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Abstract We show that if a locally compact group G is non-discrete or has an infinite amenable
subgroup, then the second dual algebra L1(G)∗∗ does not admit an involution extending the natural
involution of L1(G). Thus, for the above classes of groups we answer in the negative a question raised
by Duncan and Hosseiniun in 1979. We also find necessary and sufficient conditions for the dual of
certain left-introverted subspaces of the space Cb(G) (of bounded continuous functions on G) to admit
involutions. We show that the involution problem is related to a multiplier problem. Finally, we show
that certain non-trivial quotients of L1(G)∗∗ admit involutions.
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1. Introduction and preliminaries

Let G be a locally compact group and L1(G) be its group algebra. On L1(G) there is a
natural involution ∼ defined by

f̃(x) = ∆(x−1)f(x−1), f ∈ L1(G), x ∈ G,

where ∆ is the modular function of the group G and the bar denotes complex conjugation.
Suppose that the second dual space L1(G)∗∗ is given the first Arens product (see the
definition below). In [4, p. 323] Duncan and Hosseiniun ask whether there is an involution
on L1(G)∗∗ extending the natural involution of L1(G). In this paper we show that if G is
an infinite non-discrete or an infinite amenable group, the answer to the above question
is negative. For an amenable group G we show that the dual LUC(G)∗ of the space
of left uniformly continuous functions on G admits an involution extending the natural
involution of L1(G) if and only if G is compact, whereas for any G the dual WAP(G)∗ of
the space of weakly almost periodic functions on G admits an involution extending the
natural involution of L1(G). We show that, for the remaining class of groups, the above
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question can be answered in the affirmative if a question about right multipliers (right
L1(G)-module morphisms) from L∞(G)∗∗ into L∞(G)∗∗ has a positive answer. Finally,
we show that certain non-trivial quotients of L1(G)∗∗ always admit involutions.

We recall the definition of the first (left) Arens product on the second dual A∗∗ of a
Banach algebra A. For f ∈ A∗, a ∈ A, let f · a ∈ A∗ be defined by

〈f · a, b〉 = 〈f, ab〉, b ∈ A.

Now for G ∈ A∗∗ and f ∈ A∗, let G · f ∈ A∗ be defined by

〈G · f, a〉 = 〈G, f · a〉, a ∈ A.

Finally, for F, G ∈ A∗∗ let F � G ∈ A∗∗ be defined by

〈F � G, f〉 = 〈F, G · f〉, f ∈ A∗.

We will also need the following definition of the second (right) Arens product. With the
same notation as above we define a · f ∈ A∗, f · F and F � G respectively by

〈a · f, b〉 = 〈f, ba〉, b ∈ A,

〈f · F, a〉 = 〈F, a · f〉, a ∈ A,

〈F � G, f〉 = 〈G, f · F 〉, f ∈ A∗.

The Banach algebra A is said to be Arens regular if F � G = F � G, for all F, G ∈ A∗∗,
i.e. whenever the two products coincide. For a Banach space X and any element x ∈ X,
the image of x in X∗∗ under the canonical mapping will be denoted by x̂. Let F, G ∈
A∗∗, and let (fi), (gi) be nets in A∗∗ such that f̂i

w∗
−−→ f and ĝi

w∗
−−→ g (in the weak-∗

topology of A∗∗). Then

F � G = w∗ − lim
i

lim
j

(̂figj),

F � G = w∗ − lim
j

lim
i

(̂figj).

For a locally compact group G we will denote the Banach space of all continuous bounded
complex-valued functions on G by Cb(G), where the norm is taken to be the sup-norm.
A norm closed subspace X of Cb(G) is left introverted if, for every n ∈ X∗, f ∈ X and
t ∈ G, we have both n · f ∈ X and ltf ∈ X, where n · f and lxf are defined respectively
by

(n · f)(t) = 〈n, ltf〉,
(ltf)(s) = f(ts), s ∈ G.

