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Abstract

Background. There is considerable comorbidity between externalizing (EXT) and internalizing
(INT) psychopathology. Understanding the shared genetic underpinnings of these spectra is
crucial for advancing knowledge of their biological bases and informing empirical models like
the Research Domain Criteria (RDoC) and Hierarchical Taxonomy of Psychopathology
(HiTOP).
Methods.We applied genomic structural equationmodeling to summary statistics from 16 EXT
and INT traits in individuals genetically similar to European reference panels (EUR-like;
n = 16,400 to 1,074,629). Traits included clinical (e.g. major depressive disorder, alcohol use
disorder) and subclinical measures (e.g. risk tolerance, irritability). We tested five confirmatory
factor models to identify the best fitting and most parsimonious genetic architecture and then
conducted multivariate genome-wide association studies (GWAS) of the resulting latent factors.
Results.A two-factor correlated model, representing EXT and INT spectra, provided the best fit
to the data. There was amoderate genetic correlation between EXT and INT (r = 0.37, SE = 0.02),
with bivariate causal mixture models showing extensive overlap in causal variants across the two
spectra (94.64%, SE = 3.27). Multivariate GWAS identified 409 lead genetic variants for EXT,
85 for INT, and 256 for the shared traits.
Conclusions. The shared genetic liabilities for EXT and INT identified here help to characterize
the genetic architecture underlying these frequently comorbid forms of psychopathology. The
findings provide a framework for future research aimed at understanding the shared and distinct
biological mechanisms underlying psychopathology, which will help to refine psychiatric
classification systems and potentially inform treatment approaches.

Introduction

Traditional categorical classifications of psychopathology are limited by a rudimentary under-
standing of the underlying biology. Psychiatric disorders co-occur more often than expected by
chance (Kessler et al., 1994; Kessler, Chiu, Demler, & Walters, 2005), suggesting the presence of
shared genetic underpinnings across diagnostic categories (Lee, Feng, & Smoller, 2021). Add-
itionally, current diagnostic classifications rely on arbitrary thresholds and a polythetic approach,
resulting in thousands of unique symptom combinations for the same diagnosis (Galatzer-Levy&
Bryant, 2013). These limitations complicate clinical care and constrain progress in psychiatric
nosology and genetics.

To address these issues, approaches such as the Hierarchical Taxonomy of Psychopathology
(HiTOP) and the Research Domain Criteria (RDoC) initiative (Cuthbert, 2015; Kotov et al., 2017;
2021;Kozak&Cuthbert, 2016) have beenproposed.HiTOPconceptualizes psychopathology along a
continuum from symptoms to broad spectra, culminating in an overarching general psychopath-
ology (p) factor. In contrast, RDoC focuses on transdiagnostic domains of functioning to identify
putative causal mechanisms across multiple units of analysis. Despite different approaches, HiTOP
and RDoC both aim to move beyond traditional diagnostic categories to capture the complexity of
psychopathology (Michelini, Palumbo, DeYoung, Latzman, & Kotov, 2021). However, the integra-
tion of these frameworks, particularly through genetic investigations, remains largely unexplored.

Genetic research has advanced our understanding of psychopathology dimensions, withmost
of this work focusing on externalizing (EXT) and internalizing (INT) behaviors. Twin and family
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studies have shown that both externalizing (e.g. antisocial behavior,
substance use) and internalizing (e.g. anxiety, depression) behaviors
have shared genetic bases (Hewitt, Silberg, Neale, Eaves, & Erickson,
1992; Silberg et al., 1994). Additionally, twin and family studies
(Allegrini et al., 2020; Lahey, Van Hulle, Singh, Waldman, &
Rathouz, 2011; Pettersson, Larsson, & Lichtenstein, 2016) and prin-
cipal component analyses (Allegrini et al., 2020; Selzam, Coleman,
Caspi,Moffitt,&Plomin, 2018) have examined genetic factors shared
by both EXT and INT psychopathology. Genome-wide association
studies (GWAS) of childhood behavior problems, encompassing EXT
and INT psychopathology, identified two genome-wide significant
loci (Neumann et al., 2022; Pappa et al., 2015). These findings align
with HiTOP, which posits shared genetic factors within and across
psychopathology dimensions, but also highlight the need for larger,
more integrative studies to disentangle shared and unique genetic
influences across EXT and INT.

