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Vector-borne diseases, such as chikungunya, dengue, malaria, West Nile virus, yellow
fever and Zika, pose a major global public health problem worldwide. In this paper
we investigate the propagation dynamics of diffusive vector-borne disease models in
the whole space, which characterize the spatial expansion of the infected hosts and
infected vectors. Due to the lack of monotonicity, the comparison principle cannot be
applied directly to this system. We determine the spreading speed and minimal wave
speed when the basic reproduction number of the corresponding kinetic system is
larger than one. The spreading speed is mainly estimated by the uniform persistence
argument and generalized principal eigenvalue. We also show that solutions converge
locally uniformly to the positive equilibrium by employing two auxiliary monotone
systems. Moreover, it is proven that the spreading speed is the minimal wave speed
of travelling wave solutions. In particular, the uniqueness and monotonicity of
travelling waves are obtained. When the basic reproduction number of the
corresponding kinetic system is not larger than one, it is shown that solutions
approach to the disease-free equilibrium uniformly and there is no travelling wave
solutions. Finally, numerical simulations are presented to illustrate the analytical
results.

Keywords: Diffusive vector-borne disease model; generalized principal eigenvalue;
asymptotic spreading; minimal wave speed; upper and lower solutions
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1. Introduction

Vector-borne diseases, such as chikungunya, dengue, malaria, West Nile virus, yel-
low fever and Zika, posed a major global public health problem worldwide. For
instance, dengue is endemic in more than 100 countries with 100–400 million
infections occur yearly (WHO [55]). In 2014–2015, an outbreak of chikungunya
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originating on the Indian Ocean islands spread, via viremic travelers, to the Amer-
icas with a total of 1,071,696 and 635,955 suspected cases (including 169 and 82
deaths) in 2014 and 2015, respectively (PAHO [39]). In 2013–2014, a large-scale
Zika outbreak was reported in Pacific islands and spread to Brazil and other coun-
tries and territories in the Americas, including the United States, with a total of
515,348 suspected cases in 2015–2016 (PAHO [40]).

For many vector-borne diseases, mosquitoes are the vectors. For example, Aedes
mosquitoes are the primary vectors for transmitting chikungunya, dengue and Zika
viruses (Gao et al. [18], WHO [56]). In modern time, humans travel more fre-
quently on scales from local to global. Such movements can spread disease pathogens
over long distances and can threaten public health (Lounibos [31]). It has been
observed that human movement is essential for the spread of vector-borne diseases
(Stoddard et al. [46, 47]). Thus, it is crucial to consider the influence of host and
vector movements on the transmission dynamics and spatial spread of vector-borne
diseases.

Reaction-diffusion equations have been frequently used to model the spreading of
some vector-borne diseases, see Favier et al. [14], Fitzgibbon et al. [17], Lewis et al.
[24], Wang and Zhao [49], and the reviews by Fitzgibbon and Langlais [15] and
Ruan and Wu [43]. In order to provide a qualitative description of the Zika outbreak
in Rio de Janeiro in 2015–2016, Fitzgibbon et al. [16] proposed and investigated
the following vector-borne epidemic model with spatial dependence:⎧⎪⎨⎪⎩
∂tVs = ∇ · (d1(x)∇Vs) + (Vs + Vi)[β(x) − μ(x)Vs] − σ1(x)HiVs, x ∈ Ω, t > 0,
∂tVi = ∇ · (d1(x)∇Vi) + σ1(x)HiVs − μ(x)(Vs + Vi)Vi, x ∈ Ω, t > 0,
∂tHi = ∇ · (d2(x)∇Hi) + σ2(x)Hs(x)Vi − ρ(x)Hi, x ∈ Ω, t > 0

(1.1)
with homogeneous Neumann boundary conditions and initial conditions⎧⎪⎨⎪⎩

∂

∂n
Vs(x, t) =

∂

∂n
Vi(x, t) =

∂

∂n
Hi(x, t) = 0, x ∈ ∂Ω, t > 0,

Vs(x, 0) = Vs,0(x), Vi(x, 0) = Vi,0(x), Hi(x, 0) = Hi,0(x), x ∈ Ω,

where Ω ⊂ R
2 is a smooth, bounded domain, and n is the outer normal vector,

Vs(x, t), Vi(x, t) and Hi(x, t) represent the densities of uninfected vectors, infected
vectors and infected hosts in location x and at time t, respectively, Hs(x) is the
density of uninfected hosts, β(x) formulates the breeding rate of vectors, μ(x) is the
loss rate of vectors due to the environmental crowding, ρ(x) denotes the loss rate of
infected hosts, σ1(x) and σ2(x) are the transmission rates of uninfected vectors and
uninfected hosts, respectively, d1(x) and d2(x) reflect the diffusion rates of vectors
and infected hosts, respectively.

The simulation results in [16] indicate that the location and magnitude of local
outbreaks of the epidemic at the beginning of the season can have significant impact
on the spatial development and final size at the end of the season. Recently, there has
been further investigation on reaction-diffusion model (1.1). Magal et al. [33, 34]
considered the global dynamics of solutions, redefined and investigated the basic
reproduction number for this spatial epidemic model. When all parameters in (1.1)
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Spreading Speeds and Travelling Wave Solutions 139

are positive constants, Cai et al. [5] studied global stability of the positive equilib-
rium. Recently, Li and Zhao [26] studied the global dynamics of a modified model
of (1.1) by including the effect of seasonality.

Based on the extinction or persistence of vector-borne diseases formulated in [5,
16, 33, 34], we plan to explore how fast the infected vectors and hosts expand when
they are locally introduced into the whole space occupied by uninfected vectors. For
this purpose, we first consider the asymptotic spreading of the following rescaled
Cauchy problem as all parameters of (1.1) are spatially homogeneous⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tVs = ∂xxVs + β(Vs + Vi) − μ(Vs + Vi)Vs − σ1HiVs, x ∈ R, t > 0,
∂tVi = ∂xxVi + σ1HiVs − μ(Vs + Vi)Vi, x ∈ R, t > 0,
∂tHi = d∂xxHi + σ2HsVi − ρHi, x ∈ R, t > 0,

Vs(x, 0) = Vs,0(x) =
β

μ
, Vi(x, 0) = Vi,0(x), Hi(x, 0) = Hi,0(x), x ∈ R,

(1.2)
in which parameters and initial conditions satisfy the following hypotheses

(H1) d, σ1, σ2, ρ, β, μ, Hs are positive constants;

(H2) Vi,0(x),Hi,0(x) are nonnegative, bounded, continuous functions, and Vi,0(x) +
Hi,0(x) admits nonempty compact support in x ∈ R.

We then study the existence and nonexistence of travelling wave solutions. Here, a
travelling wave solution is a special entire positive solution taking the form

Vs(x, t) = φ(ξ), Vi(x, t) = ϕ(ξ), Hi(x, t) = ψ(ξ), ξ = x+ ct,

in which c is the wave speed while φ, ϕ, ψ are wave profiles. By the definition, c and
(φ, ϕ, ψ) must satisfy the following wave profile system⎧⎪⎨⎪⎩

cφ′(ξ) = φ′′(ξ) + [φ(ξ) + ϕ(ξ)][β − μφ(ξ)] − σ1φ(ξ)ψ(ξ),
cϕ′(ξ) = ϕ′′(ξ) + σ1φ(ξ)ψ(ξ) − μϕ(ξ)[φ(ξ) + ϕ(ξ)],
cψ′(ξ) = dψ′′(ξ) + σ2Hsϕ(ξ) − ρψ(ξ)

(1.3)

for ξ ∈ R. Due to the biological background, the wave profile also satisfies⎧⎨⎩limξ→−∞ φ(ξ) = β
μ , lim

ξ→−∞
ϕ(ξ) = lim

ξ→−∞
ψ(ξ) = 0,

lim inf
ξ→+∞

φ(ξ) > 0, lim inf
ξ→+∞

ϕ(ξ) > 0, lim inf
ξ→+∞

ψ(ξ) > 0.
(1.4)

In this paper, we answer the above questions by estimating the speed at which the
hosts and vectors expand spatially by the asymptotic speed of spreading (for short,
the spreading speed) and the minimal wave speed of travelling wave solutions. For
monotone semiflows, these two propagation thresholds have been widely studied
in different parabolic type equations or systems [1, 2, 4, 27, 28, 32, 51, 52, 54].
Moreover, these two propagation thresholds of nonmonotone systems that can be
controlled by two monotone systems admitting the same propagation threshold
have been investigated in [21, 25, 48, 53, 62].
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Modeling the spatial propagation of infectious diseases by spreading speed and
travelling wave solutions is an important topic in mathematical epidemiology [37,
41, 44, 64]. When the travelling wave solutions of epidemic models are concerned,
there are many important and classical results, and we may refer to some mono-
graphs including [37, 41, 44, 64]. For the spreading speed of non-cooperative
epidemic models, Ducrot [9] obtained the speed by using the idea of uniform persis-
tence for a classical epidemic model, Lin et al. [30] established the speed of a delayed
epidemic model. Ducrot and his co-authors [8, 10, 11] studied the spreading speed
of several predator-prey reaction-diffusion systems, Lin et al. [29] investigated the
spreading speed in an integrodifference predator-prey system without comparison
principle. We also refer to [6, 19, 36, 38, 58] and references therein for other
non-cooperative systems.