Two examples of left-introverted subspaces of Cb(G), with which we will be concerned in
the following, are the space LUC(G) (of left uniformly continuous functions on G) and
the space WAP(G) (of weakly almost periodic functions on G); the first one consists of
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all functions f ∈ Cb(G) for which the map x �→ lxf from G into Cb(G) is continuous,
while the second space consists of all f ∈ Cb(G) such that {lxf : x ∈ G} has weakly
compact closure in Cb(G). When X is a left-introverted subspace of Cb(G), X∗ can be
made into a Banach algebra if we define the product mn of elements m, n ∈ X∗ by

〈mn, f〉 = 〈m, n · f〉, f ∈ X,

where n · f is as defined earlier.

2. Some lemmas

Lemma 2.1. Suppose A is a Banach algebra with a continuous involution ∼. Then ∼
has an extension to a continuous conjugate linear mapping on A∗∗, denoted by the same
symbol ∼, such that (m � n)∼ = ñ � m̃ for all m, n ∈ A∗∗. Furthermore, if the original
involution is isometric, then so is the extension.

Proof. We can define a new scalar product λ · a, by λ · a = λ̄a, λ ∈ C, a ∈ A. With
the new scalar product, ∼ can be identified with a bounded linear operator T . Let T ∗∗

be the second conjugate of T . Then T ∗∗ is the required extension; in fact let m, n ∈ A∗∗

and let (ai) and (bj) be bounded nets in A such that âi
w∗
−−→ m and b̂j

w∗
−−→ n in A∗∗. Then

T ∗∗(m � n) = w∗ − lim
i

lim
j

T ∗∗((aibj )̂ )

= w∗ − lim
i

lim
j

(T (bj)T (ai))̂

= T ∗∗(n) � T ∗∗(m).

Obviously, T ∗∗ is isometric when T is isometric. �

Corollary 2.2. Let ∼ be a continuous involution on the Banach algebra A, and let
∼ be extended to A∗∗ as in Lemma 2.1. Then the extension is an involution if and only
if A is Arens regular.

Remark 2.3. From Corollary 2.2 we see that if G is an infinite group, then the second
adjoint of the natural involution on L1(G) is not an involution on L1(G)∗∗, since L1(G)
is not Arens regular [12].

The proof of the next lemma is straightforward.

Lemma 2.4. Let X be a left-introverted subspace of Cb(G). Then the map π :
L∞(G)∗ → X∗, induced by restriction, is an algebra homomorphism.

Lemma 2.5. L1(G)∗∗ with the first (or second) Arens product has an identity if and
only if G is discrete.

Proof. If G is discrete, then L1(G) has an identity and so L1(G)∗∗ has an identity.
Now suppose that L1(G)∗∗ with the first Arens product has an identity E. We first
show that LUC(G) = L∞(G). Suppose to the contrary that LUC(G) 	= L∞(G). Then
we can find a non-zero m ∈ L∞(G)∗ annihilating LUC(G). By using the factorization
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LUC(G) = L∞(G) ·L1(G) [6,7] together with the weak star continuity of the first Arens
product in the first variable and weak star denseness of L1(G) in L1(G)∗∗, we find that
m is a right annihilator of L1(G)∗∗. In particular, m = Em = 0, which is a contradiction.
So LUC(G) = L∞(G), whenever L1(G)∗∗ has an identity. Thus, G is discrete in this
case. �

3. Consequences of existence of involutions

Proposition 3.1. Suppose that there is an involution on L1(G)∗∗. Then G is discrete.

Proof. Let † be an involution on L1(G)∗∗. Since L1(G) has a bounded approximate
identity, L1(G)∗∗ has a right identity, say E [1, p. 146]. For any m ∈ L1(G)∗∗ we have

E† � m = (m† � E)† = (m†)† = m.