Genomic structural equation modeling (gSEM) provides a
nuanced understanding of the genetic architecture underlying psy-
chopathology. Studies using gSEM to investigate the factor structure
of psychiatric disorders have identified one to four factors that
underlie their shared liability (Grotzinger et al., 2019; Grotzinger
et al., 2022; Lee et al., 2019). This work has yielded two genome-wide
loci for a higher-order p-factor that encompasses compulsive, psych-
otic, internalizing, and neurodevelopmental disorders (Grotzinger
et al., 2022), with the researchers noting that the p-factor may have
low utility for identifying underlying genetic variation. However,
because the study included only psychiatric disorders, it did not
capture a spectrum of psychopathology consistent with dimensional
models like HiTOP. It also included only two EXT (attention-deficit
hyperactivity disorder and problematic alcohol use) and two INT
(anxiety and major depressive disorder) conditions.

Despite the valuable insights provided by gSEM studies focused
specifically on EXT and INT, gaps remain. First, although subclin-
ical traits have been included in studies of EXT (Karlsson Linnér
et al., 2019; Karlsson Linnér et al., 2021), their integration in the
study of INT has been limited, which risks overlooking genetic
contributions across the full range of symptom severity. Second,
studies have not typically focused on genetic effects shared across
both EXT and INT psychopathology. Thus, our understanding of
the common genetic factors that drive comorbidities between these
two spectra is limited, despite evidence that individuals who experi-
ence comorbid EXT and INT problems are uniquely vulnerable to
poor economic and social outcomes (Vergunst et al., 2023), crim-
inality (Commisso et al., 2024), and suicide attempts (Commisso
et al., 2023).

The current study addresses gaps in our understanding of the
genetic architecture of EXT and INT psychopathology. Using
gSEM, we tested competing confirmatory factor models based on
existing theories of psychopathology to identify the best-fitting
structure that captured shared and specific genetic liabilities across
clinical and subclinical EXT and INT traits. After identifying the
optimal model, we performed GWAS to identify genetic variants
that contribute to EXT, INT, and their shared etiology. To further
characterize the shared genetic architecture, we applied MiXeR
models to estimate polygenicity (i.e. the number of causal vari-
ants) and the degree of causal variant overlap between EXT and
INT. We also calculated genetic correlations with a wide range of
phenotypes to explore the behavioral manifestations of EXT, INT,
and EXT + INT genetic liability. These analyses provide insights
into the shared and distinct genetic effects that underlie EXT
and INT psychopathology and lay the foundation for Part II, a
companion article, in which we explore shared and distinct biological

mechanisms, including pathways at the levels of genes, cells, and
neural circuits.

Methods

Summary statistics

We selected EXT summary statistics based on published studies of
individuals genetically similar to European reference panels (EUR-
like) (Karlsson Linnér et al., 2019; Karlsson Linnér et al., 2021) and
existing theory (Kotov et al., 2017) (Supplementary Table 1). We
included the largest GWAS of attention deficit hyperactivity dis-
order (ADHD; n = 225,534; (Demontis et al., 2023) and four
substance use disorders (SUDs, i.e. alcohol [AUD; n = 753,248;
Zhou et al., 2023], cannabis [CanUD; n = 886,025; Levey et al.,
2023], opioid [OUD; n = 425,944; Kember et al., 2022], and tobacco
[TUD; n = 495,005; Toikumo et al., 2024]). These disorders align
with HiTOP’s disinhibited externalizing spectrum (Krueger et al.,
2021).We also included subclinical measures reflecting disinhibition
and antagonism (age of first sexual intercourse [AgeSex; reverse-
coded; n = 317,694], general risk tolerance [Risk; n = 431,126],
number of sexual partners [NumSex; n = 370,711; Karlsson Linnér
et al., 2019; Karlsson Linnér et al., 2021], antisocial behavior [ASB;
n = 16,400; Tielbeek et al., 2017], and automobile speeding propen-
sity [n = 404,291; Karlsson Linnér et al., 2019]).