Evidently, (1.2) is not even quasi-monotone, which leads to the lack of compar-
ison principle for this system and the above results do not work directly to this
system. To estimate the propagation threshold, we use the idea in Ducrot [9] to
obtain the lower bound of the spreading speed. During this process, we further
study the principal eigenvalue problem of a weakly coupled elliptic system in a
bounded domain by applying the corresponding generalized principal eigenvalue
problem in the whole space [19]. In addition, we introduce a limiting system to
estimate the principal eigenvalue and then achieve our desired results by taking
a limiting procedure. Furthermore, we construct two auxiliary monotone systems
and apply the theory of monotone dynamical systems to prove the convergence to
the positive equilibrium. Finally, we find the spreading speed is the minimal wave
speed of travelling wave solutions or the threshold such that (1.3)–(1.4) has a pos-
itive solution. As a by-product, we obtain the monotonicity and uniqueness in the
sense of phase shift of positive solutions to (1.3)–(1.4).

The rest of this paper is organized as follows. We start in § 2 with some prelimi-
naries and our main results. Section 3 is devoted to estimating the upper and lower
bounds of the spreading speed. In § 4, we obtain the convergence of solutions. The
minimal wave speed of travelling wave solutions is investigated in § 5. We give some
numerical simulations in § 6 and present a discussion in § 7.

2. Preliminaries and main results

Before stating the main results of this paper, we give some preliminaries as fol-
lows. A matrix A = (ai,j)n×n is essentially nonnegative if A − min1�i�n(ai,i)In is
nonnegative, where In is the n× n identity matrix. Let the Banach space

X := BUC(R,R3)

denote the space of all bounded and uniformly continuous functions from R into
R

3, which is equipped with the usual supremum norm ‖ · ‖X .
Let m := max{supx∈R

Vi,0(x), supx∈R
Hi,0(x)} > 0 be given. Define the set of

initial data Y ⊂ X as

Y = {(Vs,0, Vi,0,Hi,0) ∈ X | Vs,0 = β/μ, 0 � Vi,0,Hi,0 � m, Vi,0,Hi,0 �≡ 0}.
We first recall a convergence result of the scalar Fisher-KPP equation [45, 61].
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Lemma 2.1. Consider the Fisher-KPP equation{
∂tv = ∂xxv + v(β − μv), x ∈ R, t > 0,
v(x, 0) = v0(x), x ∈ R,

(2.1)

where β, μ > 0 are constants and v0(x) � 0 is a bounded, continuous function
satisfying lim inf |x|→∞ v0(x) > 0. Then

lim
t→∞ v(x, t) =

β

μ
uniformly in x ∈ R.

Moreover, assume that v(x, t) = ζ(x+ ct) is a positive bounded travelling wave
solution of (2.1) such that

lim inf
ξ→−∞

ζ(ξ) > 0, lim inf
ξ→+∞

ζ(ξ) > 0,

then ζ(ξ) = β
μ , ξ ∈ R.

Applying lemma 2.1 to the equation of Vs + Vi, we obtain the following
boundedness result.

Lemma 2.2. For any initial data (Vs,0, Vi,0,Hi,0) ∈ Y, system (1.2) admits a glob-
ally classical, positive and bounded solution; i.e. there exists a constant M > 0
independent of (x, t) such that

‖(Vs, Vi,Hi)(·, t;Vs,0, Vi,0,Hi,0)‖X � M, t ∈ [0,∞).

Proof. The local existence of (1.2) is evident. For any given A � β
μ , we define B,C >

0 by

σ1AC = μB2, σ2HsB = ρC.

Clearly, A→ ∞ implies that B → ∞, C → ∞. Then (0, 0, 0) and (A,B,C) are a
pair of generalized upper-lower solutions of (1.2) by selecting A � β/μ large enough
such that the initial condition holds. Then there exists a constant M(m) > 0 such
that 0 � Vs, Vi,Hi � M and the main result is clear.

Moreover, we show further bounds of solutions. For given m > 0, adding the
Vs-equation to the Vi-equation implies that Vs + Vi satisfies{

∂t(Vs + Vi) = ∂xx(Vs + Vi) + (Vs + Vi)[β − μ(Vs + Vi)], x ∈ R, t > 0,
β
μ � (Vs,0 + Vi,0)(x) � β

μ +m, x ∈ R.

Lemma 2.1 ensures that

lim
t→∞(Vs + Vi)(x, t) =

β

μ
uniformly in x ∈ R, (2.2)

β

μ
� (Vs + Vi)(x, t) � β

μ
+m for all (x, t) ∈ R × [0,∞). (2.3)
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From the Vs-equation, we also have

0 � Vs(x, t) � β

μ
for all (x, t) ∈ R × [0,∞). (2.4)

The proof is complete. �

Based on the boundedness of solutions and the standard estimates in [23], we
have the following uniform estimates:

Lemma 2.3. Assume that (Vs, Vi,Hi) is the solution of (1.2) satisfying |Vs|, |Vi|,
|Hi| � M0 for some constant M0 > 0. Then there exists a constant M1 > 0 such
that

|∂tu(x, t)|, |∂xu(x, t)|, |∂ttu(x, t)|, |∂xxu(x, t)|, |∂xxxu(x, t)| � M1,

where u ∈ {Vs, Vi,Hi}, x ∈ R, t � 1.

In the corresponding kinetic system of (1.2), the threshold

R0 =
Hsσ1σ2

ρμ

is called the basic reproduction number [16, 33]. If R0 � 1, then there exists a
disease-free equilibrium E1 = (β/μ, 0, 0). When R0 > 1, it also admits a positive
equilibrium [16, 33]

E∗ = (V ∗
s , V

∗
i ,H

∗
i ) =

(
β

μR0
,
β(R0 − 1)
μR0

,
β(R0 − 1)

σ1

)
.

To state our conclusion, we consider the following cooperative system⎧⎪⎨⎪⎩
∂tvi = ∂xxvi + σ1hi(β

μ − vi) − βvi, x ∈ R, t > 0,
∂thi = d∂xxhi + σ2Hsvi − ρhi, x ∈ R, t > 0,
(vi, hi)(x, 0) = (ψ1, ψ2)(x) := Ψ, x ∈ R,

(2.5)

where ψi(i = 1, 2) are bounded, uniformly continuous functions, and 0 � ψ1 � V ∗
i ,

0 � ψ2 � H∗
i . Note that (2.5) is a cooperative, irreducible system such that it gen-

erates a monotone semiflow. Thus the result in Liang and Zhao [28] implies that
(2.5) has the following propagation properties.

Lemma 2.4. If R0 > 1, then there is a constant c∗ > 0 that is the spreading speed
and minimal wave speed of (2.5) in the following sense:

(i) Spreading speed: if vi(x, 0) + hi(x, 0) admits nonempty compact support,
then

lim sup
t→∞

sup
|x|�ct

[vi(x, t) + hi(x, t)] = 0 for any c > c∗,

lim sup
t→∞

sup
|x|�ct

(|vi(x, t) − V ∗
i | + |hi(x, t) −H∗

i |) = 0 for any 0 < c < c∗,
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(ii) Minimal wave speed: (2.5) admits a monotone travelling wave solution
(ϕ̃, ψ̃)(ξ) with ξ = x+ ct, c > 0, connecting (0, 0) to (V ∗

i ,H
∗
i ) if and only if

c � c∗.

We now analyse the definition of c∗ in order to estimate it in applications. Since
the system also satisfies the subhomogeneous property, results in Liang and Zhao
[28, sections 3 and 5] imply that c∗ is determined by the following linear system

{
∂tvi = ∂xxvi + σ1β

μ hi − βvi, x ∈ R, t > 0,
∂thi = d∂xxhi + σ2Hsvi − ρhi, x ∈ R, t > 0.

