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1. Introduction

Let I be a local field of characteristic 0. Let G be the F-rational points of a split connected
reductive group over F'. Assume that F'* contains the full group p,, of nth roots of unity.
In this paper we consider a central extension

py — G — G

of G by u, arising from the Brylinski-Deligne framework [11]. A representation (m,V;)
of G is called genuine if x1,, acts on V, by a fixed embedding u,, — C*.

In [18], we proposed and partially proved a conjectural formula for the dimension of a
certain relative Whittaker space of the irreducible constituents of a regular unramified
genuine principal series representation I(x) of G over a non-archimedean field F. The
formula in [18] relates certain Kazhdan—Lusztig representations of the Weyl group to the
dimensions of such relative Whittaker spaces.

This paper, as a companion to [18], deals with the case where I(x) is a unitary
unramified genuine principal series — that is, x is a unitary unramified genuine character of
the centre Z (T) of the covering torus T' C G. In this case, I(x) is a semisimple G-module,
and has a decomposition

I(x) = @ My * T,

m€ell(x)

where 7 are the nonequivalent constituents of I(x). These representations 7 thus should
constitute an L-packet II(x). The reducibility of I(x) and this decomposition is controlled
by a certain Knapp-Stein R-group R, C W,, where W, C W is the stabiliser subgroup
of x inside the Weyl group W. In particular, there is a correspondence

Irr (R, ) «+— II(x), 0 & g, (1.1)

between the irreducible representations of R, and elements in II(x) such that m, =
dim(o). Since yx is unramified, one can show that R, is abelian and therefore m,_ =1 for
every o.

Fix a Whittaker datum (E =TU ,w) for G, where U is the unipotent radical of the Borel
subgroup B and ¢ : U — C* is a nondegenerate character. It is well known that genuine
representations of covering groups could have high-dimensional ¢-Whittaker space (i.e.,
the space of ¢-Whittaker functionals; see the introductions of [18, 19] for brief literature
reviews). In particular, dim Why, (I(x)) increases as the degree of covering increases. In
view of the correspondence in formula (1.1), it is natural to ask:

e How can dimWhy(m,) be determined in terms of o € Irr(R,)?

Our goal is first to prove a formula for dim Why,(7,) for general G. Second, for certain
saturated covers (see Definition 2.1) of a semisimple simply connected G, we propose a
simpler conjectural formula for dim Why, (7, ) in terms of the character pairing of o and
a certain permutation representation o of R,. We will also verify several cases of this
conjectural formula in this paper.
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1.1. Background and motivation

We briefly recall some relevant works for linear algebraic groups which motivate our
consideration in this paper.

For a linear algebraic group G and x a character of T' (not necessarily unramified),
correspondence (1.1) arises from the theory of Harish-Chandra and Knapp and Stein for
the commuting algebra End(I(x)) of the principal series representation I(y), especially
from the algebra isomorphism

C[Ry] ~ End(I(x)). (1.2)

In fact, for general parabolic induction (i.e., parabolically induced representation) for G,
the theory of R-groups was initiated in the work of Knapp and Stein for real groups
[29]. Based on Harish-Chandra’s work [46], Silberger worked out the formulation for p-
adic groups [44, 45]; in particular, he showed that Harish-Chandra’s commuting algebra
theorem holds, which then gives an analogue of isomorphism (1.2) for general parabolic
induction on linear algebraic groups. Here, for simplicity in this introduction, we ignore
the subtleties of the two-cocycle twisting in the algebra of the R-group for general
parabolic inductions (see [3] for details). For minimal parabolic induction of a Chevalley
group, the group R, was computed explicitly by Keys [25]; the study in the unramified
case was furthered in [26].

In the minimal parabolic case, the connection of the R-group with the Langlands
correspondence was elucidated in [27, 28]. For example, let ¢, be the L-parameter
associated to the character x; Keys showed that the component group Sy, is isomorphic
to R, and thus elements inside the L-packet II() are also naturally parametrised by
Irr (S¢X). Beyond the principal series case, it was conjectured by Arthur [2] that the R-
group associated with the parabolic induction I(o) from a discrete series o on the Levi
subgroup is also isomorphic to the component group Sy_, where ¢, is the L-parameter
associated to I(c). We refer to [7, 23, 6] and the references therein for works in this
direction.

Such a relation between II(x) and ¢, demonstrates a prototype of the general idea of
the local Langlands parametrisation for admissible representations of a local reductive
group G. Let W[, = Wg x SL2(C) be the Weil-Deligne group of F', where Wy is the local
Weil group. Let “G be the L-group of G. For each parameter

¢:Wp — LG,

the local conjecture of Langlands asserts that there is an L-packet 1I4 consisting of
irreducible admissible representations of G which satisfy certain desiderata (see [9]).
Members inside the same packet 11 are equipped with the same L-function and e-factor.
Moreover, as already alluded to, if ¢ is a tempered parameter (i.e., the image of ¢|w, in
the dual group of G is relatively compact), then the component group Sy conjecturally
parametrises elements in the L-packet II; (see [4]) — that is, there is a bijection

II‘I‘(S¢) — H¢. (13)

This bijection originally manifests in the theory of endoscopic transfer, and in par-
ticular in the character identity relations matching orbital integrals arising from the
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transfers (cf. [31, 42, 43, 1, 3]). More generally, in order to deal with non-tempered
representation in the global L? spectral decomposition, Arthur postulated that one
should consider a parameter ¢ of W}, x SLy(C) valued in the Langlands L-group LG
the component group S, should parametrise a certain Arthur-packet, which plays
a crucial role in Arthur’s work formulating his global multiplicity formula for the
discrete spectrum of automorphic representations of a linear reductive group (see
2, 5)).

It should be noted that bijection (1.3) is not canonical, which depends from the
geometric side on the normalisation of the Langlands—Shelstad transfer factors and
from the representation-theoretic side on the normalisation of intertwining operators (see
[28, 39, 40]). Indeed, one can always twist the bijection by a character of the component
group S,. However, if ¢ is a tempered parameter, then it is conjectured in [40] that II,
always contains a unique generic element with respect to a fixed Whittaker datum of G.
In particular, for a fixed Whittaker datum of G, there is a one-to-one correspondence
between generic tempered representations and tempered L-packets. Granted with this
tempered-packet conjecture, the correspondence in formula (1.3) can then be normalised
such that the unique generic element (with respect to the fixed Whittaker datum) is
parametrised by 1 € Irr(S,). We refer the reader to [41] and the references therein for
works in this direction.

It is to this last problem on the genericity of representations inside Il,, where ¢ = ¢, is
the parameter for a unitary unramified genuine principal series I(x) of a covering group,
that our object in this paper pertains. The Whittaker space Why (Z(x)) is understood
as a consequence of Rodier’s heredity and the fact that T has only trivial unipotent
subgroup. However, if I(x) is reducible, then for any constituent 7 it is a natural but
delicate question to determine the dimension dim Why (7).

For a unitary unramified genuine Y, correspondence (1.1) continues to hold. The proof
is essentially the same as in the linear algebraic case, and relies on the covering analogue
of formula (1.2), which follows from recent work of W.-W. Li [33, 34] and C. Luo [35]. In
fact, we will also show the isomorphism R, ~ Sy . However, since it is possible to have
dim Why () > 0 for every constituent 7 of I(x), there does not seem to be a preferred
choice of 7 € II(x) using the genericity criterion. Thus, we choose the normalisation for
correspondence (1.1) such that the unique unramified constituent 7" C I(x) corresponds
to the trivial representation 1 of R, — that is,

__un
T —7TX .

For unramified principal series of a linear algebraic group, this is the natural choice,
since " is generic with respect to the fixed Whittaker datum, as a consequence of the
Casselman—Shalika formula.