We selected INT summary statistics that capture HiTOP’s
internalizing symptom components, including eating pathology,
fear, and distress (Kotov et al., 2017). The studies included the
largest available GWAS of INT disorders: (1) anorexia nervosa
(AN; n = 72,517;Watson et al., 2019), (2) major depressive disorder
(MDD; n = 1,074,629; Als et al., 2023), and (3) posttraumatic stress
disorder (PTSD; n = 214,408; Stein et al., 2021). We also included
irritability (http://www.nealelab.is/uk-biobank/; n = 345,231),
loneliness (n = 490,689; Abdellaoui et al., 2019), subjective well-
being (reverse-coded; n = 298,420; Okbay et al., 2016), miserable-
ness (http://www.nealelab.is/uk-biobank/; n = 355,182), and anx-
iety (ANX; n = 280,490). To detect variants associated with
anxiety disorders (i.e. panic disorder, agoraphobia, generalized
anxiety disorder [GAD], specific phobia, and social phobia) and
subclinical anxiety (i.e. GAD-2 scores), we combined three GWAS
(Levey et al., 2020; Otowa et al., 2016; Purves et al., 2020) via
multi-trait analysis of GWAS (Turley et al., 2018).

Genomic structural equation modeling

We used linkage disequilibrium score regression (LDSC) (Bulik-
Sullivan et al., 2015), which estimates the genetic similarity between
traits, to calculate genetic correlations (rg). GenomicSEM is robust
to sample overlap, yielding valid results even when overlapping
cohorts are included (Grotzinger et al., 2019). Genetic variants, or
single nucleotide variants (SNVs), were filtered using reference data
from EUR-like individuals (HapMap3) (The International Hap-
Map 3 Consortium, 2010). We excluded rare variants (i.e. those
present in fewer than 1% of people). LDSC accounts for differences
in genetic similarity across and within populations by using linkage
disequilibrium (LD) information—patterns of correlation between
nearby genetic variants—from the 1000 Genomes Project (The
1000 Genomes Project Consortium, 2015). Traits with an average
rg < 0.20, indicating a small effect size, were excluded from subse-
quent modeling.

To investigate patterns of genetic overlap, we fit five confirmatory
factor analyses (CFAs) based on existing theories of psychopathology
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(Caspi et al., 2013; Krueger & Markon, 2006; Markon, 2019).
Whereas our objective was to test theoretically driven models, we
did not perform exploratory factor analyses. First, we evaluated a
correlated factors model with two factors representing EXT and INT
psychopathology. Next, we tested a three-factor model to explore
whether SUDs were distinct from other EXT behaviors. The third
model was a bifactor model consisting of a general psychopathology
factor and uncorrelated EXT and INT factors. Fourth, we evaluated a
higher-order model, which is mathematically equivalent to the two-
factor model but represents shared genetic effects between EXT and
INT as a second-order factor. To ensure that the model was statis-
tically identified, we constrained the loadings onto the second-order
factor to the square root of the genetic correlation between EXT and
INT (Loehlin, 1996). Finally, we tested a unidimensional (p-factor)
model where all traits were loaded onto one factor. In all CFAmodels
except the three-factor model (where shared variance is explained by
the SUD factor), residual variances for SUDs were allowed to cor-
relate, reflecting shared variance not explained by the broader EXT
factor. Model fit was evaluated using chi-square, Akaike information
criterion (AIC), comparative fit index (CFI; >.90), and standardized
root mean squared residual (SRMR; <0.08) statistics. Factor loadings
of ≥ 0.35 were required to ensure that each trait meaningfully
contributed to the factor.

Genome-wide association studies

ForGWAS,we excluded rare genetic variants (i.e. those present in <1%
of people) and poorly imputed variants (i.e. imputation scores <0.6).
Each genetic variant was regressed onto the latent variable(s) using
diagonally weighted least squares estimation. To evaluate heterogen-
eity, we calculated QSNV values, which indicate whether a variant’s
effect is consistent across all traits included on a factor or varies across
them. Genetic variants with a Q-statistic p-value <5 × 10�8 were
removed to ensure that only variants with common effects across
the spectrum were represented. We identified lead genetic variants
using LD clumping in PLINK 1.9 (Purcell et al., 2007), which groups
correlated variants based on reference data from the 1000 Genomes
Project and identified the most significant variant in the group.

Polygenicity and genetic overlap

We estimated the genetic complexity of traits using MiXeR, which
provides a measure of polygenicity (the number of genetic variants
that influence a trait) and discoverability (the average strength of
these effects) (Frei et al., 2019; Holland et al., 2020). In MiXeR,
causal variants are defined as genetic variants with nonzero additive
effects. The method assumes that effects follow a mixture distribu-
tion, where a proportion of variants have an effect and others have
no effect. MiXeR was also used to identify the proportion of unique
and shared causal variants for EXT and INT, regardless of whether
their effects are in the same or opposite direction for each trait.
Simulation studies have demonstrated that MiXeR is robust to
sample overlap (Frei et al., 2019).