For such a linear cooperative system, the threshold c∗ has been investigated in
several studies, see e.g., Hsu and Yang [20], Wu and Hsu [57]. To determine c∗, we
further consider the following eigenvalue problem

λ(γ)
(
ϕ1

ϕ2

)
=

⎡⎣γ2

(
1 0
0 d

)
+

⎛⎝ −β βσ1

μ
σ2Hs −ρ

⎞⎠⎤⎦(ϕ1

ϕ2

)

=: (γ2D + L)
(
ϕ1

ϕ2

)
.

From [28], c∗ is the threshold such that

λ(γ)
(
ϕ1

ϕ2

)
= cγ

(
ϕ1

ϕ2

)

has a positive eigenvector (ϕ1, ϕ2)T if c � c∗.
Note that L and A(γ) := (γ2D + L) are essentially nonnegative and irreducible

matrices, we can estimate c∗ by using the idea in [19, pp. 110]. Calculating the
above eigenvalue problem, for any given γ � 0, the larger eigenvalue or the so-called
Perron-Frobenius eigenvalue (see [19]) of A(γ) is given by

λ(γ) :=
(d+ 1)γ2 − (β + ρ) +

√
[(d− 1)γ2 − ρ+ β]2 + 4βρR0

2

� λ(0) =
−(β + ρ) +

√
(β − ρ)2 + 4βρR0

2

>
−(β + ρ) +

√
(β − ρ)2 + 4βρ
2

= 0, γ � 0.

Moreover, λ(γ) is simple and has a positive eigenvector (ϕ1, ϕ2)T . In fact, (ϕ1, ϕ2)T

is also the corresponding eigenvector of the principal eigenvalue (the larger
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eigenvalue) of the following irreducible and positive matrix

A(γ) +
(
β + ρ 0

0 β + ρ

)
,

for which we can use the Perron-Frobenius theorem. Evidently, regarding γ as the
unique variable, there exists γ′ > 0 such that

d2[λ(γ)]
dγ2

>
d+ 1

2
, γ > γ′,

which further implies that

lim
γ→0

λ(γ)
γ

= lim
γ→∞

λ(γ)
γ

= +∞.

Using these two limits, we know that

c∗ := min
γ>0

λ(γ)
γ

= min
γ>0

(d+ 1)γ2 − (β + ρ) +
√

[(d− 1)γ2 − ρ+ β]2 + 4βρR0

2γ
(2.6)

is positive and finite, which is also attained for some finite γ∗ > 0. By direct calcu-
lation, we know that λ(γ)

γ is strictly convex (also see [19, lemma 6.2]), so γ∗ > 0 is
unique.

At the same time, due to the special form of travelling wave solutions, (2.5) has a
travelling wave solution (ϕ̃, ψ̃) if and only if ϕ̃ satisfies the following quasimonotone
equation

cϕ̃′(ξ) = ϕ̃′′(ξ) + σ1(β/μ− ϕ̃(ξ))(J ∗ ϕ̃)(ξ) − βϕ̃(ξ) (2.7)

with ϕ̃(−∞) = 0, ϕ̃(∞) = V ∗
i , where

ψ̃(ξ) = σ2Hs

∫ ∞

0

e−ρt

√
4πdt

∫
R

e−
y2

4dt ϕ̃(ξ − ct− y)dydt := (J ∗ ϕ̃)(ξ) (2.8)

is obtained by using the elementary solution of heat equations.
Linearizing (2.7) at zero and plugging eγξ into it, we obtain the corresponding

characteristic equation

Λ(γ, c) := γ2 − cγ − β − βρR0

dγ2 − cγ − ρ
= 0, γ ∈ [0, γ+), (2.9)

where γ+ = c+
√

c2+4dρ

2d . By direct calculation, we obtain that Λ(0, c) =
β(R0 − 1) > 0, Λ(γ, c) → ∞ for any c � 0 as γ → γ+−, and ∂γγΛ(γ, c) > 0 for
any c � 0, γ ∈ [0, γ+), which implies that Λ(γ, c) is convex in γ ∈ [0, γ+). More-
over, since ∂cΛ(γ, c) < 0 for any given γ ∈ [0, γ+), Λ(γ, c) is continuous and strictly
decreasing in c ∈ [0,∞) such that for any γ ∈ [0, γ+), Λ(γ, 0) � β(R0 − 1) > 0,
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limc→∞ Λ(γ, c) = −∞. We now define the following bounded constant

c∗ := inf
{
c > 0 | Λ(γ, c) = 0 has exact one positive root for γ ∈ [0, γ+)

}
, (2.10)

which is the minimal wave speed of (2.7) ([60, 65]). Since the travelling wave in
lemma 2.4 is equivalent to that of (2.7), lemma 2.4 implies that the two definitions
of c∗ are equivalent.

With the above constants, we now state our main results as follows.

Theorem 2.5. Suppose that R0 > 1 holds. Then the solution of (1.2) satisfies the
following spreading properties:

(i) For any given c > c∗, one has

lim sup
t→∞

sup
|x|�ct

[∣∣∣∣Vs(x, t) − β

μ

∣∣∣∣+ Vi(x, t) +Hi(x, t)
]

= 0;

(ii) For any given 0 < c < c∗, one has

lim sup
t→∞

sup
|x|�ct

(|Vs(x, t) − V ∗
s | + |Vi(x, t) − V ∗

i | + |Hi(x, t) −H∗
i |) = 0.

Moreover, (1.3)–(1.4) has a monotone solution if and only if c � c∗. In particular,
if (1.3)–(1.4) has a monotone solution, then it must satisfy

lim
ξ→∞

φ(ξ) = V ∗
s , lim

ξ→∞
ϕ(ξ) = V ∗

i , lim
ξ→∞

ψ(ξ) = H∗
i (2.11)

and it is unique in the sense of phase shift; that is, if (φ1(ξ), ϕ1(ξ), ψ1(ξ)) is a
positive solution of (1.3)–(1.4), then there exists h ∈ R such that

(φ(ξ), ϕ(ξ), ψ(ξ)) = (φ1(ξ + h), ϕ1(ξ + h), ψ1(ξ + h)), ξ ∈ R.

In addition, φ(ξ) is strictly decreasing in ξ while ϕ(ξ), ψ(ξ) are strictly increasing
in ξ.

Remark 2.6. Theorem 2.5 implies that c∗ is the spreading speed of the infected
population and the minimal wave speed of travelling wave solutions describing
disease spreading.

When R0 � 1, we state the following result on the convergence of solutions and
the nonexistence of travelling waves.

Theorem 2.7. If R0 � 1, then the solution of (1.2) satisfies

lim
t→∞(Vs, Vi,Hi)(x, t) =

(
β

μ
, 0, 0

)
uniformly in x ∈ R.

Moreover, (1.3)–(1.4) does not have a positive solution for any c ∈ R.
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3. Spreading properties

In this section, we are devoted to proving the main part of theorem 2.5 if R0 > 1.
To complete the proof of theorem 2.5 (i), we use an auxiliary system as the upper
control system, and establish our results by constructing an upper solution and
applying the comparison principle. We deal with theorem 2.5 (ii) in a weak sense
by using the idea of uniform persistence [9] from dynamical system theory [35]. In
this procedure, we introduce the generalized principal eigenvalue problem [19] of a
weakly coupled elliptic system in the whole space to estimate the lower bounds of
the spreading speed.

3.1. Upper bounds on the spreading speed

In this subsection, we prove theorem 2.5 (i) by showing the following lemma.

Lemma 3.1. For any given ε > 0, the solution of (1.2) satisfies

lim sup
t→∞

sup
|x|�(c∗+ε)t

[∣∣∣∣Vs(x, t) − β

μ

∣∣∣∣+ Vi(x, t) +Hi(x, t)
]

= 0.

Proof. It follows from lemma 2.2, (2.3)–(2.4) that Vi(x, t) and Hi(x, t) satisfy⎧⎪⎨⎪⎩
∂tVi(x, t) � ∂xxVi(x, t) + βσ1

μ Hi(x, t) − βVi(x, t), x ∈ R, t > 0,
∂tHi(x, t) = d∂xxHi(x, t) + σ2HsVi(x, t) − ρHi(x, t), x ∈ R, t > 0,
(Vi,Hi)(x, 0) = (Vi,0(x),Hi,0(x)), x ∈ R.