With this normalised correspondence o <> m,, we want to determine dimWhy,(7,) in
terms of ¢ for every o € Irr(R, ). We hope that the results in this paper will eventually
find applications in the context of global automorphic representations for covering
groups.

n

https://doi.org/10.1017/51474748021000128 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000128

R-group and Whittaker space of some genuine representations 217

1.2. Main conjecture

Let x be a unitary unramified genuine character of Z (T'). Associated to T is a finite
abelian group

Zon =Y/Yqn,

which is the quotient of the cocharacter lattice Y of G' by a certain sublattice Y . Here
Zo.n is the ‘moduli space’ of Why,(I(x)); in particular,

dimWhy (1(x)) = | 2.0

The group Zq,, is endowed with a natural twisted W-action which we denote by wy].
From this we have a permutation representation

o? W — Perm (2.n)

given by o? (w)(y) = w[y]. Let O2 be the set of all W-orbits (with respect to this
twisted action) in Zq . Clearly, for each W-orbit O, € O 4 we have the permutation
representation

aéi : W — Perm (Oy);

moreover, 0% decomposes as a sum of all agy — that is,

X _ @ v
0" = oo, -

0,09

By restriction, aéi could be viewed as a permutation representation of B, C W, C W.

For every W-orbit O, C 2, n, there is also a natural subspace Why, (7)o, C Why(7,)
(see definition (5.7)) such that

Why(m,) = € Why(ms)o,-
0,e0n

Conjecture 1.1 (Conjecture 5.3). Let G be a saturated n-fold cover (see Definition 2.1)

of a semisimple simply connected group G with G’ ~GY. In the normalised coTrrespon-

dence Irr(Ry) «— 1(x),0 <> Ty such that g = 7", we have

dimth(ﬂg)oy = <J,0(‘%>R

X

for every orbit Oy € Og-, where <7,—>Rx denotes the pairing of two representations of
R,.. Consequently,

dim Why,(7,) = <O',O'%>R

X

for every o € Irr (R, ); in particular, dim Why, (w;‘”) is equal to the number of R,-orbits
m %Q,n'
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1.3. Main results

Prior to the formulation of the main conjecture, a substantial part of this paper is
devoted to analysing the group R, and proving for covers of general reductive groups
an unconditional formula for dim Why, (7,)o, in terms of o and a certain representation
U%Vyh of R,. We briefly outline the content of the paper and highlight some of our results.

After a brief introduction on covering groups in Section 2, we study in Section 3 the
normalised intertwining operator between genuine principal series of G. As in the case
for linear algebraic groups, the normalisation is given by the Langlands L-functions, and
one important property is the cocycle relation of the normalised intertwining operators,
which does not depend on the length function of W.

In Section 4, we analyse the group R, based on the work of Keys [25, 27], W.-W. Li [33,
34] and C. Luo [35]. In particular, it follows from [35] that for a unitary unramified genuine
principal series I(x), there is an algebra isomorphism C R, ] ~End(I(x)). We show how to
compute R, by relating it to another group R5°, which is equal to the R-group of a certain
unramified principal series of a simply connected Chevalley group H*¢. The group R} is
explicitly determined by Keys [25, 26] for principal series of simply connected Chevalley
groups.

Moreover, by reducing to the linear algebraic case, we prove in Theorem 4.9 the
isomorphism R, ~ S, , where

Oy Wr — LG

is the L-parameter of I(x) valued in the L-group of G constructed by Weissman [53] and
S, is the connected component group of ¢, (see definition (4.8)). We remark that the
parameter ¢, is associated to x by the local Langlands correspondence for covering tori,
and thus it is trivial on SLy(C) C W. Therefore, it suffices to consider the Weil group
W alone.

Denote by G’ (resp., “G) the dual group (resp., L-group) for the covering group G.
The following is an amalgam of Proposition 4.4 and Theorems 4.6 and 4.9:

Theorem 1.2. Let G be an n-fold cover of a linear algebraic group G. Let x be a unitary
unramified genuine character of Z (T) We have

e R, C R}, with RS being an abelian group, and if G is semisimple, then

9

Ry <|2(G)

where Z (@V) is the centre of év; and
o Ry~8, .

Section 5 is devoted to stating and investigating several aspects of the main conjecture
(Conjecture 5.3, which is Conjecture 1.1). First, the space Why,(I(x)) affords a natural
representation

oV R, — GL (c‘%m‘)
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(see definition (5.10)). Moreover, for O, € O there is a natural o"-stable subspace
Why (I(x))o, € Why(I(x)) of dimension |O,| (see equation (5.6)); this gives a subrepre-
sentation

ogyh :R, — GL (C‘Oy‘) ,
and we have

Wh _ @ Wh
o = 0o, -

OyEO%

Theorem 1.3 (Theorem 5.6). Let G be an n-fold cover of a connected reductive group
G. For every orbit O, € Og, we have

dimWhy (7,)o, = <O’,O'gh>
Y RX
Consequently, dim Why(7,) = <U,a R

X

In fact, Ugyh(w) is represented by the matrix v(w,x) - Sn(w,i(x))o,, where y(w,x) is
the v-factor associated to w and Sw(w,i(x))o, is a so-called scattering matrix. As an
application of this theorem, we show in Section 5.5 that a result of Szpruch [48] on the
double cover of GSp,, can be recovered from it (see Theorem 5.10). Here Theorem 1.3
also implies that Conjecture 1.1 is equivalent to the following (compare Conjecture 5.7):

Wh>

Conjecture 1.4\./ Let G be a saturated n-fold cover of a semisimple simply connected
group G with G ~ GY. Then for every orbit Oy C Zg,n, we have J%Vyh = 0'(%; ; or

equivalently,

Tr(Sw(w,i(x))o,) = (Oy)"|-7(w,x) ™!

for every w € R, where the left-hand side denotes the trace of the matriz Sn(w,i(x))o

»
Using the formulation in this conjecture, we prove several results in Section 6:

e For a general reductive group G, we show that there is an exceptional set Z§% C
(%Q’n)w7 which might be empty, such that ogyh = agy =1g, fory € Z5% . It follows
that dimWh,, (W;") > ’%Qexg ; this also implies that Conjecture 1.4 holds for such
O,. This is the content of Theorem 6.1.

e In Section 6.2 we consider the Whittaker space Why, (w;”) from the perspective
of unramified Whittaker functions. Using an analogue of the Casselman—Shalika
formula proved in [19], we show in Theorem 6.5 a result on dim Why, (w;{m), which is
compatible with Theorem 6.1.

In Section 7, we verify the following:

Theorem 1.5 (Theorem 7.1). Conjecture 1.4 (and thus Conjecture 1.1) holds for the

n-fold covers ?pé:) .