Genetic correlations

To identify behavioral tendencies that are genetically linked to the
spectra, we calculated genetic correlations between EXT, INT,
EXT + INT, and 1,437 other traits using LDSC. LDSC accounts
for sample overlap to ensure unbiased estimates (Bulik-Sullivan
et al., 2015). To account for multiple testing and reduce the risk of
false positives, we applied a Benjamini–Hochberg false discovery

rate (FDR) correction. We also identified genetic correlations that
differed in magnitude for EXT and INT using an FDR correction to
determine significance and determined the proportion of genetic
correlations concordant in direction for EXT and INT.

Results

Confirmatory factor analysis

Of 18 traits examined (Figure 1), two (automobile speeding pro-
pensity and anorexia nervosa) were excluded due toweak associations
with all others (mean rg < 0.20). Using the remaining 16 traits, we
tested several CFAmodels (Figure 2 and Supplementary Figures 1–3).
A p-factor model did not provide adequate fit ( χ 2(98) = 8965.28,
AIC = 9041.28, CFI = 0.79, and SRMR = 0.15). Although a bifactor
model fit well ( χ 2(88) = 3472.02, AIC = 3568.02, CFI = 0.92, and
SRMR = 0.07), it led to several weak (<0.35) and one negative
standardized loading. Because of its limited interpretability and sev-
eral traits that did not adequately load onto the factors, we did not
perform GWAS on the bifactor model.

Two mathematically equivalent models provided adequate fit
and factor loadings: (1) a two-factor correlated model and (2) a
higher-order factor model. Fit statistics were χ2(97) = 3877.82,
AIC = 3955.82, CFI = 0.91, and SRMR = 0.09. To ensure identifi-
cation in the higher-order model, the loadings onto the second-
order factor were constrained equal to the square root of the genetic
correlation between EXT and INT (Loehlin, 1996), a commonly
accepted approach for testing a factor that explains shared variance
between two correlated dimensions. Although a three-factor model
separating SUDs from other externalizing traits provided reason-
able fit ( χ 2(101) = 4401.18, AIC = 4471.18, CFI = 0.90, and
SRMR = 0.09), it did not improve the fit of the simpler two-factor
model and thus did not justify the added complexity.

Genome-wide association studies

Eighty-three significant SNVs exhibited heterogeneous effects across
the EXT spectrum. A plurality was most strongly associated with
AgeSex (47.62%), followed byTUD(16.67%; SupplementaryTable 2).
After removing heterogenous SNVs, the EXT GWAS identified
409 lead SNVs (Supplementary Table 3). Of these, 92 (22.49%) were
not identified or located nearby (within ± 1000 kb) SNVs identified
by the input GWAS, and four were not previously associated with
any EXT trait. Three of the novel SNVs were on chromosome
4 (rs1961547, rs9316, and rs7682762), with the fourth on chromo-
some 22 (rs1473811). These SNVswere previously associated with
chronotype, schizophrenia, and social support, among other traits
(Supplementary Table 4).

For INT, 41 significant SNVs exhibited heterogeneity, with
most (78.05%) showing the strongest associations with MDD
(Supplementary Table 5). Removing heterogeneous SNVs left
85 lead SNVs (Supplementary Table 6). Of these, 23 (27.06%) were
in loci not significant in the input GWAS, and two were not previ-
ously associated with INT (Supplementary Table 7). The novel SNVs
were on chromosomes 3 and 4 (rs1381763 and rs4698408).

For EXT + INT, 39 significant SNVs exhibited heterogeneous
effects (Supplementary Table 8). Of these, a plurality (41.03%) was
most strongly associated with AgeSex, followed by AUD (17.95%).
Removing heterogeneous SNVs left 256 lead SNVs (Figure 3 and
Supplementary Table 9), 38 of which (14.84%) were not in loci
identified by any of the input GWAS, though all were previously
associated with an EXT or INT phenotype.
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Polygenicity and genetic overlap

The EXT and INT spectra displayed similar levels of genetic com-
plexity. However, INT had lower discoverability (bσβ

2 = 1.40 × 10�5)
than EXT ( bσβ

2 = 1.44 × 10�4), suggesting that INT may require
larger samples to detect significant SNVs. Despite an estimated rg of
0.37, almost all causal variants (96.83% of EXT and 92.42% of INT;
Figure 4) overlapped. Of the shared causal variants, 62.92% were
estimated to have concordant effect directions.