(3.1)

Let c∗, γ∗, ϕ∗ = (ϕ1, ϕ2)T be given in § 2, we define a positive vector function

(Vi,Hi)(x, t) = min
{
eγ∗(x+c∗t+t1), eγ∗(−x+c∗t+t1)

}
ϕ∗,

where t1 > 0 is sufficiently large such that (Vi,Hi)(x, 0) � (Vi,Hi)(x, 0). Based on
the above arguments, we verify that if (Vi,Hi)(x, t) is differentiable, then⎧⎪⎨⎪⎩

∂tVi(x, t) = ∂xxVi(x, t) + βσ1
μ Hi(x, t) − βVi(x, t), x ∈ R, t > 0,

∂tHi(x, t) = d∂xxHi(x, t) + σ2HsVi(x, t) − ρHi(x, t), x ∈ R, t > 0,
(Vi,Hi)(x, 0) = min

{
eγ∗(x+t1), eγ∗(−x+t1)

}
ϕ∗, x ∈ R

(3.2)

and (Vi,Hi) is a lower solution of (3.2). Applying the classical parabolic comparison
principle [45, 61] to the cooperative system (3.2), we obtain

lim sup
t→∞

sup
|x|�(c∗+ε)t

(Vi +Hi)(x, t) � lim sup
t→∞

sup
|x|�(c∗+ε)t

(Vi +Hi)(x, t) = 0

for any ε > 0.
Next we show the convergence of Vs by contradiction. Assume that for any ε > 0,

there exist δ > 0, a sequence {tn}n�0 tending to infinity, and a sequence {xn}n�0 ⊂
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R such that

|xn| � (c∗ + ε)tn,
∣∣∣∣Vs(xn, tn) − β

μ

∣∣∣∣ � δ for all n � 0.

Consider a sequence of functions

(Vs,n, Vi,n,Hi,n)(x, t) = (Vs, Vi, ,Hi)(x+ xn, t+ tn).

By lemma 2.3 and the parabolic estimates, we obtain that (Vs,n, Vi,n,Hi,n) has a
subsequence, still denoted by (Vs,n, Vi,n,Hi,n), converging to some entire solution
(Vs,∞, Vi,∞,Hi,∞) of (1.2) locally uniformly. Thus Vs,∞ satisfies∣∣∣∣Vs,∞(0, 0) − β

μ

∣∣∣∣ � δ. (3.3)

Due to the convergence of Vi and Hi, we have (Vi,∞,Hi,∞)(0, 0) = (0, 0). Then
the strong maximum principle implies that (Vi,∞,Hi,∞)(x, t) ≡ (0, 0). Thus

(Vs + Vi)(x+ xn, t+ tn) → Vs,∞(x, t), n→ ∞.

By (2.2), we have (Vs + Vi)(x+ xn, t+ tn) → β
μ as n→ ∞, which further implies

that Vs,∞ ≡ β
μ by the uniqueness of the entire solution for the scalar Fisher-KPP

equation [4]. It contradicts (3.3) and completes the proof. �

3.2. Lower bounds on the spreading speed

In this subsection, we first prove a lemma as a weak version of (theorem 2.5(ii),
which relies on the uniform persistence theory in dynamical systems. The final
convergence in theorem 2.5(ii) will be completed in § 4.

Lemma 3.2. Suppose that R0 > 1. Then for any given 0 < c < c∗, the solution of
(1.2) satisfies

0 < lim inf
t→∞ inf

|x|�ct
Vs(x, t) � lim sup

t→∞
sup

|x|�ct

Vs(x, t) <
β

μ
,

0 < lim inf
t→∞ inf

|x|�ct
Vi(x, t), 0 < lim inf

t→∞ inf
|x|�ct

Hi(x, t).

In what follows, we divide the proof of the above lemma into three steps: (1) point-
wise weak spreading property, (2) point-wise spreading property, and (3) uniform
spreading property. Throughout this subsection, we assume that c0 is an arbitrarily
fixed constant such that 0 � c0 < c∗.

3.2.1. An eigenvalue problem. In order to prove the weak point-wise spreading
property, we first investigate an eigenvalue problem of weakly coupled elliptic sys-
tems by the corresponding generalized principal eigenvalue. For 0 < R, 0 < η < β,
and c ∈ R, we consider the following eigenvalue problem:⎧⎪⎨⎪⎩

λψ1 = −∂xxψ1 − c∂xψ1 + (β + η)ψ1 − σ1(β−η
μ )ψ2, x ∈ (−R,R),

λψ2 = −d∂xxψ2 − c∂xψ2 − σ2Hsψ1 + ρψ2, x ∈ (−R,R),
ψ1(x) = ψ2(x) = 0, x ∈ {−R,R}.

(3.4)
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Lemma 3.3. For any given |c| < c∗, there exist ηc > 0 small enough and Rc > 0
large enough such that the principal eigenvalue of (3.4) satisfies ΛR(η) < 0 for any
R � Rc and 0 � η � ηc.

Proof. Since this weak coupled elliptic system is cooperative and irreducible, the
celebrated Krein-Rutman theorem [7] implies that there exists a unique principal
eigenvalue ΛR(η) associated with a positive eigenfunction pair (ψ1, ψ2) for (3.4).

We first consider the case 0 � c < c∗. From [19, theorem 4.2], we obtain that as
R→ +∞, ΛR(η) converges to a generalized principal eigenvalue of the operator

L[ψ1, ψ2] :=

⎛⎜⎝−∂xxψ1 − c∂xψ1 + (β + η)ψ1 − σ1

(
β − η

μ

)
ψ2

−d∂xxψ2 − c∂xψ2 − σ2Hsψ1 + ρψ2

⎞⎟⎠ ,

in which the generalized principal eigenvalue is defined by

Λ1(η) := sup
{
λ ∈ R | ∃(ψ1, ψ2) ∈ C2(R,R2

+), L[ψ1, ψ2] � λ[ψ1, ψ2]
}
,

where C2(R,R2
+) represents the space of all positive twice continuously differen-

tiable vector functions. It follows from [19, lemma 6.4] that

lim
R→∞

ΛR(η) = Λ1(η) = max
γ�0

[−λ(γ, η) + cγ],

where λ(γ, η) denotes the unique Perron-Frobenius eigenvalue of the matrix

A(γ, η) :=

⎛⎜⎝ γ2 − (β + η)
σ1(β − η)

μ

σ2Hs dγ2 − ρ

⎞⎟⎠ .

Recalling the first definition of c∗ in § 2, A(γ, 0) is essentially nonnegative
and irreducible, and admits the unique Perron-Frobenius eigenvalue λ(γ, 0) > 0
associated with a positive eigenvector (see [19]). Moreover,

c∗ = min
γ>0

λ(γ, 0)
γ

> 0.

For any given c ∈ [0, c∗), one obtains that there exist ηc > 0 small enough and Rc

large enough such that

ΛR(η) < 0, R ∈ [Rc,∞), η ∈ [0, ηc].

By a symmetric argument on −x and the uniqueness of this eigenvalue, the
conclusion for the case −c∗ < c � 0 follows. This completes the proof. �

3.2.2. The first step: point-wise weak spreading property

Lemma 3.4. There exists ε1(c0) > 0 such that for any c ∈ [0, c0] and x ∈ R, the
solution (Vs, Vi,Hi) of (1.2) with initial data in Y satisfies

lim sup
t→∞

(Vi +Hi)(x+ ct, t) � ε1(c0). (3.5)
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Proof. Suppose by contradiction that there exist sequences

{(V n
s,0, V

n
i,0,H

n
i,0)(x)}n�0 ⊂ Y, {cn}n�0 ⊂ [0, c0], {xn}n�0 ⊂ R

such that the solution (V n
s , V

n
i ,H

n
i ) of (1.2) with initial data (V n

s,0, V
n
i,0,H

n
i,0)

satisfies

lim sup
t→∞

(V n
i +Hn

i )(xn + cnt, t) � 1
n+ 1

for all n � 0.

Then it implies that there exists {tn}n�0 ⊂ [0,∞) tending to ∞, and

max {V n
i (xn + cnt, t),Hn

i (xn + cnt, t)} � 2
n+ 1

for all t � tn. (3.6)

By (3.6), we claim that for any R > 0, there exists a sequence t′n � tn such that

lim
n→∞ sup

t�0,|x|�R

∣∣∣∣V n
s (xn + cn(t′n + t) + x, t′n + t) − β

μ

∣∣∣∣ = 0. (3.7)

In fact, it suffices to verify (3.7) with {t′n = tn}. We suppose by contradiction that
there exist δ > 0, sequences sn � tn, cn → c∞ ∈ [0, c0] and x′n → x′∞ ∈ [−R,R] such
that ∣∣∣∣V n

s (xn + cnsn + x′n, sn) − β

μ

∣∣∣∣ � δ.