We also prove in Section 7 that Conjecture 1.1 holds for the double cover of SL3 by
explicit computations.
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Lastly, in Section 8 we consider n-fold covers of SO3 and the double cover of Sping ~
SL4, and show that the naive analogue of Conjecture 1.4 fails for such covers. Thus,
the constraints on G being simply connected and on G being saturated seem to be
indispensable. For general reductive groups, a unified conjectural formula for Why, (75)o,
in terms of O'O‘% involves subtleties beyond the considerations of this paper, and its
intimate relation with the R-group has yet to be unveiled in full generality.

2. Covering groups

Our exposition on covering groups is essentially the same as in [18, §2]. However, to ensure
that this paper is self-contained, we will briefly recall some summarised results on G.

Let F' be a finite extension of Q,. Denote by O C F' the ring of integers of F' and by
w € O a fixed uniformiser.

2.1. Covering groups

Let G be a split connected linear algebraic group over F' with a maximal split torus T.
Let

{(X,A,®; YV,AY, DV}

be the based root datum of G. Here X (resp., Y) is the character lattice (resp., cocharacter
lattice) for (G,T). Choose a set A C ® of simple roots from the set of roots ®, and let AV
be the corresponding simple coroots from ®V. This gives us a choice of positive roots @
and positive coroots @Y. Write Y C Y for the sublattice generated by ®¥. Let B =TU
be the Borel subgroup associated with A. Denote by U~ C G the unipotent subgroup
opposite U.

Fix a Chevalley-Steinberg system of pinnings for (G,T). That is, we fix a set of
compatible isomorphisms

{ea:Ga = Uslpca

where U, C G is the root subgroup associated with a. In particular, for each o € ®, there
is a unique homomorphism ¢, : SLy — G which restricts to e, on the upper and lower
triangular subgroup, respectively, of unipotent matrices of SLs.

Denote by W the Weyl group of (G,T), which we identify with the Weyl group of
the coroot system. In particular, W is generated by simple reflections {w, : @V € AV} in
Y ®Q. Let I : W — N be the length function. Let wg be the longest element in W.

Consider the algebro-geometric Ko-extension G of G studied by Brylinski and Deligne
[11], which is categorically equivalent to the pairs {(D,n)} (see [14, §2.6]). Here n: Y™ —
F* is a homomorphism. On the other hand,

D:YXY—=Z

is a (not necessarily symmetric) bilinear form on Y such that

Q) :== D(y,y)
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is a Weyl-invariant integer-valued quadratic form on Y. We call D a bisector. Let By be
the Weyl-invariant bilinear form associated to @ by

Boy1,y2) = Q(y1 +y2) — Q(y1) — Q(y2).

Clearly, D(y1,92) + D(y2,y1) = Bo(y1,y2). Any G is, up to isomorphism, incarnated by
(i.e., categorically associated to) a pair (D,n) for a bisector D and 7.
The couple (D,n) plays the following role for the structure of G:

e First, the group G splits canonically and uniquely over any unipotent subgroup of
G. For a € ® and a € G, denote by €,(a) € G the canonical lifting of e, (a) € G.
For a € ® and a € G,,, define

wa(a) :==eq(a) -e_q (—a™") eq(a) and Wy(a) :==€q(a) e—o (—a™") -Eala).
This gives natural representatives w, := wo(1) in G, and also W, := W4 (1) in G,
of the Weyl element w,, € W. Moreover, for h,(a) := aV(a) € T, there is a natural
lifting
ho(a) :=w4(a) - Wa(—1) €T,
which depends only on the pinnings and the canonical unipotent splittings.

e Second, there is a section s of T over T such that the group law on T includes the

relation

s(y1(a)) - s(y (b)) = {a,b} ") - s(y1(a) -y (b)) (2.1)
for any a,b € G,,. Moreover, for a € A and the natural lifting h,(a) of ha(a), we
have

ha(a) = {n(a"’),a} s(ha(a)) € T.
e Third, let w, € G be the natural representative of w, € W. For every y(a) € T with
y €Y and a € G, we have

wa (@) wy = yla)-Fa (a7 ), (2.2)
where (—,—) is the pairing between Y and X.

If the derived subgroup of G is simply connected, then the isomorphism class of G
is determined by the Weyl-invariant quadratic form @. In particular, for such G, any
extension G is incarnated by (D,n = 1) for some bisector D, up to isomorphism. In this
paper, we assume that the composite

M ZYSC—>F>< —»FX/(FX)n

of 7 with the obvious quotient is trivial. For some consequences of this assumption, see
Section 2.2 and the beginning of Section 3.

Set n € N. We assume that F' contains the full group of nth roots of unity, denoted by
Mn- An n-fold cover of G, in the sense of [53, Definition 1.2], is just a pair (n,é) The
Ks-extension G gives rise to an n-fold covering G as follows. Let

(_7_)n:FXF_>[Un
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be the nth Hilbert symbol. The cover G arises from the central extension

K, (F) G(F) —%» G(F)

by pushout via the natural map Ko (F') — p, given by {a,b} — (a,b),. This gives

[pn‘—>é*¢»G.

We may write G™ for G to emphasise the degree of covering.

For any subset H C G, denote H := ¢~ !(H). The relations for G already described give
rise to the corresponding relations for G. For example, inherited from equation (2.1) is
the following relation on T

s(y1(a))-s(y2(b)) = (a,b) ¥ ¥) -s(yy (a) - y2(D)), (2.3)
where y; € Y and a,b € F*. The commutator [fl,fg] = %Jﬁl‘lgl of T, which descends
to amap [—,—] : T X T — yy, is thus given by

[y1.(a),y2(b)] = (a,b) 7202,

A representation of G is called e-genuine (or simply genuine) if p, acts by a fixed
embedding € : p, — C*. We consider only genuine representations of a covering group in
this paper.

Let W’ C G be the group generated by w, for all &. Then the map W, — W, gives a
surjective homomorphism

W' W

with kernel a finite group. For any w = wq, - Wa,Wa, € W in a minimal decomposition,
we let

— — RN — /
W:i=Wqy,  WayWa, €W

be its representative in W', which is independent of the minimal decomposition (see [47,
Lemma 83 (b)]). In particular, we denote by Wg € G this representative of the longest
Weyl element w¢. Note that we also have the natural representative

W= Weq,, - WayWa; €G

of w. In particular, we have the representative wg € G for wg, which is the image of wg
in G.
2.2. Dual groups and L-groups
For a cover (n,é) associated to (D,n), with @ and B arising from D, we define

Yon =YNnY", (2.4)
where Y* C Y ®Q is the dual lattice of ¥ with respect to Bg; more explicitly,

Yon={y€Y:Bg(yy)enZforaly eY}CY.
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For every oV € ®V, denote
. n
T ged(n,Q(aY))
and

o
Voo v —
aG p, =nNa’, aQn =
«

Let
stn C YQ,n

be the sublattice generated by ® ,, ={ay ,, : @ € ®"}. Denote Xq,, = Homg (Y, n,Z)
and ®g ., = {ag,:a € ®}. We also write

AY =g, a¥ e AV} and A, = {agn € A}.
Then
(YQW?(I)é,mAé,n;XQ,nv(bé,mAQvn)

forms a root datum with a choice of simple roots Ag ,. It gives a unique (up to unique
isomorphism) pinned reductive group één over Z, called the dual group of (n,a) In

particular, Yg ,, is the character lattice for @ém and Av’n the set of simple roots. Let
—V —V
GQ,n = GQ,n(C)

be the associated complex dual group. For simplicity, we may also write G’ for éé,n,
which is the Langlands dual group GV of G if n = 1. We have

A (égyn) = Hom (Y/Yg,,,C).

