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Abstract

We use the Weyl bound for Dirichlet L-functions to derive zero-density estimates for L-functions associated
to families of fixed-order Dirichlet characters. The results improve on previous bounds given by the author
when σ is sufficiently distant from the critical line.
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1. Introduction

The distribution of the nontrivial zeros of Dirichlet L-functions is of great importance
in analytic number theory. The generalised Riemann hypothesis claims that these zeros
all lie on the line 1

2 + iR; however, it is possible that they could lie anywhere in the
region (0, 1) + iR. In practice, it often suffices to employ an unconditional result,
known as a zero-density estimate, whose statement is not as strong as the generalised
Riemann hypothesis. Let χ be a primitive Dirichlet character modulo q, and suppose
that σ ∈ ( 1

2 , 1) and T ∈ (2,∞). Define R(σ, T) = [σ, 1] + i[−T , T] and let L(s, χ) be the
L-function associated to the character χ. Zero-density estimates are concerned with
the number

N(σ, T , χ) = #{� ∈ R(σ, T) : L(�, χ) = 0},
or rather, the average of this number over a family F of characters. The families
F = Or of primitive Dirichlet characters of order r will be the primary interest.
We denote by Or(Q) the set of χ ∈ Or with conductor q ∈ (Q, 2Q]. The generalised
Riemann–von Mangoldt formula [8, 18] gives the trivial bound N(σ, T , χ) � T log qT
for any primitive Dirichlet character χ, which is known to be sharp only for σ = 1

2 (see
[3, 19]).

The earliest zero-density estimates to feature an average over a family of
Dirichlet L-functions are due to Bombieri [4], Vinogradov [20] and Montgomery
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[14, 15]. Results containing averages over O2(Q) were first given by Jutila [12] and
Heath-Brown [11], both of whom followed the method laid down by Montgomery
to derive his results. Montgomery’s method reduces the problem to estimating mean
values of the type

Sk(Q, T) =
∑
χ∈F (Q)

∫ T

−T

∣∣∣∣∣
∑′

n�N

anχ(n)n−it
∣∣∣∣∣
2k

dt

and

Lk(Q, T) =
∑
χ∈F (Q)

∫ T

−T
|L( 1

2 + it, χ)|2k dt,

where F is the character family of interest and the prime (′) denotes that the sum is to
be taken over square-free n. A detailed outline of the method has been given in [5]. In
particular, if F = Or for some r � 2, we can show that

L1(Q, T) �
ε

(QT)1+ε when T2r−1 � Q2r−5. (1.1)

Indeed, (1.1) was proven for the case r = 2 in [13], for the cases r = 3, 4, 6 in [6],
and can be proven in the remaining cases using Theorem 1.6 of [2]. The zero-density
estimate of Jutila is derived using (1.1) and a suboptimal bound on S1(Q, T). In [5, 7],
we used the large sieve for real characters of Heath-Brown [11] to derive an estimate
forS1(Q, T) sharper than those used by Jutila and Heath-Brown to derive their results,
and consequently strengthened Jutila’s estimate to∑

χ∈O2(Q)

N(σ, T , χ) �
ε

(QT)εmin((QT)(4−4σ)/(3−2σ), (Q4T3)1−σ) (1.2)

in [6]. Additionally, as analogues to (1.2), we showed for T5 � Q that∑
χ∈O3(Q)

N(σ, T , χ)

�
ε

(QT)εmin(Q(16−10σ)/9T (4−4σ)/(3−2σ), Q(16−16σ)/(9−6σ)T (4−4σ)/(3−2σ), (Q4T3)1−σ)

(1.3)

and ∑
χ∈O4(Q)

N(σ, T , χ)

�
ε

(QT)εmin(Q(5−3σ)/3T (4−4σ)/(3−2σ), Q(5−5σ)/(3−2σ)T (4−4σ)/(3−2σ), (Q4T3)1−σ).

(1.4)

These results are derived using the large sieve for O3 and O4, respectively. Recently,
Balestrieri and Rome [2] generalised the work of Baier and Young [1] and Gao and
Zhao [9] to derive a large sieve estimate for general Or where r � 2. Using (1.1)
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together with Theorem 1.6 of [2], we can show along similar lines to (1.3) and (1.4)
that, for T2r−1 � Q2r−5,∑

χ∈Or(Q)

N(σ, T , χ)

�
ε

(QT)εmin(Q(6−4σ)/3T (4−4σ)/(3−2σ), Q(6−6σ)/(3−2σ)T (4−4σ)/(3−2σ), (Q4T3)1−σ).

(1.5)

If we could demonstrate that the estimate (1.1) still holds when k = 2, then we
could unconditionally improve on these zero-density estimates. Following the method
of Heath-Brown [11], we can at least show for F = Or that

L2(Q, T) �
ε

Q1+εT2+ε when T � Q, (1.6)

which is sharp in the Q-aspect, but unfortunately not in the T-aspect. Nonetheless, we
can use (1.6) to improve on (1.2), (1.3), (1.4) and (1.5) in the Q-aspect. Indeed, in [5, 7]
we used (1.6) to show that∑

χ∈O2(Q)

N(σ, T , χ) �
ε

(QT)εmin((Q3T4)(1−σ)/(2−σ), (QT)(3−3σ)/σ). (1.7)

Our results in [5, 7] for O3 and O4 can be improved by showing that Theorem 2.2
therein still holds under a weaker assumption on the relevant large sieve inequality,
as in Lemma 3.1 below. Indeed, under this weaker assumption, we can strengthen the
estimates in [7] to∑
χ∈O3(Q)

N(σ, T , χ)

�
ε

(QT)εmin(Q(16−10σ)/9T (4−4σ)/(2−σ), Q(13−13σ)/(6−3σ)T (4−4σ)/(2−σ), (QT)(3−3σ)/σ)

(1.8)

for T3 � Q2, and∑
χ∈O4(Q)

N(σ, T , χ) �
ε

(QT)εmin(Q(5−3σ)/3T (4−4σ)/(2−σ), (QT)(4−4σ)/(2−σ), (QT)(3−3σ)/σ),

(1.9)

for T2 � Q. Again, using Theorem 1.6 of [2], we can add to these the result∑
χ∈Or(Q)

N(σ, T , χ)

�
ε

(QT)εmin(Q(6−4σ)/3T (4−4σ)/(2−σ), Q(5−5σ)/(2−σ)T (4−4σ)/(2−σ), (QT)(3−3σ)/σ),

(1.10)

which is valid for T � Q. These estimates all improve in the Q-aspect on the
corresponding estimates obtained using (1.1). In general, a sharp bound for Lk+1(Q, T)
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will always lead to a stronger zero-density result than a sharp bound for Lk(Q, T). To
derive our main results, we consider bounds on Lk(Q, T) when k is arbitrarily large.

2. Statement of results

Unfortunately, no sharp upper bounds have been established for Lk(Q, T) when
k > 2. In [6] we adapted the method of Heath-Brown [11] to show that Lk(Q, T) �ε
(QT)k/2+ε, though we can obtain a better result from a much more trivial approach.
Indeed, Petrow and Young [16, 17] showed that the Weyl bound

L
( 1

2 + it, χ
) �
ε

q1/6+ε(|t| + 1)1/6+ε (2.1)

holds for any Dirichlet character χ modulo q, from which we derive the trivial bound

Lk(Q, T) �
ε

(QT)k/3+1+ε for all k � 1. (2.2)

Using (2.2) to estimate Lk(Q, T) for arbitrarily large k in the method of Montgomery,
we derive the following result.

THEOREM 2.1. For any Q, T � 2,∑
χ∈O2(Q)

N(σ, T , χ) �
ε

(QT)εmin((QT)(8−8σ)/3, (Q8T5)(1−σ)/(6σ−3)),

where σ ∈ ( 1
2 , 1).

The above is stronger than (1.7) in the Q-aspect when σ > 7
8 , and stronger in the

T-aspect for all σ > 1
2 . Additionally, it improves on (1.2) precisely when σ > 3

4 . Using
the same method as is used to prove Theorem 2.1, we can show that the density
conjecture ∑

χ∈O2(Q)

N(σ, T , χ) �
ε

(QT)2(1−σ)+ε (2.3)

is a consequence of the Lindelöf hypothesis for L-functions with real characters.
For cubic characters, we have the following analogue of Theorem 2.1.

THEOREM 2.2. For any Q, T � 2,∑
χ∈O3(Q)

N(σ, T , χ)

�
ε

(QT)εmin(Q(22−16σ)/9T (8−8σ)/3, Q4−4σT (8−8σ)/3, (Q8T5)(1−σ)/(6σ−3)),

where σ ∈ ( 1
2 , 1). Furthermore, this result holds if O3 is replaced by O6.

The immediate advantage of the above result, as compared to (1.3) and (1.8), is that
there is no restriction on the relation between Q and T. Additionally, Theorem 2.2 is
stronger than (1.3) in the Q-aspect when σ > 5

6 and in the T-aspect when σ > 3
4 , and

stronger than (1.8) in the Q-aspect when σ > 9
10 and in the T-aspect for all σ > 1

2 . The

https://doi.org/10.1017/S0004972723001156 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723001156


256 C. C. Corrigan [5]

fact that Theorem 2.2 holds for O6 as well as O3 is a direct result of Theorem 1.5 of
[1]. For O4, we derive the following slightly stronger result.

THEOREM 2.3. For any Q, T � 2,∑
χ∈O4(Q)

N(σ, T , χ)

�
ε

(QT)εmin(Q(7−5σ)/3T (8−8σ)/3, Q(11−11σ)/3T (8−8σ)/3, (Q8T5)(1−σ)/(6σ−3)),

where σ ∈ ( 1
2 , 1).

This improves the Q-aspect of (1.4) whenever σ > 9
11 and (1.9) whenever σ > 9

10 .
In the T-aspect, improvements are made in the same regions as with Theorems 2.1
and 2.2. Similarly, we have the following result.

THEOREM 2.4. For any Q, T � 2 and any integer r � 2,∑
χ∈Or(Q)

N(σ, T , χ)

�
ε

(QT)εmin(Q(8−6σ)/3T (8−8σ)/3, Q(14−14σ)/3T (8−8σ)/3, (Q8T5)(1−σ)/(6σ−3)),

where σ ∈ ( 1
2 , 1).

In the Q-aspect, this improves on (1.5) when σ > 5
6 and on (1.10) when σ > 9

10 .

REMARK 2.5. The reason for Theorem 2.1 containing the minimum of two quantities,
as opposed to the minima of three quantities in Theorems 2.2, 2.3 and 2.4, essentially
comes down to the fact that the available large sieve inequality for O2 is optimal,
whereas this is not the case for Or when r > 2. The available large sieve inequalities
for Or with r > 2 are given as minima of four quantities, two of which are used in the
proofs of the last three theorems above. Note, however, that the last term in the minima
of the above results is derived using the large-moduli approach of Montgomery (see [5,
Theorem 3.1.3]), and as a result is independent of the large sieve inequalities (see (4.5)
below).

3. Lemmas

In this section we present the prerequisites in terms of an arbitrary family F of
primitive Dirichlet characters. To estimate S1(Q, T), we consider the polynomials
Δ(Q, T , N) such that

S1(Q, T) �
ε

(QN)εΔ(Q, T , N)
∑′

n�N

|an|2

for all Q, T , N � 2 and any sequence (an)n�N of complex numbers. In practice, a bound
for Δ(Q, T , N) can easily be obtained from the corresponding large sieve estimate, as in
[5]. The method of Montgomery can then be summarised in the following two results.
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LEMMA 3.1. Suppose that X, Y � 2 are such that X � Y � (QT)A for some absolute
constant A. Then∑
χ∈F (Q)

N(σ, T , χ)

�
ε

(QT)ε((Lk(Q, T)Δ(Q, T , X)kYk(1−2σ))1/(k+1) + Δ(Q, T , X)X1−2σ+Δ(Q, T , Y)Y1−2σ)

for any k � 1, where the implied constant does not depend on k.

PROOF. We demonstrated the case k = 1 in [6]. The remaining cases follow similarly,
by using Hölder’s inequality to derive the estimate

#R2 �
ε

(QT)εYk(1−2σ)/(k+1)

×
( ∑

(�,χ)∈R2

|MX( 1
2 + it�, χ)|2

)k/(k+1)( ∑
(�,χ)∈R2

|L( 1
2 + it�, χ)|2k

)1/(k+1)
,

where R2 is as defined in [6]. �

LEMMA 3.2. For any Q, T � 2,∑
χ∈F (Q)

N(σ, T , χ) �
ε

(QT)ε((Lk(Q, T)2Q2kTk)(1−σ)/(2−k+σ(2k−2)) + (Q2T)(1−σ)/(2σ−1))

for any k � 1, where the implied constant does not depend on k.

PROOF. The case k = 1 is shown in [6]. The remaining cases follow similarly using
the estimate

#{(�, χ) ∈ R2 : |L( 1
2 + it�, χ)| � V

} �
ε

(QT)εV−2kLk(Q, T)

to derive a bound for #R2, where R2 is defined as in [6]. �

In this paper, we consider the case where k is taken arbitrarily large. The above
lemmas are used to derive the following two results, from which our main results
follow.

LEMMA 3.3. Suppose that η,ϑ � 0 are constants such that the bound

L
( 1

2 + it, χ
) �
ε

qη+ε(|t| + 1)ϑ+ε

holds for all χ ∈ F , where q is the conductor of χ. Then for any Q, T � 2,∑
χ∈F (Q)

N(σ, T , χ)

�
ε

(QT)ε(Q2ηT2ϑΔ(Q, T , X)Y1−2σ + Δ(Q, T , X)X1−2σ + Δ(Q, T , Y)Y1−2σ),

where X, Y � 2 are as in Lemma 3.1.
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PROOF. Using the trivial bound #F (Q) � Q2 and integrating trivially over
t ∈ [−T , T], the hypothesis gives

Lk(Q, T)1/(k+1) �
ε

Q(2+2kη)/(k+1)+εT (1+2kϑ)/(k+1)+ε

for any integer k � 1. Consequently,

Lk(Q, T)1/(k+1)Δ(Q, T , X)k/(k+1)Yk(1−2σ)/(k+1)

�
ε

(QT)(A+2)/(k+1)+εQ2ηT2ϑΔ(Q, T , X)Y1−2σ,

where A is as in Lemma 3.1. As the implied constant does not depend on k, we
may take k to be sufficiently large that (A + 2)/(k + 1) � ε. The result then follows
by Lemma 3.1. �

LEMMA 3.4. Let η,ϑ � 0 be as in Lemma 3.3 and suppose that Q, T � 2. Then
∑
χ∈F (Q)

N(σ, T , χ) �
ε

(Q2+4ηT1+4ϑ)(1−σ)/(2σ−1)+ε

whenever σ � 1
2 + ε.

PROOF. The result follows from Lemma 3.2 in much the same manner as Lemma 3.3
from Lemma 3.1. �

4. Proof of the main results

To derive our main results from the above lemmas, we will employ the Weyl bound
(2.1). Note that the last term in the minima of the theorems follows by taking (η,ϑ) =
( 1

6 , 1
6 ) in Lemma 3.4, and thus it suffices to use Lemma 3.3 to prove the remaining

terms.

PROOF OF THEOREM 2.1. As in [6, 7], we can deduce by Corollary 1 of [11] that

Δ(Q, T , N) � QT + N.

For appropriate η,ϑ � 0, Lemma 3.3 then gives
∑
χ∈O2(Q)

N(σ, T , χ) �
ε

(QT)ε(Q2ηT2ϑ(QT + X)Y1−2σ + QTX1−2σ + Y2−2σ)

�
ε

Q(2+4η)(1−σ)+εT (2+4ϑ)(1−σ)+ε (4.1)

on taking X = QT and Y = Q1+2ηT1+2ϑ, from which the assertion follows on taking
(η,ϑ) = ( 1

6 , 1
6 ). �
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PROOF OF THEOREM 2.2. As in [6, 7], we can show using Theorem 1.4 of [1] that

Δ(Q, T , N) � min(Q5/3T + N, Q11/9T + Q2/3N).