Genetic correlations

There were 413 significant rg with EXT (Supplementary Table 10
and Supplementary Figure 4), among which tobacco phenotypes
were among the strongest (current smoking: rg = 0.79, SE = 0.02; ever
smoked: rg = 0.62, SE = 0.02), as were those with lower socioeconomic
status (Townsend deprivation index: rg = 0.68, SE = 0.03; financial
difficulties: rg = 0.58, SE = 0.03) and educational attainment
(rg = �0.44, SE = 0.02). There were 311 phenotypes genetically
correlated with INT (Supplementary Table 11 and Supplementary

Figure 5), with the strongest including mood swings (rg = 0.90,
SE = 0.01) and neuroticism (rg = 0.89, SE = 0.01). INT was also
genetically correlated with several types of pain (abdominal: rg = 0.60,
SE = 0.04; facial: rg = 0.51, SE = 0.08; chest: rg = 0.49, SE = 0.03; and
multisite chronic pain: rg = 0.49, SE = 0.03). There were 474 significant
rgwith EXT+ INT, withmost being like those of the first-order factors
(Supplementary Table 12 and Figure 5). Of the rg, 17.61% were
discordant in direction for EXT and INT, and 168 were of a signifi-
cantly differentmagnitude for the two spectra. The rgwith the greatest
difference in magnitude were neuroticism score, worrier/anxious
feelings, mood swings, fed-up feelings, and worry too long after
embarrassment, all of which had stronger positive associations with
INT than EXT (Supplementary Figure 6).

Discussion

Using genomic structural equation modeling, we examined the
genetic architecture of EXT and INT spectra. Of the factor struc-
tures tested, a two-factor correlated model emerged as the best-
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Figure 2. Confirmatory factor analyses of externalizing and internalizing psychopathology. (a) correlated two-factor model, (b) higher-order factor model. Fit of both: χ2(97),
3877.82; AIC, 3955.82; CFI, 0.91; SRMR, 0.09. EXT, ‘externalizing’; INT, ‘internalizing’; ADHD, ‘attention deficit hyperactivity disorder’; AgeSex, ‘age at first sex (reverse coded)’; NumSex,
‘number of sexual partners’; ASB, ‘antisocial behavior’; AUD, ‘alcohol use disorder’; CanUD, ‘cannabis use disorder’; OUD, ‘opioid use disorder’; TUD, ‘tobacco use disorder’; SWB,
‘subjective wellbeing (reverse coded) ’; PTSD, ‘posttraumatic stress disorder’; MDD, ‘major depressive disorder’; ANX, ‘anxiety’.
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Figure 3. Manhattan plot of the GWAS results for externalizing and internalizing (EXT + INT) liability.
Note: Significant single nucleotide variants (SNVs) are highlighted in blue. Green diamonds and annotations denote the lead SNVs in loci not identified in the input GWAS for either of the two spectra.
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Figure 4. Results of bivariate causal mixture models for externalizing (EXT) and internalizing (INT).
Note: The Venn diagramon the left shows the estimated overlap in causal variants for externalizing and internalizing. The next two panels show conditional Q-Q plots of the observed versus expected -log10 p-values in trait 1 as a function of
the significance of the association with trait 2 (and vice versa) at the level of p ≤ 0.1, p ≤ 0.01, and p ≤ 0.001. The final panel shows the negative log-likelihood as a function of polygenic overlap. Theminimummodel is represented by the
point furthest to the left where the genetic overlap is estimated to be the minimum required to explain the genetic correlation between the two traits. The maximum model is represented as the point furthest on the right represents
complete overlap where the least polygenic trait’s causal variants are a subset of the more polygenic trait. The best model (i.e. the one selected by the MiXeR analysis) is the lowest point on the chart.
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Figure 5. Genetic correlations between the externalizing and internalizing (EXT + INT) factor and publicly available traits.
Note: The top 25 associations are annotated.

8
ChristalN

.D
avis

et
al.

https://doi.org/10.1017/S0033291725000856 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0033291725000856


fitting, with EXT and INT exhibiting amoderate genetic correlation
(rg = 0.37) that could be modeled as a higher-order EXT + INT
factor. GWAS of the latent factors identified 409 independent
genomic loci associated with EXT, 85 with INT, and 256 with the
higher-order EXT + INT factor. Evaluations of the heterogeneity
and polygenicity of each spectrum yielded clear evidence of genetic
complexity. Below, we discuss the findings in relation to dimen-
sional models of psychopathology and their implications for bio-
logical mechanisms and future research.

Genetic insights and biological mechanisms

Our findings demonstrate the utility of multivariate approaches for
boosting power to detect loci that might otherwise remain
undetected when traits are examined in isolation (Grotzinger
et al., 2019). By leveraging the shared etiology of commonly
co-occurring traits, we identified several novel loci. For both EXT
and INT, approximately one-quarter of the genetic variants iden-
tified were not significant in the GWAS of the individual traits that
comprise the spectrum. These results also emphasize the need to
study shared liability alongside spectrum-specific effects. For
example, 14.84% of loci identified for EXT + INT were captured
by neither the EXT or INT factors individually nor any of the
individual trait GWAS. Thus, there is added value in modeling
higher-order constructs to capture biological mechanisms that
transcend individual traits and spectra. This higher-order factor
may represent ‘genetic convergence’, whereby overlapping genetic
influences coalesce to drive the co-occurrence of psychopathology
across spectra (Waszczuk et al., 2020).

Spectrum-level heterogeneity and genetic complexity

We identified differences in the degree of genetic variability for
EXT, INT, and their shared liability (EXT + INT). EXT exhibited
the most heterogeneity, with 83 genetic variants showing varying
effects across the EXT spectrum. INT, in contrast, showed less
heterogeneity, with just 41 genetic variants that had differing effects
across INT traits. The higher-order EXT + INT factor showed the
least heterogeneity, with 39 genetic variants having differing effects
across the spectra. These findings offer insights into two possible
frameworks for understanding heterogeneity in hierarchical
models of psychopathology (Markon, 2019; Waszczuk et al., 2020).

The first framework is a ‘top-up’ approach, in which the higher-
order EXT + INT factor captures and accumulates the heterogen-
eity present within the two lower-order spectra (Markon, 2019).
Given this, we would expect a greater degree of heterogeneity for
EXT + INT than the first-order spectra. In contrast, the second
framework posits a ‘top-down’ model, whereby the EXT + INT
factor reflects a more stable and cohesive genetic architecture than
either first-order factor (Markon, 2019). Heterogeneity, in this case,
would be more pronounced at lower levels of the hierarchy. Our
findings align more closely with this second perspective. Less
heterogeneity for EXT + INT than EXT and INT individually
suggests that the higher-order spectrum consolidates overlapping
genetic influences into a more cohesive signal, challenging the
assumption that broader spectra necessarily amplify complexity.

Insights from MiXeR reinforce the interpretation that the
EXT+ INT factor reflects a cohesive and stable genetic architecture.
Despite a modest genetic correlation of 0.37 between EXT and INT,
MiXeR estimated that nearly all causal genetic variants that influ-
ence EXT (96.83%) and INT (92.42%) were shared across the two
spectra. Although many of these variants were estimated to have

opposite directions of effect (37.08%), these findings underscore the
potential value of higher-order constructs for reducing trait-
specific noise, offering a clearer lens through which to understand
the genetic etiology of psychopathology.

Genetic correlations and phenotypic patterns

Genetic correlations of the two spectra revealed distinct but over-
lapping phenotypes, with discordant directions for 17.61% of rg and
significant differences in magnitude across 168 traits. EXT was
predominantly genetically correlated with substance use and socio-
economic status, while most genetic correlations with INT were
with anxiety- and mood-related traits. Despite this divergence, the
top rg for the two spectra overlapped somewhat, particularly for
pain-related phenotypes. EXT + INTwas also genetically correlated
with pain-related phenotypes, substance use, and mood. Although
these patterns support differentiating between the two spectra, they
also highlight areas of overlap where common genetic factors
exhibit pleiotropy with other behavioral manifestations.

Implications for dimensional models of psychopathology

Our findings offer important insights for dimensional models of
psychopathology like HiTOP and RDoC by supporting and refin-
ing their conceptual frameworks. HiTOP emphasizes a hierarchical
organization of symptoms and spectra, proposing that broader
dimensions like EXT + INT capture shared liability across lower-
order spectra (Kotov et al., 2017). Although this aligns with our
observation that the EXT + INT factor accounts for shared liability
between the EXT and INT spectra, its lower heterogeneity chal-
lenges the expectation that heterogeneity accumulates in broader
psychopathology spectra. Instead, higher-order psychopathology
spectra may reflect more cohesive constructs than previously
assumed, necessitating a reevaluation of how hierarchical models
conceptualize heterogeneity across levels. Alternatively, the reduced
heterogeneity may stem from the modeling approach. Future
research should explorewhether this pattern is specific toEXT+ INT
or generalizes to other higher-order psychopathology spectra.

A key feature of HiTOP is its emphasis on psychopathology as a
continuum, with both clinical and subclinical traits contributing
meaningfully to the model (Kotov et al., 2017; Kotov et al., 2021).
Our findings support this dimensional conceptualization, as clin-
ical and subclinical traits had similar loadings on the EXT and INT
factors. Specifically, the average factor loading for EXT disorders
was 0.69 and for subclinical EXT traits, it was 0.68. INT disorders
loaded somewhat more strongly (0.84) than subclinical INT traits
(0.74). These results suggest that, rather than reflecting distinct
constructs, clinical and subclinical manifestations of psychopath-
ology exist along a shared continuum of liability. This is consistent
with HiTOP’s view that psychopathology is best understood
dimensionally, rather than through the discrete diagnostic categor-
ies that currently prevail.

The mechanistic focus of RDoC provides a complementary lens
for interpreting our findings. By examining genetic correlations and
associated genetic variants for the spectra, we explore howHiTOP’s
structural dimensions relate to RDoC’s units of analysis, including
genetic and behavioral processes, which are also areas of active
investigation within the HiTOP Consortium. The EXT and INT
spectra align with distinct RDoC domains. EXT primarily maps
onto the positive valence and cognitive systems, as evidenced by
genetic correlations with substance use and risky decision-making,
which reflect processes related to reward sensitivity and impulsivity.
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In contrast, INT aligns strongly with the negative valence systems
and arousal/regulatory systems, as evidenced by genetic correlations
with mood swings, neuroticism, and pain, which are linked to threat
sensitivity and stress reactivity. Framing higher-order dimensions
like EXT + INT as bridges between these distinct RDoC domains
begins to unify structural and mechanistic approaches to psycho-
pathology, a key focus of Part II of this pair of companion articles.

Limitations

A key limitation of this study is the inclusion of only EUR-like
individuals. Although GWAS of EXT- and INT-related disorders
are available for some non-EUR-like individuals, those of more
precise, non-disorder psychiatric phenotypes are limited. Nonethe-
less, some research suggests a similar factor structure exists in
individuals genetically similar to African reference panels (AFR-
like). At the disorder level, a gSEM of AFR-like individuals identi-
fied substance use and psychiatric disorder factors that roughly
aligned with EXT and INT (Khan et al., 2024). Additionally, the
analyses showed that a higher-order factor accounted for genetic
variance shared by substance use and psychiatric disorders, which
to a degree corresponds to our EXT + INT factor. With the growth
of diverse biobanks (Bianchi et al., 2024) and deep phenotyping
(Sanchez-Roige & Palmer, 2020), direct replication in other ances-
tries should soon be possible and given high priority.

Another limitation is the study’s focus on EXT and INT, which
does not fully capture psychopathology. Future research could
incorporate a wider range of traits, including those related to thought
or personality disorders, to provide a more comprehensive under-
standing of the genetic architecture underlying psychopathology.
Finally, most existing GWAS are cross-sectional, and detailed demo-
graphic information is not always reported due to the meta-analytic
nature of these studies. For developmental disorders such as ADHD
and conduct disorder, cross-sectional approaches in which the ages
of individuals represented vary may obscure genetic insights.

Conclusions

Our findings highlight the value of using genetic data to refine and
evaluate dimensional models of psychopathology. By modeling
EXT, INT, and their shared liability (EXT + INT), we identified a
more cohesive genetic etiology operating at the higher-order level,
challenging the assumption that broader spectra necessarily
increase heterogeneity. Instead, the EXT + INT factor consolidated
overlapping genetic influences, offering a clearer framework for
understanding comorbidity. These findings can informmodels like
HiTOP and RDoC, emphasizing the need to balance shared liability
with spectrum-specific effects. Future research, including the com-
panion Part II article, will be crucial for identifying the specific and
shared biological pathways that underlie these spectra. The effort to
link dimensional models to biological mechanisms will serve to
bridge structural (i.e. HiTOP) and mechanistic (i.e. RDoC)
approaches to psychopathology, ultimately enhancing their clinical
and theoretical utility.
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