In [52, 53], Weissman constructed the global L-group as well as the local L-group
extension

ééyn — LG —— Wp,

which is compatible with the global L-group extension. (It may as well be an extension
over the Weil-Deligne group. However, the Weil group Wy suffices in this paper, since
we eventually only consider unitary principal series.) His construction of L-groups is
functorial, and in particular it behaves well with respect to the restriction of G to
parabolic subgroups. More precisely, let M C G be a Levi subgroup. By restriction, we
have the n-cover M of M. The L-groups “M and “G are compatible — that is, there are
natural homomorphisms of extensions:
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Gé’n Lag Wg
My, M W

This applies in particular to the case when M =T is a tOl“\l/lS.
The extension “G does not split over Wg. However, if G is of adjoint type, then we
have a canonical isomorphism

Léﬁéém X WF

For general GG, under the assumption that 7, = 1, there exists a so-called distinguished
genuine character yy : Z (T) — C* (see [14, §6.4]), depending on a nontrivial additive
character ¢ of F, such that x, gives rise to a splitting of G over W, with respect to
which there is an isomorphism

— —V
LGy, Gy x Wh. (2.5)
For details on the construction and properties regarding the L-group, we refer the reader

to [52, 53, 14].

2.3. Twisted Weyl action
For a group H acting on a set S, we denote by
oy

the set of all H-orbits in S. For every z € S, denote by OX € OF the H-orbit of 2.

Denote by w(y) the natural Weyl group action on ¥ and Y ® Q generated by the
reflections w,. The two lattices Yg,, and Y%, are both W-stable under this usual action.
Let

,01=% > a¥

av>0
be the half sum of all positive coroots of G. We consider the twisted Weyl action
wly] = w(y —p)+p.
It induces a well-defined twisted action of W on
Zaon:=Y/Yon

given by wly+Yg n] = wly]+Yg n, since W (Yy,,,) = Yo, as already mentioned. Thus,
we have a permutation representation

o i W — Perm (24.n),

which plays a pivotal role in the conjectural formulas on Whittaker space in both [18]
and this paper.
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We note that the twisted Weyl action on Y/ Y35, is also well defined. For every a € A,
let W, ={1,wq} C W. Arising from the surjection

Y/YS, = Zon,

s

we have a map of sets
sc W(’ [e1
¢0€ : (Y/Y ,n) - (‘%.QJL)W .
Recall the following definition from [19, 18]:

Definition 2.1. A covering group G of a connected linear reductive group G is called
saturated if Y35, =Yg », NY*°. It is called of metaplectic type if there exists a € A such
that ¢, is not surjective.

If G is semisimple simply connected, then G is saturated if and only if G is of adjoint
type. On the other hand, covering groups of metaplectic type are rare. Indeed, it follows
from [19, §4.5] that if G is almost simple, then G is of metaplectic type if and only if
G = Sp,,. and n, =2 (mod 4) for the unique short simple coroot a¥ of Sp,,.. In particular,
the classical double cover of Sp,, is such an example.

Throughout the paper, we denote

Yp:=y—pe¥Y®Q
for y € Y. Clearly,

Wyl =y =w(Y,) = Yp-

By Weyl action or Weyl orbits in Y or Y ® Q, we always refer to the ones with respect
to the action wly], unless specified otherwise. For simplicity, we will abuse notation and
denote by y an element in Zg ,. We will also write O g for the set of W-orbits in Zg.»,
and use the notation O, := O%, whenever we consider W-orbits with respect to the
twisted action.

3. Unitary unramified principal series

Henceforth, we assume that |n|p = 1. Let K C G be the hyperspecial maximal compact
subgroup generated by T(O) and e, (O) for all roots a. With our assumption that n,
is trivial, the group G splits over K (see [14, Theorem 4.2]); we fix such a splitting sg.
If no confusion arises, we will omit sx and write K C G instead. Call G an unramified
covering group in this setting.

A genuine representation (m,V;) is called unramified if dim V. # 0. Since G also splits
uniquely over the unipotent subgroup e, (0), we see that hy(u) € sg(K) C G for every
ue O*.

3.1. Principal series representation

As G splits canonically over the unipotent radical U of the Borel subgroup B, we have
B =TU. The covering torus T is a Heisenberg group. The centre Z (T) of the covering
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torus T is equal to ¢! (Im (ig »)) (see [51]), where
iQ,n : YQ7H®F>< — T

is the isogeny induced from the embedding Y , C Y.
Let x € Hom, (Z (T) ,CX) be a genuine character of Z (T) and write

i(x) = Indg X
for the induced representation of T, where A is a maximal abelian subgroup of T and x’

is an extension of y to A. By the Stone-von Neumann theorem (see [51, Theorem 3.1]),
the construction

X = i(x)

gives a bijection between the isomorphism classes of genuine representations of Z (T') and
T. Since we consider unramified covering group G in this paper, we take

A:=2(T)-(KNT).

The left action of w on i(x) is given by “i(x) (£) =i(x) (w™*tw). The group W does not
act on i(x), only on its isomorphism classes. On the other hand, we have a well-defined
action of W on x:

(“x) (f) =y (w_lfw) )

Viewing i(x) as a genuine representation of B by inflation from the quotient map
B — T, we denote by

I(i(x)) == nd i(x)

the normalised induced principal series representation of G. For simplicity, we may also
write I () for I(i(x)). We know that I () is unramified (i.e., I(x)¥ # 0) if and only if y is
unramified — that is, x is trivial on Z (T) N K; here the ‘if” part follows from [36, Lemma
2] and the ‘only if’ part from the Satake isomorphism for covers (see [53, Corollary 7.4]).
In fact, the Satake isomorphism for G implies that a genuine representation is unramified
if and only if it is a subquotient of an unramified principal series.

Setting YQ,n =7 (T) / (Z (T) OK), we have a natural abelian extension

Mn ?Qtn 4 YQ,n (31)

such that unramified genuine characters of Z (T) correspond to genuine characters of
Yo n Since A/(TNK)~Y g, as well, there is a canonical extension (also denoted by x)

of a x to A, by composing it with A — Y g ,,. Therefore, we will identify i(x) with Ind% X
for this canonical extension Y.

3.2. ~-function

Let x : F* — C* be a linear character. Tate [50] defined a v-factor 7(5,&,1/}) ,s € C,
which is essentially the ratio of two integrals of a test function and its Fourier transform
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(depending on a nontrivial character ). We have

L(1-sx")
L(s,x)

where L (s,x) is the L-function of x. If x is unramified and the conductor of ¢ is O, then

Y (Saxﬂ/}) =€ (57&1/’) !

e(s,x,¥) =1and L(s,x) = (1qusx(w))71.

In this case, we write

1—g*x(w)
1—g ey ()~

v (s,x) =7 (sx9) =
with the 1 omitted. B
Let x be a genuine unramified character of Z (T) For every a € 9,
X, F*— C*, given by x_(a) :=x (hala™)), (3.2)
is an unramified character of F'*. We also use in this paper the shorthand notation

Xa =X, (@) € C*

for every root a. For w =w,, we define the v-factor v(w,,x) to be such that

V)
)™ =1(0%) = o)

For general w € W, define

ywx)= [ v(wa),

aed,,

where ®@,, = {a> 0: w(a) < 0}.