Using lemma 2.3, the standard parabolic estimates imply that up to a subsequence,

(V n
s , V

n
i ,H

n
i )(xn + cn(sn + t) + x, sn + t) → (u∞, v∞, w∞)(x, t) as n→ ∞

locally uniformly for (x, t) ∈ R
2, where (u∞, v∞, w∞) is an entire solution of⎧⎪⎨⎪⎩

(∂t − ∂xx − c∞∂x)u∞ = (u∞ + v∞)(β − μu∞) − σ1u∞w∞,
(∂t − ∂xx − c∞∂x)v∞ = σ1u∞w∞ − μ(u∞ + v∞)v∞,
(∂t − d∂xx − c∞∂x)w∞ = σ2Hsv∞ − ρw∞.

Note that (3.6) yields (v∞, w∞)(0, 0) = (0, 0). Applying the strong maximum prin-
ciple, we obtain that (u∞, v∞, w∞)(x, t) ≡ (β/μ, 0, 0). However, since the sequence
{x′n} ⊂ [−R,R] is relatively compact, u∞(x, t) ≡ β

μ contradicts the fact that

∣∣∣∣u∞(x′∞, 0) − β

μ

∣∣∣∣ � δ,

which proves (3.7).
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Now we return to prove lemma 3.4. Consider a sequence of functions (un, vn, wn)
with moving frames defined by

(un, vn, wn)(x, t) := (V n
s , V

n
i ,H

n
i )(xn + cn(tn + t) + x, tn + t),

then (3.6) becomes

max{vn(0, t), wn(0, t)} � 2
n+ 1

for all n � 0, t � 0. (3.8)

Let us fix small η > 0 and large R > 0 such that lemma 3.3 holds for c0. It follows
from (2.3) and (3.7) that for any n large enough, one has

un(x, t) � β − η

μ
,

β

μ
� (un + vn)(x, t) � β + η

μ
for all t � 0, |x| � R.

Then (vn, wn)(x, t) satisfies{
(∂t − ∂xx − cn∂x)vn � σ1

β−η
μ wn − (β + η)vn, t � 0, |x| � R,

(∂t − d∂xx − cn∂x)wn � σ2Hsvn − ρwn, t � 0, |x| � R.

Thus the comparison principle yields that

(vn, wn)(x, t) � τe−ΛRt(ψ1, ψ2)(x) for all |x| � R, t � 0,

where ΛR and (ψ1, ψ2) are the principal eigenvalue and the associated positive eigen-
function pair defined in lemma 3.3, τ > 0 is small enough so that (vn, wn)(x, 0) �
τ(ψ1, ψ2)(x) for all |x| � R.

Using lemma 3.3, we have ΛR < 0 since η is small enough and R is large enough.
Thus, vn(0, t) � τe−ΛRtψ1(0) → ∞ as t→ ∞, which contradicts (3.8). The proof is
complete. �

3.2.3. The second step: point-wise strong spreading property In the following
lemma, we shall improve the weak spreading properties stated in the previous
subsection.

Lemma 3.5. There exists ε2(c0) > 0 such that for any c ∈ [0, c0] and x ∈ R, the
solution (Vs, Vi,Hi) of (1.2) with initial data in Y satisfies

lim inf
t→∞ (Vi +Hi)(x+ ct, t) � ε2(c0). (3.9)

Proof. We prove (3.9) by contradiction. Assume that there exist sequences

{(V 0
s,n, V

0
i,n,H

0
i,n)(x)}n�0 ⊂ Y, {cn}n�0 ⊂ [0, c0], {xn}n�0 ⊂ R

such that

lim inf
t→∞ (Vi,n +Hi,n)(xn + cnt, t) <

1
n+ 1

, n ∈ N.

Without loss of generality, we further assume that cn → c∞ ∈ [0, c0] as n→ ∞.
Lemma 3.4 implies that there exist two sequences tn → ∞ and τn ∈ R+ such that
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for each n � 0

[Vi,n +Hi,n](xn + cntn, tn) =
ε1(c0)

2
,

[Vi,n +Hi,n](xn + cnt, t) � ε1(c0)
2

, t ∈ [tn, tn + τn],

[Vi,n +Hi,n](xn + cn(tn + τn), tn + τn) =
1

n+ 1
,

where ε1(c0) is given in lemma 3.4.
By lemma 2.3, standard parabolic estimates and up to a sequence, we have

(Vs,n, Vi,n,Hi,n)(xn + cntn + x, tn + t) → (V∞
s , V∞

i ,H∞
i )(x, t)

locally uniformly in (x, t) ∈ R
2 as n→ ∞, where (V∞

s , V∞
i ,H∞

i ) is an entire
solution of (1.2). Due to the choice of tn, we have

V∞
i (0, 0) +H∞

i (0, 0) =
ε1(c0)

2
,

which further yields V∞
i (x, t) +H∞

i (x, t) > 0 by the strong maximum principle.
We find that τn → ∞ as n→ ∞. Indeed, suppose by contradiction that its

subsequence converges to some t0 ∈ R+, then one has

(V∞
i +H∞

i )(c∞t0, t0) = 0.

Then it follows that V∞
i (c∞t0, t0) = H∞

i (c∞t0, t0) = 0 since these solutions are
nonnegative. The strong maximum principle implies that V∞

i = H∞
i ≡ 0, a contra-

diction. Hence by the second construction we have

V∞
i (c∞t, t) +H∞

i (c∞t, t) � ε1(c0)
2

for all t � 0,

and it contradicts (3.5) in lemma 3.4 as x = 0 and c = c∞. This completes the
proof. �

3.2.4. The third step: uniform spreading property

Lemma 3.6. For any c ∈ [0, c0], the solution of (1.2) with initial data in Y satisfies

lim inf
t→∞ inf

0�x�ct
Vi(x, t) > 0, lim inf

t→∞ inf
0�x�ct

Hi(x, t) > 0, (3.10)

0 < lim inf
t→∞ inf

0�x�ct
Vs(x, t) � lim sup

t→∞
sup

0�x�ct
Vs(x, t) <

β

μ
. (3.11)
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Proof. We first prove that

lim inf
t→∞ inf

0�x�ct
(Vi +Hi)(x, t) > 0. (3.12)

For any given ĉ ∈ (0, c0), we suppose by contradiction that there exist sequences
tn → ∞ and cn ∈ [0, ĉ) such that

lim
n→∞(Vi +Hi)(cntn, tn) = 0.

Up to a subsequence, we assume, without loss of generality, that cn → c̃∞ ∈ [0, ĉ]
as n→ ∞. Select c′ > 0 such that c̃∞ < c′ � c0, and define the sequence

t′n :=
cntn
c′

∈ [0, tn) for all n � 0.

We first consider the case that the sequence {cntn}n�0 is bounded, which may occur
if c̃∞ = 0. Up to a subsequence, it follows from the strong maximum principle that
as n→ ∞, cntn → x∞ and

(Vi +Hi)(cntn + x, tn + t) → 0 locally uniformly for (x, t) ∈ R
2.

This implies in particular that (Vi +Hi)(0, tn) → 0 as n→ ∞, which contradicts
the case c = 0 in lemma 3.5. Thus c̃∞ > 0 implies that the sequence {cntn} has no
bounded subsequence.

Now we assume that t′n → ∞ as n→ ∞. Since c′ ∈ (0, c0], lemma 3.5 implies that

(Vi +Hi)(cntn, t′n) = (Vi +Hi)(c′t′n, t
′
n) � ε2(c0)

for each n large enough.
Now we define the third time sequence {t′′n} as follows

t′′n := inf
{
t � tn | (Vi +Hi)(cntn, s) � min{ε1(c0), ε2(c0)}

2
for any s ∈ (t, tn)

}
,

then t′′n ∈ (t′n, tn). Since (Vi +Hi)(cntn, tn) → 0 as n→ ∞, we have

(Vi +Hi)(cntn, t′′n) =
min{ε1(c0), ε2(c0)}

2
.

By using a similar limiting argument and a strong maximum principle, one also has

tn − t′′n → ∞ as n→ ∞.

Then by lemma 2.3 and standard parabolic estimates and up to a subsequence, we
obtain that

(Vs, Vi,Hi)(cntn + x, t′′n + t) → (ũ∞, ṽ∞, w̃∞)(x, t), n→ ∞
locally uniformly in (x, t) such that

(ṽ∞ + w̃∞)(0, 0) > 0,

(ṽ∞ + w̃∞)(0, t) � min{ε1(c0), ε2(c0)}
2

for all t � 0,

which contradicts (3.9) in lemma 3.5 as c = 0 and x = 0. Thus (3.12) holds.
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Next we show (3.10) by contradiction. Assume that there exist sequences tn → ∞
and 0 � xn � ctn such that Vi(xn, tn) → 0 as n→ ∞, then up to a subsequence,
lemma 2.3, parabolic estimates and the strong maximum principle imply that as
n→ ∞,

(Vs, Vi,Hi)(x+ xn, t+ tn) → (u∞, 0, w∞)(x, t) locally uniformly in (x, t) ∈ R
2,

where (u∞, 0, w∞) is an entire solution of (1.2). But (3.12) yields w∞ > 0, which
contradicts (1.2). Then it follows that for any c ∈ [0, c0],

lim inf
t→∞ inf

0�x�ct
Vi(x, t) > 0.

Thus we finish the proof of (3.10) by using a similar argument for Hi.
To deal with (3.11), we first assume by contradiction that there exist sequences

tn → ∞ and 0 � xn � ctn such that Vs(xn, tn) → β
μ as n→ ∞, then (Vs, Vi,Hi)(x+

xn, t+ tn) converges to an entire solution (u∞, v∞, w∞)(x, t) of (1.2), which satisfies
u∞(0, 0) = β

μ . Using the strong maximum principle, u∞ ≡ β
μ follows. However, it

follows from (3.10) that w∞ > 0, which contradicts (1.2). For the remaining part, if
Vs(xn, tn) → 0 as n→ ∞, then Vi(xn, tn) → 0 as n→ ∞, which contradicts (3.10).
This completes the proof. �

Recall that the aforementioned three lemmas addressed the rightward speed case
of lemma 3.2, the leftward part of spreading follows by using a symmetric argument.
Thus lemma 3.2 is proved.

4. Convergence of solutions

In this section, we show some convergence results to complete the proofs of
theorem 2.5 (ii) and theorem 2.7. If R0 > 1, we show that the solution converges
to the positive equilibrium locally uniformly, which gives the final convergence in
theorem 2.5 (ii). Then the disease will persist eventually. If R0 � 1, then the solu-
tion tends to the disease-free equilibrium, which indicates that the vector-borne
disease will die out.

Before proving the final convergence in theorem 2.5 (ii), we state a convergence
result for the bounded, persistent entire solutions of (1.2), which is established by
constructing two auxiliary monotone systems.

Lemma 4.1. Suppose that R0 > 1. If (Vs, Vi,Hi) is a bounded entire solution of
(1.2) such that

inf
(x,t)∈R2

Vs(x, t) > 0, inf
(x,t)∈R2

Vi(x, t) > 0, inf
(x,t)∈R2

Hi(x, t) > 0, (4.1)

then (Vs, Vi,Hi)(x, t) ≡ (V ∗
s , V

∗
i ,H

∗
i ) for all (x, t) ∈ R

2.
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Proof. We set V = Vs + Vi, then V (x, t) satisfies the following Cauchy problem{
∂tV (x, t) = ∂xxV (x, t) + V (x, t)[β − μV (x, t)], x ∈ R, t > 0,
V (x, 0) = (Vs + Vi)(x, 0) > 0, x ∈ R.

(4.2)

It follows from (2.2) that for any ε > 0, there exists T > 0 such that∣∣∣∣(Vs + Vi)(x, t) − β

μ

∣∣∣∣ < ε, t � T, x ∈ R.

Due to (4.1), we reset the initial function as V (x, 0) = (Vs + Vi)(x,−t0) for any
t0 > 0, we similarly have∣∣∣∣(Vs + Vi)(x, t− t0) − β

μ

∣∣∣∣ < ε, t � T, x ∈ R.

Taking t0 → ∞, since the problem (4.2) is autonomous, we actually obtain that∣∣∣∣(Vs + Vi)(x, t+ T ) − β

μ

∣∣∣∣ < ε, t ∈ R, x ∈ R.

Due to the arbitrariness of ε, the above inequality implies that Vs + Vi ≡ β
μ for

all (x, t) ∈ R
2. Thus the bounded entire solution (Vs, Vi,Hi) satisfies the following

subsystem: ⎧⎪⎨⎪⎩
∂tVi = ∂xxVi + σ1Hi(β

μ − Vi) − βVi, x ∈ R, t > 0,
∂tHi = d∂xxHi + σ2HsVi − ρHi, x ∈ R, t > 0,
(Vi,Hi)(x, 0) = (Vi,0,Hi,0)(x), x ∈ R,

(4.3)

where the initial data (Vi,0(x),Hi,0(x)) satisfies

inf
x∈R

Vi,0(x) > 0, inf
x∈R

Hi,0(x) > 0.

Now we deal with the long time behaviour of a spatial homogeneous solution to
(4.3). Let (v, h)(t) be the solution of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dv(t)
dt

= σ1h

(
β

μ
− v

)
− βv, t > 0,

dh(t)
dt

= σ2Hsv − ρh, t > 0,

(v, h)(0) = (infx∈R |Vi,0(x)|, infx∈R |Hi,0(x)|),

(4.4)

then (v, h)(t) is a spatially homogeneous lower solution of (4.3). Since (4.4) is
cooperative and R0 > 1 holds, it is evident that

(v, h)(t) → (V ∗
i ,H

∗
i ) , t→ ∞. (4.5)

Similarly, we consider a spatial homogeneous upper solution (v, h)(t) of (4.3) with
initial data (supx∈R

|Vi,0(x)|, supx∈R
|Hi,0(x)|). Since R0 > 1, we have

(v, h)(t) → (V ∗
i ,H

∗
i ) , t→ ∞. (4.6)
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It follows from (4.5)–(4.6) and the comparison principle that for any ε̃ > 0, there
exists T̃ > 0 such that

|Vi(x, t) − V ∗
i | + |Hi(x, t) −H∗

i | < ε̃, t � T̃ , x ∈ R.

Applying a similar argument as at the beginning of the proof to (4.3), we actually
obtain that∣∣∣Vi(x, t+ T̃ ) − V ∗

i

∣∣∣+ ∣∣∣Hi(x, t+ T̃ ) −H∗
i

∣∣∣ < ε̃, t ∈ R, x ∈ R.

Due to the arbitrariness of ε̃, the above inequality together with Vs + Vi ≡ β
μ yields

that (Vs, Vi,Hi) ≡ (V ∗
s , V

∗
i ,H

∗
i ) for all (x, t) ∈ R

2, which completes the proof. �

Proof of the convergence in theorem 2.5 (ii): We suppose by contradiction
that there exist c ∈ [0, c∗), a sequence {tn}n�0 ⊂ (0,∞) tending to +∞, a sequence
{xn}n�0 ⊂ R and a δ > 0 such that

|xn| � ctn, |Vs(xn, tn) − V ∗
s | + |Vi(xn, tn) − V ∗

i | + |Hi(xn, tn) −H∗
i | > δ, n � 0.

(4.7)
Let us define a sequence of functions (Vs, Vi,Hi) as follows:

(V n
s , V

n
i ,H

n
i )(x, t) := (Vs, Vi,Hi)(x+ xn, t+ tn).

We fix c′ > 0 such that c < c′ < c∗. Note that (Vs, Vi,Hi) is bounded, it follows
from lemma 3.2 that there exist T1 > 0 large enough and ε > 0 small enough such
that for all n � 0, (x, t) ∈ R

2, if t+ tn � T1 and |x| � c′t+ (c′ − c)tn, then

ε � V n
s (x, t) � 1

ε
, ε � V n

i (x, t) � 1
ε
, ε � Hn

i (x, t) � 1
ε
. (4.8)

Due to lemma 2.3 and the parabolic estimates, up to a subsequence, one has

(V n
s , V

n
i ,H

n
i )(x, t) → (V∞

s , V∞
i ,H∞

i )(x, t) locally uniformly for (x, t) ∈ R
2

as n→ ∞, where (V∞
s , V∞

i ,H∞
i ) is a bounded entire solution of (1.2). Moreover,

(4.8) yields

inf
(x,t)∈R2

V∞
s > 0, inf

(x,t)∈R2
V∞

i > 0, inf
(x,t)∈R2

H∞
i > 0.

Therefore, lemma 4.1 implies that (V∞
s , V∞

i ,H∞
i )(x, t) ≡ (V ∗

s , V
∗
i ,H

∗
i ) for all

(x, t) ∈ R
2.

But (4.7) implies that

|V∞
s (0, 0) − V ∗

s | + |V∞
i (0, 0) − V ∗

i | + |H∞
i (0, 0) −H∗

i | > δ,

which is a contradiction. This completes the proof of theorem 2.5 (ii).
To prove theorem 2.7, we show another convergence result for bounded entire

solutions of (1.2) when R0 � 1.

Lemma 4.2. Suppose that R0 � 1. If (Vs, Vi,Hi) is a bounded entire solution of
(1.2), then (Vs, Vi,Hi)(x, t) ≡ (β

μ , 0, 0) for all (x, t) ∈ R
2.
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Proof. Since the solution is bounded and nonnegative, there exists a sequence
{(xn, tn)}n�0 ⊂ R

2 such that

lim
n→∞Vs(xn, tn) = inf

(x,t)∈R2
Vs(x, t) � 0.

Then we consider the sequence of functions

(V n
s , V

n
i ,H

n
i )(x, t) := (Vs, Vi,Hi)(x+ xn, t+ tn).

By the parabolic estimates and up to a subsequence, one has

(V n
s , V

n
i ,H

n
i )(x, t) → (V̂s, V̂i, Ĥi)(x, t) locally uniformly for (x, t) ∈ R

2

as n→ ∞, where (V̂s, V̂i, Ĥi) is a bounded entire solution of (1.2) and satisfies⎧⎪⎨⎪⎩
∂tV̂s = ∂xxV̂s + (V̂s + V̂i)(β − μV̂s) − σ1HiV̂s, (x, t) ∈ R

2,

∂tV̂i = ∂xxV̂i + σ1ĤiV̂s − μ(V̂s + V̂i)V̂i, (x, t) ∈ R
2,

∂tĤi = d∂xxĤi + σ2HsV̂i − ρĤi, (x, t) ∈ R
2.

(4.9)

The definition of (xn, tn) implies that

V̂s(0, 0) = inf
(x,t)∈R2

Vs(x, t).

Note that 0 � V̂s � β
μ for all (x, t) ∈ R

2. Then we apply the strong comparison

principle to the V̂s-equation and obtain that

V̂s(x, t) ≡ inf
(x,t)∈R2

Vs(x, t) := V 0
s � 0, (4.10)

which is a constant.
Next we consider two cases: (i) V 0

s = 0, (ii) V 0
s > 0. For case (i), V 0

s = 0 implies
that V̂s(x, t) = V̂i(x, t) = Ĥi(x, t) ≡ 0 for all (x, t) ∈ R

2. But lemma 2.1 yields that
(Vs + Vi)(x, t) with initial data (Vs,0 + Vi,0)(x) � β

μ converges to β
μ uniformly in

x ∈ R as t→ ∞. It is a contradiction. Thus V 0
s = 0 is impossible.

For case (ii), V 0
s > 0 ensures that inf(x,t)∈R2(Vs + Vi)(x, t) > 0. Applying

[4, proposition 1.8] to Vs + Vi satisfying a classical Fisher-KPP equation, we imme-
diately obtain that (Vs + Vi)(x, t) ≡ β

μ for all (x, t) ∈ R
2, which implies V̂s + V̂i ≡

β
μ . Together with (4.9)–(4.10), one obtains that (V̂s, V̂i, Ĥi)(x, t) ≡ (V 0

s , V
0
i ,H

0
i )

satisfies the system of stationary equations⎧⎪⎨⎪⎩
(V 0

s + V 0
i )(β − μV 0

s ) − σ1H
0
i V

0
s = 0,

σ1H
0
i V

0
s − μ(V 0

s + V 0
i )V 0

i = 0,
σ2HsV

0
i − ρH0

i = 0.

Due to R0 � 1, (V 0
s , V

0
i ,H

0
i ) = (β

μ , 0, 0) follows. Combining (4.10) with the fact
0 � Vs � β

μ for all (x, t) ∈ R
2, we obtain (Vs, Vi,Hi) ≡ (β

μ , 0, 0), which completes
the proof of this lemma. �
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Proof of theorem 2.7: Note that the travelling wave solution is also a special
entire solution of (1.2), lemma 4.2 directly shows that if R0 � 1, (1.3) and (1.4)
does not have a positive solution for any c ∈ R.

Now we prove that when R0 � 1, the solution of (1.2) goes to the disease-free
equilibrium as time tending ∞. Suppose by contradiction that there exist a constant
δ̃ > 0, a sequence {(xn, tn)}n�0 with tn → ∞, and xn ∈ R such that

∣∣∣∣Vs(xn, tn) − β

μ

∣∣∣∣+ |Vi(xn, tn)| + |Hi(xn, tn)| � δ̃, n � 0. (4.11)

We consider the sequence of functions (Vs, Vi,Hi) as follows:

(V n
s , V

n
i ,H

n
i )(x, t) := (Vs, Vi,Hi)(x+ xn, t+ tn).

By lemma 2.3 and the parabolic estimates, up to a subsequence, one has

(V n
s , V

n
i ,H

n
i )(x, t) → (u, v, h)(x, t) locally uniformly for (x, t) ∈ R

2

as n→ ∞, where (u, v, h) is a bounded entire solution of (1.2). Moreover, it follows
from (4.11) that ∣∣∣∣u(0, 0) − β

μ

∣∣∣∣+ |v(0, 0)| + |h(0, 0)| � δ̃ > 0. (4.12)

However, due to R0 � 1, lemma 4.2 implies that (u, v, h)(x, t) ≡ (β
μ , 0, 0) for all

(x, t) ∈ R
2, which contradicts (4.12). We complete the proof of theorem 2.7.

5. Minimal wave speed

In this section, we prove the travelling wave results given in theorem 2.5. Let χ(ξ) =
φ(ξ) + ϕ(ξ), then

cχ′(ξ) = χ′′(ξ) + χ(ξ) [β − μχ(ξ)] , ξ ∈ R

such that

lim inf
ξ→−∞

χ(ξ) > 0, lim inf
ξ→∞

χ(ξ) > 0

by (1.4). From lemma 2.1, we have the following conclusion.

Lemma 5.1. A solution of (1.3) and (1.4) must satisfy

φ(ξ) + ϕ(ξ) = β/μ, φ(ξ), ϕ(ξ) ∈ (0, β/μ), ξ ∈ R.
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By lemma 5.1, it suffices to study the monotone solutions of the following coupled
system⎧⎪⎪⎨⎪⎪⎩

cϕ′(ξ) = ϕ′′(ξ) + σ1(β/μ− ϕ(ξ))ψ(ξ) − βϕ(ξ),
cψ′(ξ) = dψ′′(ξ) + σ2Hsϕ(ξ) − ρψ(ξ),
lim

ξ→−∞
(ϕ(ξ), ψ(ξ)) = (0, 0), lim inf

ξ→∞
ϕ(ξ) > 0, lim inf

ξ→∞
ψ(ξ) > 0.

(5.1)

Note that (5.1) is the wave profile system of (2.5). It directly follows from lemma 2.4
that the existence, nonexistence and monotonicity of solutions for (5.1) are obtained
if R0 > 1.

To better show the uniqueness of travelling wave solutions and provide a simple
method to compute c∗, we further reduce the problem (5.1) to a scalar equation.
Since a travelling wave solution is a special entire solution, it follows that ψ(ξ) :=
(J ∗ ϕ)(ξ) satisfies (2.8). Therefore, ϕ(ξ) satisfies the following differential-integral
equation

cϕ′(ξ) = ϕ′′(ξ) + σ1(β/μ− ϕ(ξ))(J ∗ ϕ)(ξ) − βϕ(ξ). (5.2)

From the second definition of c∗ in § 2, we recall

c∗ := inf
{
c > 0 : Λ(γ, c) = 0 has exact one positive root if

γ ∈ (0, (c+
√
c2 + 4dρ)/(2d))

}
,

where Λ(γ, c) is defined by (2.9).
Due to the equivalence between (5.1) and (5.2), it suffices to solve (5.2) with

asymptotic boundary condition lim
ξ→−∞

ϕ(ξ) = 0, lim inf
ξ→∞

ϕ(ξ) > 0. By the theory of

travelling wave solutions in nonlocal delayed equations [13, 42, 50, 60, 65], we
immediately have the following existence, nonexistence, monotonicity and unique-
ness of travelling wave solutions (for very recent results, see [60, theorems 2.1
and 2.2]).

Lemma 5.2. Suppose that R0 > 1. For any c � c∗, (5.2) has a positive solution ϕ(ξ)
with

lim
ξ→−∞

ϕ(ξ) = 0, lim
ξ→∞

ϕ(ξ) = V ∗
i . (5.3)

In particular, such a travelling wave solution is strictly increasing and unique in
the sense of phase shift. For any 0 < c < c∗, (5.2) has no positive solution ϕ(ξ)
satisfying (5.3). Moreover, c∗ is the minimal wave speed of (5.2) and (5.3).

Combining lemmas 5.1 and 5.2 with (5.1), we obtain the existence, nonexistence,
uniqueness and monotonicity of (φ, ψ). This completes the proof of travelling wave
problem in theorem 2.5.

6. Numerical simulations

In this section, we illustrate the above theoretical results by performing numerical
simulations in two examples. We select β = μ = Hs = 1 and consider the following
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Figure 1. The plot of the functions f(γ) and Λ(γ, 1.6597).

system⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tVs = ∂xxVs + (Vs + Vi)(1 − Vs) − σ1HiVs x ∈ R, t > 0,
∂tVi = ∂xxVi + σ1HiVs − (Vs + Vi)Vi, x ∈ R, t > 0,
∂tHi = d∂xxHi + σ2Vi − ρHi, x ∈ R, t > 0,
Vs(x, 0) = 1, Vi(x, 0) = Hi(x, 0) = 1x∈[−5,0], x ∈ R.

(6.1)

By results in § 2, we obtain that

R0 =
σ1σ2

ρ
, (V ∗

s , V
∗
i ,H

∗
i ) =

(
ρ

σ1σ2
, 1 − ρ

σ1σ2
,
σ2

ρ
− 1
σ1

)
, E1 = (1, 0, 0).

Example 6.1. Consider the following special case of (6.1)⎧⎪⎨⎪⎩
∂tVs = ∂xxVs + (Vs + Vi)(1 − Vs) − 1.5HiVs x ∈ R, t > 0,
∂tVi = ∂xxVi + 1.5HiVs − (Vs + Vi)Vi, x ∈ R, t > 0,
∂tHi = 1.2∂xxHi + 1.2Vi − 0.5Hi, x ∈ R, t > 0.

(6.2)

We have

R0 = 3.6 > 1, c∗ ≈ 1.6597, (V ∗
s , V

∗
i ,H

∗
i ) ≈ (0.2778, 0.7222, 1.7333),

where c∗ is defined by (see Fig. 1)

c∗ := min
γ>0

2.2γ2 − 1.5 +
√

[0.2γ2 + 0.5]2 + 7.2

2γ
:= min

γ>0
f(γ)

and

c∗ := inf
{
c > 0 : Λ(γ, c) = γ2 − cγ − 1 − 1.8

(1.2γ2 − cγ − 0.5)
= 0

has exact one positive root if γ ∈ (0, (c+
√
c2 + 2.4)/2.4)

}
.

Figure 2 shows the spatial-temporal evolution of Vs, Vi and Hi defined by (6.2).
We show the distributions of three components at t = 200 in the first figure of
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Figure 2. The spatio-temporal plots of the solution (Vs, Vi, Hi) of system (6.2).

Figure 3. The graphs of the solution (Vs, Vi, Hi)(x, 200), X1(t)/t and X2(t)/t for (6.2).

Table 1. Numerical speed cnum vs. theoretical speed c∗

cVi
num cHi

num c∗ cVi
num − c∗ cHi

num − c∗

Example 6.1 1.6524 1.6524 1.6597 −0.0073 −0.0073

figure 3. From figure 2, we find that Vi, Hi almost invade at a constant speed.
In order to estimate the invasion speed, we introduce the level set to describe the
expansion speed of fronts. Denote

X1(t) = sup {x | Vi(x, t) > 0.005} , X2(t) = sup {x | Hi(x, t) > 0.005} ,
cVi
num := X1(200)/200, cHi

num := X2(200)/200.

We estimate the invasion speeds of Vi and Hi by X1(t)/t and X2(t)/t in figure 3,
which indicates that if t is large, then X1(t)/t, X2(t)/t are close to c∗ (see table I).
From figures 2–3, we also see the solution (Vs, Vi,Hi) on any compact interval
converges to (V ∗

s , V
∗
i ,H

∗
i ), which illustrates theorem 2.5.

Example 6.2. Consider the following special case of (6.1)⎧⎪⎨⎪⎩
∂tVs = ∂xxVs + (Vs + Vi)(1 − Vs) − 1.5HiVs x ∈ R, t > 0,
∂tVi = ∂xxVi + 1.5HiVs − (Vs + Vi)Vi, x ∈ R, t > 0,
∂tHi = 1.8∂xxHi + 1.5Vi − ρHi, x ∈ R, t > 0.

(6.3)

We have two cases.

(i) When ρ = 2.5, R0 = 0.9 < 1. Simulations of this case are presented in figures
4 and 5.
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Figure 4. The spatio-temporal plots of the solution (Vs, Vi, Hi) of (6.3) with ρ = 2.5.

Figure 5. The spatial plots of the solution (Vs, Vi, Hi) of (6.3) with ρ = 2.5 when
t = 100, 200.

Figure 6. The spatio-temporal plots of the solution (Vs, Vi, Hi) of (6.3) with ρ = 2.25.

(ii) When ρ = 2.25, R0 = 1. Simulations of this case are presented in figures 6
and 7.

Figures 4–7 simulate the spatial-temporal evolutions of Vs, Vi and Hi defined by
(6.3). They show the spatial distributions of the three components, which demon-
strate that when the basic reproduction number R0 � 1, Vi and Hi cannot invade
successfully and will vanish as t tends to infinity. This illustrates theorem 2.7.
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Figure 7. The spatial plots of the solution (Vs, Vi, Hi) of (6.3) with ρ = 2.25 when
t = 100, 200.

7. Discussion

In the present paper, we mainly investigated the spreading speed and travelling wave
solutions of the diffusive vector-borne disease model (1.2). The lack of comparison
principle for this model makes it nontrivial to estimate the bounds of the spread-
ing speed. To overcome this difficulty, we combined the idea of uniform persistence
[9] from dynamical system theory [35] with the generalized principal eigenvalue
problem of a weakly coupled elliptic system. From the definition of spreading speed,
this could help us to identify the factors that affect the disease spreading. Addi-
tionally, when the disease invades successfully, we further showed that solutions
converge to a unique positive steady state by constructing two control systems and
using monotone dynamical system arguments in Zhao [64]. Note that a similar con-
vergence result was obtained by employing Lyapunov approach in [5]. However, the
convergence in Cai et al. [5] requires that 1 < R0 < 3, whereas our method removes
this restriction such that it is possible to improve their conclusions.

Returning to the original model (1.1) proposed in Fitzgibbon et al. [16], their
main goal was to illustrate the influences on the dynamics of an outbreak, in both
the geographical spread and the final size of the epidemic caused by the spatial
heterogeneity of vectors and hosts. Recently, Li and Zhao [26] considered a time-
periodic model based on (1.1) and obtained the global dynamics. Their numerical
results showed that the neglect of seasonality underestimates the value of R0 and
the maximum carrying capacity affects the spread of the Zika virus. In [3, 4, 12, 22,
59, 63], the propagation dynamics of spatial heterogeneity models have been widely
studied. Motivated by the phenomena in these studies, the propagation dynamics
of the following system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tVs = ∇ · (d1(x, t)∇Vs)
+(Vs + Vi)[β(x, t) − μ(x, t)Vs] − σ1(x, t)HiVs, x ∈ R, t > 0,

∂tVi = ∇ · (d1(x, t)∇Vi) + σ1(x, t)HiVs − μ(x, t)(Vs + Vi)Vi, x ∈ R, t > 0,
∂tHi = ∇ · (d2(x, t)∇Hi) + σ2(x, t)Hs(x, t)Vi − ρ(x, t)Hi, x ∈ R, t > 0,
Vs(0, x) = Vs,0(x), Vi(0, x) = Vi,0(x), Hi(0, x) = Hi,0(x), x ∈ R

(7.1)
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deserves further investigation, in which all the coefficients are space-time depen-
dent functions and have the same epidemiological meanings as in (1.1). We believe
that more complicated dynamics will arise in (7.1). In fact, even if in scalar
equations with spatio-temporal dependent coefficients, the propagation dynamics
may be richer comparing with the case of constant coefficients. There might exist
generalized transition waves [3] that are quite different from classical travelling
waves. For space-time periodic habitat, there might occur a gap between the lower
bound and upper bound of the spreading speed caused by spatial heterogeneity
[12, 22], which is different from that of (1.2). Investigating the effects of spatial
heterogeneity and seasonality on spreading speed, pulsating wave speed and R0

may provide us some constructive suggestions to prevent the spread of the Zika
virus. Before studying generalized transition waves, pulsating waves, and spreading
speeds, we first need to explore the steady state problems including the existence
and stability. However, the lack of comparison principle and the heterogeneous habi-
tat make it more difficult to investigate the existence and stability of some desirable
space-time periodic entire solutions, estimate the spreading speed and establish the
existence of generalized transition waves or pulsating waves. These are challenging
problems and deserve further consideration.
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