By Lemma 3.3, we see for appropriate η,ϑ � 0 that∑
χ∈O3(Q)

N(σ, T , χ) �
ε

(QT)ε(Q2ηT2ϑmin(Q5/3T + X, Q11/9T + Q2/3X)Y1−2σ

+min(Q5/3TX1−2σ + Y2−2σ, Q11/9TX1−2σ + Q2/3Y2−2σ))

�
ε

min(Q(10/3+4η)(1−σ)+ε, Q2/3+(10/9+4η)(1−σ)+ε)T (2+4ϑ)(1−σ)+ε, (4.2)

where in the first term of the minimum we have taken

X = Q5/3T and Y = Q5/3+2ηT1+2ϑ,

and in the second we have taken

X = Q5/9T and Y = Q5/9+2ηT1+2ϑ.

The desired result follows from taking (η,ϑ) = ( 1
6 , 1

6 ) in (4.2). �

PROOF OF THEOREM 2.3. As in [6, 7], Lemma 2.10 of [9] can be used to show that

Δ(Q, T , N) � min(Q3/2T + N, Q7/6T + Q2/3N).

Then, by Lemma 3.3, for appropriate η,ϑ � 0,∑
χ∈O4(Q)

N(σ, T , χ) �
ε

(QT)ε(Q2ηT2ϑmin(Q3/2T + X, Q7/6T + Q2/3X)Y1−2σ

+min(Q3/2TX1−2σ + Y2−2σ, Q7/6TX1−2σ + Q2/3Y2−2σ))

�
ε

min(Q(3+4η)(1−σ)+ε, Q2/3+(1+4η)(1−σ)+ε)T (2+4ϑ)(1−σ)+ε, (4.3)

where in the first term of the minimum we have taken

X = Q3/2T and Y = Q3/2+2ηT1+2ϑ,

and in the second we have taken

X = Q1/2T and Y = Q1/2+2ηT1+2ϑ.

The assertion then follows from taking (η,ϑ) = ( 1
6 , 1

6 ) in (4.3). �

PROOF OF THEOREM 2.4. It follows from Theorem 1.6 of [2] that

Δ(Q, T , N) � min(Q2T + N, Q4/3T + Q2/3N).

Then, by Lemma 3.3, for appropriate η,ϑ � 0,∑
χ∈O4(Q)

N(σ, T , χ) �
ε

(QT)ε(Q2ηT2ϑmin(Q2T + X, Q4/3T + Q2/3X)Y1−2σ

+min(Q2TX1−2σ + Y2−2σ, Q4/3TX1−2σ + Q2/3Y2−2σ))

�
ε

min(Q(4+4η)(1−σ)+ε, Q2/3+(4/3+4η)(1−σ)+ε)T (2+4ϑ)(1−σ)+ε, (4.4)
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where in the first term of the minimum we have taken

X = Q2T and Y = Q2+2ηT1+2ϑ,

and in the second we have taken

X = Q2/3T and Y = Q2/3+2ηT1+2ϑ.

The proof is complete on taking (η,ϑ) = ( 1
6 , 1

6 ) in (4.4). �

It is clear from (4.1) how the density conjecture for real characters (2.3) follows from
the Lindelöf hypothesis. However, an analogous result of the same strength cannot be
established for O3, O4 or Or using (4.2), (4.3) or (4.4), respectively. Additionally, it
is clear that the bound derived from Lemma 3.4 has no dependence on the character
family F . Indeed, using the above method, we can show that∑

q�Q

∑∗

χ mod q

N(σ, T , χ) � (QT)εmin(Q(14−14σ)/3T (8−8σ)/3, Q(8−8σ)/(6σ−3)T (5−5σ)/(6σ−3)),

(4.5)

which improves on Theorem 12.2 of [14], and confirms the density conjecture for
σ > 11

12 . Heath-Brown [10], however, was able to show that the density conjecture holds
in the larger range σ > 11

14 .
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