3.3. Intertwining operator

For we W, let A(w,x): I(x) = I(*x) be the intertwining operator defined by

Aw)() @) = [ 1@ ) du

whenever it is absolutely convergent. It can be meromorphically continued for all x (see
(36, §7]). The operator A(w,x) satisfies the cocycle relation as in the linear case. Let
fo € I(x) and f} € I(*x) be the normalised unramified vectors. We have

A(w7X)(f0) = Cgk(w,X)f(/),

where
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o) = l—qflx(ﬁa(w”a))
gk( 7X) agw 1_X<Ea(wna))

The Plancherel measure p(w,Y) associated with A(w,y) is such that

A (w_l,wx) o A(w,x) = p(w,x) ! -id; (3.3)
more explicitly,

N(waX)_l = Cgk (w_17w><) - Cgk(w, X)-

To recall the interpretation of cg(w,x) in terms of L-functions, we first recall the setup
on the dual side. Consider the adjoint representation

Adg :*T — GL (u"),

where 1" is the Lie algebra of unipotent radical T of the Borel subgroup T'T caG’.
It factors through Ad%:

Lp AR qrmY),
Tz (év)

as Z (év) acts trivially on u”.
Therefore, irreducible subspaces of ¥ for Adgv are in one-to-one correspondence with
irreducible subspaces with respect to Ad%, which are just the one-dimensional spaces

associated to the positive roots of G". More precisely, we have the decomposition of Adgv
into irreducible “T-modules:

Adgv = P Ada,

a>0
where (Ad,,V,) Cu” is spanned by a basis vector Eaé . in the Lie algebra ) associated

to the positive root ay) ,, of G’
By the local Langlands correspondence for covering tori (see [53, §10] or [14, §8]),
associated to i(y) we have a splitting

by Wp — 1T
of the L-group extension
T LT — 5 Wp, (3.4)

where T = Hom (Yg,n,C*) is the dual group of T. Then L(s,i(x),Ad,) is by definition
equal to the local Artin L-function L(s,Ad, o ¢, ) associated with Ad, o ¢, — that is,

L(s,i(x),Ady) := L(s,Adn 0 $) = det (1 — ¢ ~* Ady 0§y (Frob)|y1) .
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For unramified i(x) (equivalently, unramified ), the inertia group I acts trivially on V.
It follows that

L(s,i(x),Ady) = det (1 — g * Adg 0y (w)]v, ) -

Moreover, by [16, Theorem 7.8], we have

¢y 0 Ad(w) (Eagm) =X (ha(@")) B,y

Q,n

and therefore
Lis,i(x0),Ada) = (1=¢7 - x (ha("))) " = L(s.x,,)-

Moreover, if we denote
E,= P C-Eyy,
wed,,

and let Ad,, be the restriction of the adjoint representation Ad to E,,, then the Artin
L-function associated to Ad,, is

L(s,Ady0¢y) = [ L(s.i(x),Ads).
aed,,
We also denote L(s,i(x),Ad,,) := L(s,Ad,, 0 ¢,). Thus,

L(0,i(x),Ad,,)

w0 X) = T 300, Ad,)

3.4. Normalisation
For w € W, we normalise the intertwining operator by
L(L,i(x),Ad..)

L0100 Ad,) A0

o (w,x) = cg(w,x) " Alw,x) =

Note that in our setting, e (s, Xa’¢) =1 for every «, and thus this normalisation is

the same as the one for linear algebraic groups, first proposed by Langlands [30] and
investigated, for example, in [28, 40].

Proposition 3.1. Let x be an unramified genuine character of Z (T) For every wi,wo €
W (with no requirement on the length),

o (wawy,x) = o (wa," x) 0.9 (w1,X)- (3.6)

In particular, of (u/_lﬂ““x) ol (w,x) =1d for every w € W. Moreover, if x is also unitary,
then o/ (w,x) is holomorphic.

Proof. The proof is essentially that of Winarsky [54, Page 951-952], which relies on an
inductive argument on the length of wy and also the basic step

A (Weay, X)) 0 A (Wa, X) = id.
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However, this last equality follows from equation (3.3) and the normalisation of &7 (wq,X)
in equation (3.6). See [36, Page 313-314] for some details of the argument in the context
of covering groups. O
4. R-groups
From now on, we assume that x is a unitary unramified genuine character of Z ( ) Set

Wy ={weW: :“x=x}CW.
Proposition 3.1 shows that

w = o (w,x)

gives rise to a group homomorphism

Ty : Wy —— Isomg(I(x)),

where Isomg(I(x)) denotes the group of G-isomorphisms of I(x). Let Endg(Z(x)) be the
commuting algebra of I(x). The group homomorphism 7, gives an algebra homomorphism
which, by abuse of notation, is also denoted by

7y : C[Wy] —— Endg(I(x))-

However, T, is not an isomorphism in general.
We would like to define a subgroup R, C W, such that 7, induces an algebra
isomorphism

C[R,] = Endg(I(x)).
For this purpose, consider the set
@X:{a>O:XQ:]l}CfI>,

where y_ is as in formula (3.2). Let W0 C W be the subgroup generated by {wq : o € @y }.
It follows from [18, Lemma 3.1] that w, € W, if a € ®,. Therefore,

0
Wy C Wy
and we have a short exact sequence
0
Wy —— Wy — Ry,

where R, :==W,/ WQ. The sequence splits with a natural splitting s : R, — W, given as
follows. Consider the group

W(Dy) ={weW :w(®y)=2,}.
Then we have

Ry ~ W, NW (,),
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or more explicitly,
Ry~ {we Wy :w(®y) =Py}
={weW,:a>0and a € ®, imply that w(a) > 0}
={weW,:®,Nnd, =0}.
This gives W, ~ WY x R,. We always identity R, with W, "W (®,).

Before we proceed, we first show that for w € W,,, the two factors cg(w,x) and y(w,x) !
are actually equal.

Lemma 4.1. Let G be an n-fold cover of a connected reductive group G, and x a unitary
unramified character of Z (T) For every w € W,,, we have

L(s,Ady, 0 ¢y) = L(s,Ady,0¢,),
where Ady, is the contragredient representation of Ad,,. Therefore, for every w e W,
cgr(w,X) ™ =(w,x),

which is nonzero if w € R,.

Proof. The argument is already in [28, Lemma 4.2]. First, since w € W,, the two
representations Ad,, o ¢, and AdY, o ¢, are equivalent. Therefore, L(s,Ad, 0¢,) =
L (s,Ady, 0 ¢y). Now for w € W,,, we have

L(L,Ady,0¢,) L(1,AdYocg¢y)

-1 o _
Cgk(wﬂX) - L(O,Adwo(bx) - L(O,Adwo¢x) *V(Iw?X)

The proof is completed in view of the fact that 1— Xa(w) # 0 for every a € @, if
weR,. O

The main theorem on R-groups is as follows:

Theorem 4.2 ([29, 44, 34, 33, 35]). For a unitary unramified genuine character x of
Z (T), we have

0_ (o . :
W ={w:d(w,x) is a scalar}.

Moreover, the algebra Endg(I(x)) has a basis given by {o/(w,x):w € Ry}, and by
restriction T, gives a natural algebra isomorphism

C[Ry| ~ Endg(I(x))-

For a general parabolic induction of linear algebraic groups, the analogous result was
first shown by Knapp and Stein [29] for real groups, and by Silberger [44] for p-adic
groups. The generalisation to covering groups includes the work of W.-W. Li [34, 33],
which shows that Harish-Chandra’s harmonic analysis extends to the covering setting;
in particular, the Harish-Chandra c-function and Plancherel measure are discussed in
detail. Finally, in the recent work of C. Luo [35], the Harish-Chandra commuting algebra
theorem is proved for general parabolic induction on covering groups, and in particular,
in the minimal parabolic case the isomorphism C[R, | ~ Endg(I(x)) is established.
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Let

k
=Pmim
i=1

be the decomposition of I(x) into irreducible subrepresentations with multiplicities m;.
Denote

M(y) :={m:1<i<k},

which constitutes the L-packet associated to the parameter ¢, corresponding to I(x).
Some immediate consequences of Theorem 4.2 are:

(i) dimEndg(I(x)) = |Ry| and C[R,] ~ @/, M, (C).
(ii) m; =1 for all ¢ if and only if R, is abelian.

(iii) in general, k is equal to the dimension of the centre of C[R, ], which is equal to the
the number of conjugacy classes of R, . Thus, there is a bijective correspondence

Irr (R,) +— II(x).
Since we are dealing with unramified y, we will show later (see Theorem 4.6) that R, is

actually abelian, and thus I () is multiplicity-free.

4.1. Parametrisation of TI(x)

Denote the correspondence
e (Ry) «— T1(x)
from (iii) in the foregoing by
0 T, and o, > T

The correspondence is not canonical, and can be twisted by characters of R,. However,
in the unramified setting, we have a natural parametrisation given as follows (see [27,
Page 39]).

Denote by 6, the character of o € Irr (R,,). Consider the operator

dimo
P, = TR > 0,(w) ). (4.1)
wERy

Since the characters {6, : 0 € Irr (R,)} are orthogonal, the operators P, are orthogonal
projections of I(y) onto nonzero invariant subspaces. Denote

V(o) := Ps(I(x))-

Then V(o) are pairwise disjoint and we have

B Vv

o€lrr(Ry)
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Since the number of inequivalent constituents of I(x) is equal to |Irr (R, )|, it follows that
V(o) is an isotypic sum of an irreducible representation. Thus, we write

V(o) =mg, 7o,
and this gives a correspondence o — 7,. We also have
My, =dimo.

The inverse m +— o, can be described explicitly as well (see [27, Page 39]). The group
Hom (R,,C*) acts on II(x) by transporting the obvious action on Irr (R, ) given by

£®0, where £ € Hom (R,,C*) and o € Irr (R, ).

This action is free and transitive on the elements 7 € II()y) which occur with multiplicity 1
in I(x). Thus the correspondence o <+ 7, is not canonical. However, the parametrisation
given by definition (4.1) (without any further twisting) is already a natural one in view
of the following:

Lemma 4.3. With notations as before, Pi(I(x)) = my" — that is, the unramified

constituent " of I(x) is parametrised by the trivial representation 1 € Irr(Ry).

Proof. It suffices to show that Py(fy) = fo, where fo € 7" C I(x) is the normalised
unramified vector. However, by definition (4.1) we have

Pi(fo) = = 3 o (w)(fo).

s

By the normalisation in ¢ (w,x), we have @7 (w,x)(fo) = fo for every w € R, (in fact for
every w € W, ). Thus, Pi(fy) = fo, and this gives the desired conclusion. O

4.2. Some analysis on R,

From this subsection to Section 4.4, we will analyse the group R, by relating it to the
work of Keys on simply connected Chevalley groups [26]. More precisely, we will show
that there are groups W3¢ and R}° containing W, and R,, respectively, such that:

(i) We have R{°/R, ~W¢/W,, which can be understood from the dual side in terms
of the L-parameter ¢,. In particular, the size of R{* /Ry is related to the centre
Z (§v> of the dual group G

(ii) The group R5¢ is equal to the R-group of a unramified principal series on a simply
connected Chevalley group, which is determined in [26]. In particular, R is abelian,
and this forces R, to be abelian. However, since R, is not equal to R{® in general,

this shows that unitary genuine principal series of a covering group tend to be less
reducible than the linear algebraic group.

For this purpose, we first define a group W such that
Wy CWieCW.
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Let Tq,» and T¢5,, be the split tori defined over I associated to the two lattices Y »
and Y7, respectively. Denote by Tq , and 77, their F-rational points. Let TTm and
T gfnT be the images of T , and T, in T with respect to the two maps

iQn:Tgn—T and *°: T¢), — T,
which are induced from Y , <> Y and Y%, < Y, respectively. Recalling the projection
¢:G — G,
we have from Section 3.1 that
7Y — 4—1 (7t
2(T) =7 (Th.).
We denote
Z(T)“ =0 (150) € 2(T).
Let
XSC = X‘Z(T)SC
be the genuine character of Z (T) * obtained from the restriction of y. Consider
Wie={we W :"(x*°) = x"} D Wy
and analogously
sc . sc 0
R =W /W,
which then contains R,. A splitting s° of R} into W;¢ is given by
RY =W NW (@y).

In summary, we have a commutative diagram with exact rows and compatible splittings:

where s and s* are the aforementioned natural splittings of R, and R}, respectively. It
follows immediately that we have an isomorphism of finite groups:

RY/R, =W /Wy

4.3. The quotient R}°/R,
Recall the L-parameter

¢y Wrp — LT
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associated to i(x), which is a splitting of the extension
T 5 IT — 5 W (4.2)

In fact, ¢, depends only on x, and this justifies our notation. Recall also that T =
Hom (Y, »,,C>) is the dual group of T and

wC)-

A (EV) ~ Hom (Yo, / Y
Denote

T, =T"/z (év) ~ Hom (Yg¢,,C).

Pushing out the exact sequence in formula (4.2) via the map f: T =T’ /Z (év), we

obtain a short exact sequence

Ty — LT = £, (*T) — W (4.3)

Denote by Spl (LT,WF) the set of splittings of formula (4.2), and similarly for
Spl (LTSC,WF). Then f induces a map

fu: Spl (LT, Wg) — Spl (LT“,WF) , (4.4)

which arises from the obvious composite. The Weyl group W acts naturally on the two
groups LT and LT* and the map f« in formula (4.4) is W-equivariant. Here f. (¢,) is
naturally associated with x*¢. Since the local Langlands correspondence for a covering
torus is W-equivariant (see [14, §9.3]), we have

W, = Stabw (¢y)

and

W3 = Stabw (f. (6y))-

Here Stabyy () denotes the subgroup of stabilisers of x in .

As it might be more convenient to work with parameters valued in the dual group
(instead of the L-group), we can have the following reduction. From Section 2.2, we
have a distinguished genuine character x, of Z (T) depending on a nontrivial additive
character ¢ of F. This gives a splitting ¢y, € Spl(“T,Wp), which is fixed by W since xy
is W-invariant (see [14, §6.5]). From this, we obtain a ‘relative’ version of map (4.4):

£ Hom (WF,TV) — Hom (WF,TZd). (4.5)

If we denote

% = ¢/, € Hom (WF,TV) ,
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then ff’ sends qﬁ)lf to
f* (¢X)

7 (6 € Hom (WF,TZd) :

The kernel of fi/’ is given by
Ker (f#) = Hom (Wr, 2 (G")).
Since ff’ is also W-equivariant, we have

W, = Stabw (%), W° = Stabw (f¥ (¢7)).

Assume henceforth that the conductor of ¢ is O. In this case, ), is unramified; thus

qbi is unramified and ¢;‘<’(w) €T is the relative Satake parameter for y. Also, ff’ is
determined by the map

T ST,
such that
Py (@) = (£ (#%)) ().

For every t € T such that JY(t) is fixed by W?¢, the action of W3¢ on the set ¢-Z <§v>
is well defined. For such ¢, let
oW (1-2(G"))

be the set of W“orbits in ¢- Z (@v) cT’

Proposition 4.4. Assume G is a semisimple group. Let x be a unitary unramified
genuine character of Z (T) Then

@)
R:R,| = — :
L e (sez(@)

Proof. For a finite group H acting on a finite set X, the orbit counting formula reads

|X/H|=|;|]1§;I|X’l>7

where X" C X is the set of h-fixed points. To apply this to the case X = qbf (w)-Z <§v>

X 9
defined, as already mentioned. Since W (and thus in particular W¢) acts trivially on

Z (é\/), we see

and H = W, we first note that the action of W3¢ on the set ¢¥(w)-Z (év> is well

v X ifwelW,,
0 ifwe¢W,.
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Thus,
o (st02(3))| - g | (@)
X
The result follows from the equality [R;C : RX] = [W;C : Wx] O

It is clear that the index [Rf(c : RX] = [W;c : WX} is bounded above by ‘Z (év)’ for

covers of semisimple groups. In particular, if the dual group of G is of adjoint type, then
R{ = Ry. For example, if G is a simply connected Chevalley group and n =1, then there
is no difference between R and R,. For another nontrivial example, consider the n-fold

cover Singgl, which has dual group PGL,,+1, or the odd-degree cover of Sp,, whose dual
group is SOgp41.

4.4. The group R}’

Let G be an n-fold cover of a general linear algebraic group. Let H be the connected
lineag reductive group over F' such that its root datum is obtained fr\9m inverting that
of GQ’n — that is, the Langlands dual group of H is isomorphic to éQ,n' If n=1, then
H=G. Let

H* »Hy.,, — H

be the simply connected cover of the derived subgroup Hge, C H. Thus, Y5¢, is the
cocharacter (and also the coroot) lattice of H*¢. Denote by H,H?*¢ the F-rational points
of H and H*°, respectively. Here H is the principal endoscopic group for G.

We see that T¢y, is just the torus of H*¢. The genuine character x*“ of Z (T) *¢ gives
rise to a linear unramified character

X T, — C* given by x*° (aém(a)) = "¢ (Ea (a"a))

for all @ € A. In fact, the covering
pn > Z(T)" — T2,

has a splitting p*¢ given by ay) ,(a) = ho(a") for all a € A, and we have

XSC — XSC o pSC OZ'SC.

One could form the unramified principal series I (KSC) of H*¢ and thus have the R-group
Ryse for I (XSC).

Proposition 4.5. With notations as before, we have
R;C ~ Rxsc.

Proof. It suffices to show that Wy:c = Wysc and ®yse = @y<c. By the definition of x*¢,
we have

X (g n(@)) = x* (ha(a™)) (4.6)
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for all & € A. We claim that the equality holds for all « € . By induction on the length
of w such that w(a) € A, it suffices to prove that if

X (Bgnla)) =x* (hs(a™)), Be,
and 7Y = w,(8Y),a € A, then

X (15,0(@) = x° (hy(a™)), BES. (4.7)
As shown in [16, Page 112], we have

Toy(@™) = wy ' Tip(@) -we = wa -Tig(a™) -wy

which is also equal to hg(a™) -Ea(a"a)7<°‘Q”b"Bév"> by equation (2.2). Thus by the
induction hypothesis, we have
sc sc sc —(@Q,n:B8,n
X (@) =1 (B ) " () 70)
sc (1. n sc (1, n —\& ,va,n
=’ (hg(a 5)).X (ha(a a)) < Q Q >

¢ (i, (a™)
This proves that equation (4.6) holds for all & € ®, and thus ®y:c = ®ysc.

Let w = w;wj;_1---w; be a minimal decomposition of w, with w; = w,, for some «a; €
A. Let w = w;---wowq, where w; := w,,, be the representative of w,,. The foregoing
argument also shows inductively that

W ho (") w ™t = Ry, (@)
for all a € ®. It follows that
W g (@) w = Ry (o) (@)
for all a € ®, and thus
“ () (agn(@) =" (x*) (hala"))

for all w € W and a € A. Therefore, Wysc = Wysc. Thus by the definition of R-groups,
we have Rysc >~ R O

In [26, §3], all possibilities for the group RY ~ Rysc are tabulated as in Tables 1
and 2.

Immediately, we have the following theorem:

TABLE 1. The group R3¢ for classical group H*¢.

H*° A, B, C, D,,r even D,,r odd
R¥ Z/dZ,d|(r+1) Z/2Z Z/2Z 7Z/2Z or (Z/2Z)*> Z/2Z or Z/AZ
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TABLE 2. The group R3¢ for exceptional group H*¢.

H® FEq E; Es Fy Gy
R Z/3Z Z/2Z {1} {1} {1}

Theorem 4.6. Let G be an n-fold cover of a connected reductive group G and x be a
unitary unramified genuine character of Z (T) Then Ry C RS is abelian, and therefore

= &P
o€lrr(Ry)

That is, the decomposition of I(x) is multiplicity-free.

Corollary 4.7. For every w € R,., we have
o (w,x) = @ o(w)-id,, .
o€lrr(Ry)
Therefore, for every f € C° (é),
Trace &7 (w,x)I(x)(f) = Z o(w)-Trace 7, (f).

o€lrr(Ry)

Proof. It suffices to verify the first equality, as the second will follow from it. For o €
Irr (R, ), recall the projection P, of I(x) on m,. By Schur’s lemma, </ (w,x) acts on 7,
as a homothety given by ¢, _(w) € C. However,

L "(w Cr, (W)-1
PU/Z@ZU() @ Wa() dﬂ'a

wERy oelrr(Ry)
1 —— .
= @ Ry Z o' (w)-er, (w) | -id,, .
o€Irr(Ry) Xl weRr

That is, the pairing of the class function ¢, (—) on R, with ¢/(—) is equal to the Kronecker
delta function d, .. Since the characters Irr (R,) form an orthonormal basis for class
functions on R, this shows that ¢, = o for every o € Irr (R, ). O

4.5. Covers of SL,
We illustrate the previous discussion on R-groups by considering the n-fold cover G =

ﬁén) arising from @ (V) = 1. We show that our analysis agrees with certain results
in [49].
If n is even, then the dual group G’ is SLo. Write

s¢ = ¢£(w) = (C C_1> eq’
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for the relative Satake parameter of x discussed in Section 4.3, where ( € C* depends on
X-. There are three cases:

e (*#1.In this case, &, =) and thus W (®,) = W. Also, W3¢ =W, = {1}. Therefore,
R} = R, = {1}, and in particular ‘OW;C (54 -Z (év)) ’ =2.

e (*=1 but ¢? # 1. In this case, ®, =0 and thus W (®,) = W. However, we have
Wi¢ =W, while W, = {1}. Therefore R}* =W and R, = {1}. Indeed, we have

}OW;C <s§ -7 <§v>)‘ =1 in this case.
e (* =1. In this case, ®, = {a} and thus W (®y) = {1}. Also, W3 =W, = W.
Therefore R}® = R, = {1}, and also ’OWQC (SC -Z <§v>)‘ =2
Hence for n even, I(x) is always irreducible for a unitary unramified genuine character
X-

Now we consider n odd, in which case the dual group of STén) isG' = PGL5 and thus
we always have R = R,, by Proposition 4.4. Write

—V
S¢ = pi(w) = <C 1) e
for the relative Satake parameter for I(). There are three cases:

e (? 1. In this case, &, =0 and thus W (®,) = W. Also, W, = {1}. Therefore R, =
{1}.

e ( =—1. Then ®, =0 and thus W (®,) = W. But W, = W. Therefore, R, = W.

o (=1. Then @, = {a} and thus W (®,) ={1}. But W,, =W. In this case, R, = {1}.

Combining the even and odd cases, we see that the only reducibility point for I(y) is
when n is odd and x is such that X, is a nontrivial quadratic character; in this case,

I(x)=m" &

The result agrees with [49, Proposition 5.1].

4.6. Comparison of R, and Sy,

For linear algebraic groups, it was shown by Keys [27] that the R-group R, is naturally
identified with the component group of the centraliser of the parameter ¢,. In this
subsection, we establish the same identification for covering groups.

Let

¢o:Wp— Lé
be an L-parameter. Let Sy C G be the centraliser of d(Wg) in G’ - that is,

Sy = {geév :g-p(a)-g~' = ¢(a) for every aGWF}.
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It is a reductive subgroup of G’ but not necessarily connected. Let Sg be the connected
component of Sy. Define
S,
Sy = + (4.8)
2(G")-sY

There is a dual-group (instead of L-group) relative version which is more closely related
to linear algebraic groups. Recall that depending on the choice of a distinguished genuine
character ., we have an isomorphism

LG~ G xWp

=xe
(see formula (2.5)). We obtain an unramified parameter
¢[Xw} : WF L) Lé —> év,

where the second map is the projection depending on x,. In fact, by the local Langlands
correspondence for covering tori, the distinguished genuine character x, gives rise to a
splitting of a certain fundamental central extension

Z(C") —— B — Wp
(see [14, Proposition 6.5], where E is represented by F; + F5 using notations there). Since
by definition “G equals the pushout of E via the inclusion Z (év) -G’ (see [14, §5.2]),
we have that x, yields an L-parameter ¢, , which takes values in Z (Lé). We have
Olxpl = -0,
Analogously, let Sg(y ) C G’ be the centraliser of ¢ [xy] (Wp) in G'. Define

Solxy]
Solxy] = A :
a 0
4 (G ) 'S¢[Xw]
Lemma 4.8. With notations as before, Sy = Sy[y,1 for every distinguished genuine
character xy. Hence Sy = Syy,,) as well.
Proof. It follows from the isomorphism *G ~, G’ x Wp that

$(a) = (¢ [xy] (a).a) €G' x Wp.

Thus, g € G centralises ¢(a) if and only if it centralises ¢ [xy] (a); this gives the equality
S = S¢[x,] and completes the proof. O

Theorem 4.9. Let G be an n-fold cover of a connected reductive group G. Let x be a
unitary unramified genuine character of Z (T), and let ¢, be the L-parameter associated
to x. We have an isomorphism

RX >~ S¢x'
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Proof. The idea is to reduce to the linear algebraic case, where the isomorphism is proved
in [27, Page 42].

Asvin Section 4.4, let H be the connected split linear algebraic group whose dual group
is Gg ,- Let Tq,» be its split torus whose cocharacter lattice is Yg . We have H,Tq »
denoting the F-rational points of H, T ,, respectively.

Let x be a unitary unramified genuine character of Z (T)). For simplicity, denote by ¢

instead of ¢, ) the associated L-parameter valued in ZT. By choosing a distinguished
X
genuine character xy, we have the unramified parameter

d)[Xw] : WF —)TV ‘—)év,

which is just cbﬁ in the notation of Section 4.3. Note that T = Tc\g/,n and G’ = H". The
parameter ¢ [y is thus associated to an unramified character

X:TQ’n—>C><

such that

by = ¢[X1/J]v

where ¢, is the L-parameter associated to x by the local Langlands correspondence for
linear tori. We can explicate x as follows. First, x - )@1 : Tém — C* is a linear character,

where ng’n is the image of the isogeny

iQ,n :TQ,n — T

(see Section 4.2). Then y is just the pullback of X'X,Zl via i, ,; that is, x = (X'Xll) o

iQ,n- In any case, we have

Soy = Solxyl-
Now we consider R, and R,. Since xy is Weyl-invariant, we have
W, = vaxil =Wy. (4.9)
By the construction of a distinguished genuine character, we have
Xo (ha(a™)) =1

for all & € A (see [14, §6.1]). However, from the proof of Proposition 4.5 we have w -
ho (@) - w™ =Ry o) (@™ @) for all w e W and a € A. It follows that xy (ha(a™)) =1
for every a € ®. Thus,

https://doi.org/10.1017/51474748021000128 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000128

R-group and Whittaker space of some genuine representations 243

¢y = {aQ’n >0:x (aaév"> = 1}

:{a>0:(X X¢>(Ea( )):1}

_{a >0: X( am) ) } (4.10)
z{a >0 X, = ]l}
=o,.

We deduce from equations (4.9) and (4.10) that
Ry ~R,.

It is proved in [27, Proposition 2.6] that we have the isomorphism Ry ~ Sy, . From this
we see that Ry ~ Sy[y,], which is also isomorphic to Sy by Lemma 4.8. This completes
the proof. O

In view of the isomorphism R, ~ S , the character relation in Corollary 4.7 can be
interpreted in terms of Irr (S¢X) as well.

Corollary 4.10. If the dual group G’ is semisimple simply connected, then R, = {1}
for every unitary unramified genuine character x of Z (T)

Proof. This follows from the isomorphism R, ~ Sy and the well-known result of
Steinberg that the centraliser of a semisimple element inside a simply connected group
(such as G’ by our assumption) is connected.

Alternatively (and equivalently), from the proof of Theorem 4.9 we have R, = R,,

where 1 (x) is an unramified principal series of H. If G'is simply connected, then H is of
adjoint type, and it can be argued directly (see [32, Corollary 1.6 or [8]) that R, = {1}
in this case. O

Example 4.11. Let G = Sp,, and let Q be a Weyl-invariant quadratic form on its
cocharacter lattice. If n, =0 (mod 2) for the unique short simple coroot a¥ of Sp,,., then

é\/ = Sp?r;

in this case R, = {1} and I(x) is always irreducible. This applies in particular to the case
of the metaplectic-type group Sipé:) — that is, when n, =2 mod 4 (see Definition 2.1).

For STQ"), this is compatible with the discussion in Section 4.5.

5. Whittaker space and the main conjecture

The main goal of this section is to investigate dim Why (), where = € II(x) is any
irreducible constituent of I(x).
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5.1. The Whittaker space
Let v : F'— C* be an additive character of conductor O. Let

1,/}U:U—>CX

be the character of U such that its restriction to every U, € A is given by voe;t. We
may write ¢ instead of ¢y for simplicity.

Definition 5.1. For a genuine representation (,Vy) of G, a linear functional £: V,; — C
is called a ¥-Whittaker functional if £(7(u)v) = ