem
6.9(i), (ii) and (v) are equivalent when f = 0 for a factor map between two-sided
irreducible shifts of finite type. By the result of Cuneo [9, Theorem 2.1], if G is
asymptotically additive then (v) holds for some h ∈ C(Y ).

(2) See §7 for some examples and properties of h.

Proof. It is clear that (iv) implies (iii). By Lemma 6.6, (iii) implies (ii) and (ii)
implies (i). Now we show that (i) implies (iv). Suppose that (i) holds. It is enough
to show that Lemma 4.1(ii) holds. Let X be an irreducible shift of finite type on a
set S of finitely many symbols and k be a weak specification number of X. Let L be
the cardinality of the set S. Let y = (y1, y2, . . . , yn, . . .) ∈ Y . For a fixed n ≥ 3, let
y1 = a, yn = b. Then π−1(y1) = {a1, . . . , aL1}, where ai ∈ S for 1 ≤ i ≤ L1, for some
L1 ≤ L, and π−1(yn) = {b1, . . . , bL2} where bj ∈ S for 1 ≤ j ≤ L2, for some L2 ≤ L.
Define Wij := {aix2 . . . xn−1bj ∈ Bn(X) : π(aix2 . . . xn−1bj ) = y1 . . . yn}. Let E

i,j
n (y)

be a set consisting of exactly one point from each cylinder set [u] of length n of X,
where u ∈ Wij . Define Ci,j := ∑

x∈E
i,j
n (y)

e(Snf )(x) and Mn := sup{e(Snf )(x)/e(Snf )(y) :
xi = yi , 1 ≤ i ≤ n}. If Wi,j = ∅, then define Ci,j := 0. Then

gn(y) ≥
∑

1≤i≤L1,1≤j≤L2

Ci,j ≥ 1
Mn

gn(y),

where in the second equality we use the fact that, for any En(y),

gn(y)

Mn

≤
∑

x∈En(y)

e(Snf )(x).

Hence, there exist i0, j0 such that

Ci0,j0 ≥ 1
L1L2Mn

gn(y) ≥ 1
L2Mn

gn(y). (35)

Note that (i0, j0) depends on n. There exists an allowable word w = w1 . . . wq of length q
in X, 0 ≤ q ≤ k, such that bj0wai0 is an allowable word of X. Take an allowable word
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ai0x2 . . . xn−1bj0 ∈ Wi0,j0 . Since X is an irreducible shift of finite type, we obtain a
periodic point x̃ := (ai0 , x2, . . . , xn−1, bj0 , w1, . . . , wq)∞ ∈ X. Let π(wi) = di for each
i = 1, . . . , q. Let y∗ := π(x̃). Then y∗ = (y1, . . . , yn, d1, . . . dq)∞ is a periodic point
of σY .

For a fixed n ≥ 3, define P0 := E
i0,j0
n (y). Define P1 by

P1 = {z = (zi)
∞
i=1 ∈ X : z1 . . . zn ∈ Wi0,j0 , zn+1 . . . zn+q = w, σn+qz = z}.

Observe that if z ∈ P1, then π(z) = y∗ and P1 is a set consisting of exactly one point from
each cylinder [u] of length (n + q) of X such that π(u) = y1 . . . ynd1 . . . dq satisfying
u1 . . . un ∈ Wi0,j0 and un+1 . . . un+q = w. Then

gn+q(y∗) = sup
En+q (y∗)

{ ∑
x∈En+q (y∗)

e(Sn+qf )(x)

}
≥

∑
x∈P1

e(Sn+qf )(x) ≥ em

Mn

( ∑
x∈P0

e(Snf )(x)

)
,

where m := min0≤i≤k{e(Sif )(x) : x ∈ X}, (S0f )(x) := 1 for every x ∈ X. Next define P2

by

P2 = {z = (zi)
∞
i=1 ∈ X : for each j = 0, 1, zj (n+q)+1 . . . zn(j+1)+jq ∈ Wi0,j0 ,

z(j+1)n+jq+1 . . . z(j+1)(n+q) = w, σ 2(n+q)z = z}.
Observe that if z ∈ P2, then π(z) = y∗ and P2 is a set consisting of one point from each
cylinder [u] of length (2n + 2q) of X such that π(u) = y1 . . . ynd1 . . . dqy1 . . . ynd1 . . .

dq satisfying u1 . . . un, un+q+1 . . . u2n+q ∈ Wi0,j0 and un+1 . . . un+q = u2n+q+1 . . .

u2n+2q = w. Hence,

g2(n+q)(y
∗) = sup

E2(n+q)(y
∗)

{ ∑
x∈E2(n+q)(y

∗)
e(S2(n+q)f )(x)

}

≥
∑
x∈P2

e(S2(n+q)f )(x) ≥ e2m

M2
n

( ∑
x∈P0

e(Snf )(x)

)2

.

Applying (35), we obtain

g2(n+q)(y
∗) ≥ e2m

M2
n

( ∑
x∈P0

e(Snf )(x)

)2

≥ e2mg2
n(y

∗)
L4M4

n

.

Similarly, for j ≥ 3, define the set Pj of periodic points by

Pj = {z = (zi)
∞
i=1 ∈ X : for each 0 ≤ l ≤ j − 1, zl(n+q)+1 . . . z(l+1)n+lq ∈ Wi0,j0 ,

z(l+1)n+lq+1 . . . z(l+1)(n+q) = w, σ j(n+q)z = z}.
If z ∈ Pj , then π(z) = y∗ and Pj is a set consisting of one point from each cylinder
[u] of length j (n + q) such that π(u) = (y1 . . . ynd1 . . . dq)j satisfying ul(n+q)+1 =
ai0 , u(l+1)n+lq = bj0 and u(l+1)n+lq+1 . . . u(l+1)(n+q) = w for each 0 ≤ l ≤ j − 1.
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Then we obtain

gj(n+q)(y
∗) = sup

Ej(n+q)(y
∗)

{ ∑
x∈Ej(n+q)(y

∗)
e(Sj (n+q)f )(x)

}

≥
∑
x∈Pj

e(Sj (n+q)f )(x) ≥ ejm

M
j
n

( ∑
x∈P0

e(Snf )(x)

)j

.

Applying (35), we obtain

gj(n+q)(y
∗) ≥ ejm

M
j
n

( ∑
x∈P0

e(Snf )(x)

)j

≥
(

em

L2M2
n

)j

g
j
n(y∗).

Since the function gn is locally constant, for n ≥ 3,

gj(n+q)(y
∗) ≥

(
em

L2M2
n

)j

sup{gn(z) : z ∈ [y1 . . . yn]}j

for every j ∈ N. Hence, condition (ii) in Lemma 4.1 holds. Applying Lemma 4.1, we obtain
(iv). Finally, (iv) ⇒ (v) is immediate and (v) implies (ii) by Lemma 6.7.

Recall that if f ∈ C(X) is in the Bowen class, then G = {log gn}∞n=1 satisfies (C1) and
(C2) and G has the unique Gibbs equilibrium state.

COROLLARY 6.11. Under the assumptions of Theorem 6.9, assume also that f ∈ C(X)

is a function in the Bowen class and let m be the unique Gibbs equilibrium state for G =
{log gn}∞n=1. Suppose that one of the equivalent statements in Theorem 6.9 holds. Then:

(i) m is an invariant weak Gibbs measure for h;
(ii) equation (28) holds by replacing fn by gn;

(iii) if m is a Gibbs measure for a continuous function, then G is almost additive.
Hence, if there is no sequence {Cn,m}n,m∈N satisfying (28) by replacing fn by gn, then there
does not exist a continuous function h on Y such that∫

P(σX, π , f ) dμ =
∫

h dμ

for every μ ∈ M(Y , σY ).

Proof. Since limn→∞(1/n)|| log(gn/e
Snh)||∞ = 0, applying the first part of the proof of

Lemma 5.5, m is an invariant weak Gibbs measure for h. To show the second statement, we
use similar arguments to the proof of Theorem 5.6. To show the third statement, we apply
the proof of Theorem 5.6. The last statement is obvious by Theorem 6.9.

Remark 6.12. Applying Theorem 4.3, we can study Theorem 6.9 under a more general
setting. Let (X, σX), (Y , σY ) be subshifts and π : X → Y be a one-block factor map.
Given a function f ∈ C(X), suppose that G = {log gn}∞n=1 satisfies Theorem 4.4(ii). Then
Theorem 6.9 holds. It would be interesting to study the conditions on factor maps π

satisfying Theorem 4.4(ii) for G.
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7. Applications
In this section, we give some examples and applications. Applying the results from the
previous sections, we study the existence of a saturated compensation function for a factor
map between subshifts and factors of weak Gibbs measures for continuous functions.

7.1. Existence of continuous saturated compensation functions. Let (X, σX) be an
irreducible shift of finite type, Y be a subshift and π : X → Y be a one-block factor map.
For n ∈ N, let φn be the continuous function on Y obtained by setting f = 0 in equation
(32). Set 
 = {log φn}∞n=1.

For a factor map π between subshifts, there always exists a Borel measurable saturated
compensation function −P(σX, π , 0) ◦ π given by a superadditive sequence −
 ◦ π ;
however, a continuous saturated compensation function does not always exist. Shin [26]
considered a one-block factor map π : X → Y between two-sided irreducible shifts of
finite type and gave an equivalent condition for the existence of a saturated compensation
function (see [26, Theorem 3.5] for details). Note that the condition is equivalent to
Theorem 6.9(i) with f = 0.

Here we characterize the existence of a saturated compensation function in terms of the
type of the sequence 
 by applying Theorem 6.9.

COROLLARY 7.1. Let (X, σX) be an irreducible shift of finite type, Y be a subshift and π :
X → Y be a one-block factor map. Then −h ◦ π , h ∈ C(Y ) is a saturated compensation
function if and only if one of the equivalent statements in Theorem 6.9 holds with f = 0.
In particular, a saturated compensation function exists if and only if 
 is asymptotically
additive on Y. If −h ◦ π is a compensation function, then h has the unique equilibrium state
and it is a weak Gibbs measure for h. If there does not exist {Cn,m}(n,m)∈N×N satisfying
equation (28) for 
, then there exists no continuous saturated compensation function
for π .

Proof. The result follows by setting f = 0 in Theorem 6.9 and Corollary 6.11.

Example 7.2. (A sequence satisfying (C1) and (C2) which is not asymptotically additive
[26]) Shin [26, Example 3.1] gave an example of a factor map π : X → Y between
two-sided irreducible shifts of finite type X, Y without a saturated compensation function.
We note that the same results hold for one-sided subshifts. The sequence 
 = {log φn}∞n=1
is a subadditive sequence satisfying (C1) and (C2) with bounded variation and there
exists a unique Gibbs equilibrium state ν for 
. Since there is no saturated compensation
function, there does not exist a continuous function h ∈ C(Y ) such that

lim
n→∞

1
n

∫
log φn dm =

∫
h dm

for every m ∈ M(Y , σY ). Hence, 
 is not an asymptotically additive sequence and there
does not exist a continuous function on Y for which ν is an invariant weak Gibbs measure
(see Theorem 7.8). Alternatively, a simple calculation shows that for any x ∈ [12m1] where
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m ≥ 3 is odd,

φ2+m(x)

φ2(x)φm(σ 2x)
= |π−1[12m1]|

|π−1[12]||π−1[2m−11]| = 1
2(m−1)/2 + 2

(see [26]). Hence, for any sequence {Cn,m}(n,m)∈N×N satisfying equation (28) for 
, we
obtain that C2,m ≥ 2(m−1)/2 + 2. By Corollary 7.1, there does not exist a continuous
saturated compensation function.

Remark 7.3.
(1) Pfister and Sullivan [20] studied a class of continuous functions satisfying bounded

total oscillations on two-sided subshifts and showed that if a continuous function
f belongs to the class under a certain condition then an equilibrium state for f is
a weak Gibbs measure for some continuous function. Shin [24, Proposition 3.5]
gave an example of a saturated compensation function G ◦ π for a factor map π :
X → Y between two-sided irreducible shifts of finite type X, Y where −G does not
have bounded total oscillations. Let (X+, σ+

X ) and (Y+, σ+
Y ) be the corresponding

one-sided shifts of finite type and consider the factor map π+ : X+ → Y+. Then
the corresponding saturated compensation function G+ ◦ π for π+, G+ ∈ C(Y+), is
obtained. Applying Theorem 6.9 and Corollary 6.11, −G+ has a unique equilibrium
state and it is a weak Gibbs measure for −G+.

(2) See §2 in [3] for examples of measures which are not weak Gibbs studied in quantum
physics.

Example 7.4. (A sequence satisfying (C1) and (C2) which is also asymptotically additive)
In [30], saturated compensation functions were studied to find the Hausdorff dimensions of
some compact invariant sets of expanding maps of the torus. In [30, Example 5.1], given
a factor map π between topologically mixing shifts of finite type X and Y, a saturated
compensation function G ◦ π , G ∈ C(Y ), was found and −G has a unique equilibrium
state ν which is not Gibbs. Applying Theorem 6.9 and Corollary 6.11, ν is an invariant
weak Gibbs measure for −G.

Remark 7.5.
(1) In [12, 31], the ergodic measures of full Hausdorff dimension for some compact

invariant sets of certain expanding maps of the torus were identified with equilibrium
states for sequences of continuous functions. If a saturated compensation function
exists, then they are the equilibrium states of a constant multiple of a saturated
compensation [30].

(2) In Example 7.4 [30, Example 5.1], X and Y are one-sided shifts of finite type.
Considering the corresponding two-sided shifts of finite type X̂, Ŷ and the factor
map π̂ between them, a saturated compensation function Ĝ ◦ π for π̂ , Ĝ ∈ C(Ŷ ), is
obtained in the same manner as G is obtained. The function −Ĝ on Ŷ does not have
bounded total oscillations (see Remark 7.3(1)).

7.2. Factors of invariant weak Gibbs measures. Factors of invariant Gibbs measures for
continuous functions and related topics have been widely studied (see, for example, [7, 8,
12, 16, 21–23, 27, 31–33]). For a survey of the study of factors of Gibbs measures, see the
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paper by Boyle and Petersen [4]. In this section, more generally, we study the properties of
factors of invariant weak Gibbs measures. Given a one-block factor map π : X → Y , and
f ∈ C(X), define gn for each n ∈ N as in (32) and G = {log gn}∞n=1 on Y.

THEOREM 7.6. Let (X, σX) be an irreducible shift of finite type, Y be a subshift and π :
X → Y be a one-block factor map. Suppose there exists μ such that μ is an invariant
weak Gibbs measure for f ∈ C(X). Then πμ is an invariant weak Gibbs measure for G =
{log gn}∞n=1 on Y. There exists h ∈ C(Y ) such that limn→∞(1/n)

∫
log gn dm = ∫

h dm

for all m ∈ M(Y , σY ) if and only if one of the equivalent statements in Theorem 6.9(i)–(iv)
holds. Moreover, such a function h exists if and only if the invariant measure πμ is a weak
Gibbs measure for a continuous function on Y.

Remark 7.7.
(1) If f is in the Bowen class, then there is a unique Gibbs equilibrium state for G and

Corollary 6.11 also applies.
(2) If there exists μ such that μ is an invariant weak Gibbs measure for f ∈ C(X), then

πμ is an equilibrium state for G.

Proof. To prove the first statement, we apply similar arguments to the proof of [32,
Theorem 3.7] and we outline the proof. Suppose that f ∈ C(X) has an invariant weak
Gibbs measure μ. Then there exists Cn > 0 such that

1
Cn

≤ μ[x1 . . . xn]
e−nP (f )+(Snf )(x)

≤ Cn

for each x ∈ [x1 . . . xn], where limn→∞(1/n) log Cn = 0. Since f has tempered variation,
if we let

Mn = sup
{

e(Snf )(x)

e(Snf )(y)
: x, y ∈ X, xi = yi for 1 ≤ i ≤ n

}
,

then limn→∞(1/n) log Mn = 0. Using the definition of the topological pressure and after
some calculations, we obtain that P(f ) = P(G). Since

πμ[y1 . . . yn] =
∑

x1...xn∈Bn(X)
π(x1...xn)=y1...yn

μ[x1 . . . xn],

using similar arguments to the proof of [32, Theorem 3.7], we obtain

1
CnMn

≤ πμ[y1 . . . yn]
e−nP (G)gn(y)

≤ CnMn.

Hence, πμ is an invariant weak Gibbs measure for G. The second statement holds by
Theorem 6.9. Now we show the last statement. Suppose such h exists. Modifying slightly
the proof of Corollary 6.11(i), taking into account the fact that πμ is a weak Gibbs measure
for G, we obtain that πμ is a weak Gibbs measure for h. To see the reverse implication,
suppose πμ is weak Gibbs for some h̃. Then there exists An > 0 such that

1
An

≤ πμ[y1 . . . yn]

e−nP (h̃)+(Snh̃)(y)
≤ An (36)
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for each y ∈ [y1 . . . yn], where limn→∞(1/n) log An = 0. If we let Kn = CnMn, then the
similar arguments to the latter part of the proof of Lemma 5.5 show that

1
KnAn

≤ gn(y)

e(Sn(h̃−P (h̃)+P (G)))(y)
≤ KnAn

for each y ∈ [y1 . . . yn]. Hence, G is asymptotically additive. Set h = h̃ −
P(h̃) + P(G).

The proof of Theorem 7.6 gives us the following result.

THEOREM 7.8. Under the assumptions of Theorem 6.9, suppose there exists μ such that μ

is an invariant weak Gibbs measure for f ∈ C(X). Then there exists h ∈ C(Y ) satisfying
the equivalent statements in Theorem 6.9 if and only if there exists a continuous function
on Y for which πμ is an invariant weak Gibbs measure on Y.

COROLLARY 7.9. Under the assumptions of Theorem 7.6, if there is no sequence
{Cn,m}n,m∈N satisfying equation (28) by replacing fn by gn, then there does not exist
a continuous function h on Y such that limn→∞(1/n)

∫
log gn dm = ∫

h dm for every
m ∈ M(Y , σY ). Hence, there exists no continuous function on Y for which πμ is an
invariant weak Gibbs measure on Y.

Proof. Suppose there exists h ∈ C(Y ) such that limn→∞(1/n)
∫

log gn dm = ∫
h dm for

every m ∈ M(Y , σY ). By Theorem 7.6, G is asymptotically additive and πμ is an invariant
weak Gibbs measure for h. Hence, there exists An > 0 such that (36) holds for h for each
y ∈ [y1 . . . yn], where limn→∞(1/n) log An = 0. Let Kn be defined as in the proof of
Theorem 7.6. Using P(h) = P(G) and additivity of {Snh}∞n=1, we obtain

1
Kn+mAn+mKnAnKmAm

≤ gn+m(y)

gn(y)gm(σn
Y y)

≤ Kn+mAn+mKnAnKmAm.

Define Cn,m := Kn+mAn+mKnAnKmAm for each n, m ∈ N. Then limn→∞(1/n) log
Cn,m = limm→∞(1/m) log Cn,m = 0. Hence, the result follows from Theorem 7.6.
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