Hence, L1(G)∗∗ has an identity and we have the result from Lemma 2.5. �

Before proving the next theorem, we need to explain some notation and facts: for
f ∈ C0(G), define f̌ ∈ C0(G) by f̌(x) = f(x−1). Then for µ ∈ M(G) (the measure
algebra of G) define µ̃ ∈ M(G) by

〈µ̃, f〉 = 〈µ, f̌〉, f ∈ C0(G).

Then one can easily see that ∼ on M(G) extends the natural involution of L1(G), so
especially for ϕ ∈ L1(G) we have 〈ϕ̃, f〉 = 〈ϕ, f̌〉.

We had originally proved part (a) of the following theorem for amenable G. We thank
the referee for pointing out that the result holds only if one assumes that G has an infinite
amenable subgroup.

Theorem 3.2.

(a) Suppose that the locally compact group G has an infinite amenable subgroup. Then
L1(G)∗∗ does not admit an involution extending the natural involution of L1(G).

(b) Suppose that G is amenable. Then LUC(G)∗ has an involution extending the nat-
ural involution of L1(G) if and only if G is compact.

Proof. (a) Let ∗ be an involution on L1(G)∗∗ extending the natural involution of
L1(G). From Proposition 3.1 we can assume that G is discrete and, hence, for every
x ∈ G the point mass δx belongs to L1(G) (= l1(G)). Let H be an infinite amenable
subgroup of G and let m be a two-sided invariant mean on l∞(H). For x ∈ H we have

δxm∗ = (mδx−1)∗ = m∗, (3.1)

and so m∗ is left translation invariant.
From (2.1) it follows that

mm∗ = m, (3.2)
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since l1(H) is weak∗ dense in l1(H)∗∗ and the embedding of l1(H)∗∗ into l1(G)∗∗ is
weakly∗ continuous. From (2.4) it follows that m = m∗. Now let m1 and m2 be any pair
of two-sided invariant means on l∞(H). Then m2 = m1m2 = (m1m2)∗ = m2m1 = m1,
contradicting [2].

(b) If G is compact, then LUC(G)∗ = M(G) and the result is clear.
For the converse, let † be an involution on LUC(G)∗ extending the natural invo-

lution ∼ of L1(G). We have LUC(G)∗ = M(G) ⊕ C0(G)⊥ [5, Lemma 1.1]). Let µ ∈
M(G) and f ∈ LUC(G). Using the factorizations LUC(G) = L∞(G) · L1(G) and
L1(G) = L1(G) ∗ L1(G) [6,7], one has the factorization LUC(G) = LUC(G) · L1(G), so
that f = f1 · ϕ for some f1 ∈ LUC(G) and ϕ ∈ L1(G). Hence,

〈µ†, f〉 = 〈µ†, f1 · ϕ〉 = 〈ϕµ†, f1〉 = 〈(µϕ†)†, f1〉
= 〈(µϕ̃)†, f1〉 = 〈(µ ∗ ϕ̃)∼, f1〉 = 〈ϕ ∗ µ̃, f1〉
= 〈µ̃, f1 · ϕ〉.

Hence, µ† = µ̃. In particular, (δx)† = δx−1 . Now one can repeat the argument of part (a)
word for word, except that, concerning the cardinality of invariant means, one needs to
use the more general result of [8]. �

The result of the preceding theorem may suggest that G is compact whenever there is
a left-introverted subspace X of Cb(G) containing C0(G) such that X has a left invariant
mean and such that X∗ has an involution extending the natural involution of L1(G). We
will show that this is not the case for X = WAP(G).

Definition 3.3. Let A be a Banach algebra. A linear functional f ∈ A∗ is called
weakly almost periodic on A if the operator a �→ f · a from A into A∗ is weakly compact
(equivalently, a �→ a · f is weakly compact, by the Grothendieck double limit theorem).

We denote the space of all weakly almost periodic functionals on A by WAP(A). It is
easily verified that WAP(A) is a Banach submodule of the dual Banach A-module A∗.
The space WAP(A)∗ can be made into a Banach algebra by an Arens-type product: for
n ∈ WAP(A)∗ and f ∈ WAP(A), let n · f ∈ A∗ such that

〈n · f, a〉 = 〈n, f · a〉, a ∈ A,

and for m, n ∈ WAP(A)∗, let mn ∈ WAP(G)∗ such that

〈mn, f〉 = 〈m, n · f〉, f ∈ WAP(A).

It is easy to prove that with this product WAP(A)∗ is a Banach algebra, and the map
a �→ â, where â(f) = f(a), is a continuous algebra homomorphism from A into WAP(A)∗.

The following result is due to Pym [9].

Proposition 3.4. Let A be a Banach algebra and f ∈ A∗. Then f is weakly almost
periodic on A if and only if 〈m � n, f〉 = 〈m � n, f〉, for all m, n ∈ A∗∗.
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Theorem 3.5. Suppose that the Banach algebra A has a continuous involution ∼,
and further, suppose that the algebra homomorphism a �→ â from A into WAP(A)∗ is
an embedding. Then ∼ extends to a continuous involution on WAP(A)∗.

Proof. Let T be the bounded operator on A associated with ∼, as in the proof of
Lemma 2.1. We note that T ∗(WAP(A)) ⊂ WAP(A). In fact, if f ∈ WAP(A) and a ∈ A,
then direct calculations show that a ·T ∗(f) = T ∗(f ·T (a)), so that a �→ a ·T ∗(f) is weakly
compact. Now we define † on WAP(A)∗ by 〈n†, f〉 = 〈T ∗∗(n′), f〉, where n ∈ WAP(A)∗,
f ∈ WAP(A) and n′ is any Hahn–Banach extension of n. From the above observations
we see that n† is well defined. Now let n1, n2 ∈ WAP(A)∗, and let n′

i, i = 1, 2, be an
extension of ni. Then n′

1 � n′
2 is an extension of n1n2, and so for f ∈ WAP(A) we have

〈(n1n2)†, f〉 = 〈T ∗∗(n′
1 � n′

2), f〉 = 〈T ∗∗(n′
2) � T ∗∗(n′

1), f〉
= 〈T ∗∗(n′

2) � T ∗∗(n′
1), f〉 = 〈T ∗∗(n′

2), T
∗∗(n′

1)f〉
= 〈n†

1, T
∗∗(n′

1)f〉. (3.3)

Now we calculate T ∗∗(n′
1)f . In fact if a ∈ A, then

〈T ∗∗(n′
1)f, a〉 = 〈T ∗∗(n′

1), f · a〉 = 〈n†
1, f · a〉

and so T ∗∗(n′
1)f = n†

1f . Together with (3.3), this shows that (n1n2)† = n†
2n

†
1. The proof

is complete. �

Corollary 3.6. For a locally compact group G, the Banach algebra WAP(G)∗ has an
isometric involution that extends the natural involution of L1(G).

Proof. First we note that a bounded continuous function f on G is weakly almost
periodic if and only if the functional

Λf : g �→
∫

G

f(x)g(x) dx

is a weakly almost periodic functional on L1(G) [11]. Thus, from Theorem 3.5, WAP(G)
admits an isometric involution which extends the natural involution of L1(G). �

4. A multiplier problem related to involutions

Suppose that T : L∞(G) → L∞(G) is a continuous right L1(G)-module morphism, so
that T (f · ϕ) = T (f) · ϕ, f ∈ L∞(G), ϕ ∈ L1(G). We can give a concrete description
of T . In fact, if T ∗ is the adjoint of T , then T ∗ is a left L1(G) module morphism,
T ∗(ϕ · n) = ϕ · T ∗(n). Hence, by weak∗ continuity of the first Arens product with respect
to the first variable, we have T ∗(m � n) = m � T ∗(n), for all m, n ∈ L1(G)∗∗. By letting
n = E, a right identity for L1(G)∗∗, we find T ∗(m) = m � T ∗(E), for any m ∈ L1(G)∗∗.
Let N = T ∗(E). Then, for m ∈ L1(G)∗∗ and f ∈ L∞(G),

〈m, T (f)〉 = 〈T ∗(m), f〉 = 〈m � N, f〉 = 〈m, N · f〉
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and so T (f) = N · f , f ∈ L∞(G). Conversely, for every N ∈ L1(G)∗∗, the map TN : f �→
N · f defines a continuous right L1(G)-module morphism. Similarly, by using the second
Arens product, it can be shown that a bounded operator T : L∞(G) → L∞(G) is a left
L1(G)-module morphism if and only if there is N ∈ L1(G)∗∗ such that T (f) = f · N .
Now let N ∈ L1(G)∗∗∗∗. Then it is easy to verify that

RNf �→ N · f, f ∈ L∞(G)∗∗,

is a right L1(G)-module morphism from L∞(G)∗∗ into L∞(G)∗∗.

Problem 4.1. Is every weak-∗ continuous surjective right L1(G)-module morphism
R : L∞(G)∗∗ → L∞(G)∗∗ equal to RN for some N ∈ L1(G)∗∗∗∗?

Theorem 4.2. Suppose that problem 4.1 is answered affirmatively. Then L1(G)∗∗

has a continuous involution extending the natural involution of L1(G) if and only if G is
finite.

Proof. Let θ be an involution on L1(G)∗∗ extending the natural involution of L1(G).
Then from Proposition 3.1, G is discrete. Let T be the bounded operator associated with
the natural involution on l1(G), as in Lemma 2.1, and let T ∗∗ be the second adjoint of T .
We have T (δx) = δx−1 , x ∈ G, and

T ∗∗(m � n) = T ∗∗(n) � T ∗∗(m), m, n ∈ l1(G)∗∗.

Since θ(δxn) = θ(n)δx−1 , x ∈ G, we have T ∗∗θ(δxn) = δxT ∗∗θ(n). Hence, by linearity
and continuity we have

(T ∗∗θ)(fn) = f(T ∗∗θ)(n), f ∈ l1(G), n ∈ l1(G)∗∗.

Let S = T ∗∗θ. Then from the hypothesis, there exists N ∈ l1(G)∗∗∗∗ such that S∗(f) =
N · f , f ∈ l∞(G)∗∗. Then, for m ∈ l1(G)∗∗ and f ∈ l∞(G)∗∗,

〈S(m), f〉 = 〈S∗(f), m〉 = 〈N · f, m〉
= 〈m̂, N · f〉 = 〈m̂ � N, f〉. (4.1)

For m = δe, the above equation yields 〈δe, f〉 = 〈N, f〉, f ∈ l∞(G)∗∗, and so N = δe.
Hence, S = I, the identity operator on l1(G)∗∗. Since (T ∗∗)2 = T ∗∗, we obtain θ = T ∗∗.
But T ∗∗ is an involution if and only if l1(G) is Arens regular and this can happen if and
only if G is finite [12]. �

5. Some non-trivial quotients of L1(G)∗∗ admitting involutions

Although we have shown that when an infinite group G is non-discrete or amenable then
L1(G)∗∗ does not admit any involution extending the natural involution of L1(G), in this
section we show that, for certain non-trivial quotients of L1(G)∗∗, admission can happen.

We recall that the left regular representation of L1(G) onto L2(G) is the mapping
λ : L1(G) → B(L2(G)) such that

λ(ϕ)(g) = ϕ ∗ g, ϕ ∈ L1(G), g ∈ L2(G).
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The mapping λ is a norm-decreasing ∗-homomorphism, when L1(G) and B(L2(G)) have
their natural involutions [7].

Proposition 5.1. Let λ : L1(G) → B(L2(G)) be the left regular representation. Then

(a) the image of λ∗∗ is a self-adjoint subalgebra of the C∗-algebra B(L2(G))∗∗,

(b) the kernel of λ∗∗ contains the radical of L1(G)∗∗.

Proof. (a) Let m ∈ L1(G)∗∗ and (ϕα) be a net in L1(G) such that ‖ϕα‖ � ‖m‖
and ϕ̂α

w∗
−−→ m. Let ∼ be the natural involution on L1(G). Then ‖ϕ̃α‖ � ‖m‖, so that a

subnet of (ϕ̃α)̂ converges to some n ∈ L1(G)∗∗. We can assume that (ϕ̃α)̂ w∗
−−→ n. By

the weak-∗ continuity of λ∗∗ we have

lim
α

λ∗∗(ϕ̂α) = λ∗∗(m)

and

lim
α

λ∗∗((ϕ̃α)̂ ) = λ∗∗(n).

On the other hand, from [10, Theorem 1.7.8] the involution of a von Neumann algebra
is continuous in the weak-∗ topology, so that in the weak-∗ topology we have

λ∗∗(n) = lim
α

λ∗∗((ϕ̃α)̂ ) = lim
α

(λ(ϕ̃α))̂

= lim
α

(λ(ϕα)∗)̂ = lim
α

(λ∗∗(ϕ̂α))∗ = (λ∗∗(m))∗,

indicating that (λ∗∗(m))∗ = λ∗∗(n). Hence, λ∗∗(L1(G)∗∗) is self-adjoint. Furthermore,
λ∗∗(L1(G)∗∗) is an algebra since λ∗∗ is an algebra homomorphism [3].

(b) Let m ∈ Rad(L1(G)∗∗) (the radical) and let n ∈ L1(G)∗∗ be as obtained in part (a).
Then the spectral radius r(mn) = 0. Since an algebra homomorphism is always spectral
radius reducing, we have

r(λ∗∗(m)(λ∗∗(m))∗) = r(λ∗∗(m)λ∗∗(n)) � r(mn) = 0.

Since λ∗∗(m)λ∗∗(m)∗ is self-adjoint, we have λ∗∗(m) = 0, and the proof is complete. �

Corollary 5.2. Let I = ker λ∗∗. Then L1(G)∗∗/I admits an involution.

Proof. This is clear from Proposition 5.1 (a). �

Concerning the radical of L1(G)∗∗, there is an old open question asking whether, for
all groups G, Rad(L1(G)∗∗) 	= {0}. When G is non-discrete or amenable the answer is
affirmative; in fact, if G is non-discrete then LUC(G) 	= L∞(G) and, by using the factor-
ization LUC(G) = L∞(G) · L1(G), one can easily show that any element of LUC(G)⊥ is
a right annihilator of L1(G)∗∗. If G is infinite, discrete and amenable, we let m and n be
distinct left invariant means on l∞(G). Then (m − n)2 = 0, and so the spectral radius of
m − n is zero. Now if p ∈ l∞(G)∗, then p � (m − n) = 〈p,1〉(m − n). Hence, the spectral
radius of p � (m − n) is 0, showing that (m − n) ∈ Rad(l1(G)∗∗).
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Problem 5.3. Let G be discrete and suppose that l1(G)∗∗ admits an involution that
extends the natural involution of l1(G). Does it then follow that Rad(l1(G)∗∗) = {0}?

Problem 5.4. Is Ker(λ∗∗) larger than Rad(L1(G)∗∗)?

Corollary 5.5. Let ρ : L1(G)∗∗ → WAP(G)∗ be the map restricting functionals on
L∞(G) to WAP(G), and let I = Ker(ρ). Then L1(G)∗∗/I admits an involution.

Proof. This is immediate from Lemma 2.4 and Corollary 3.6. �
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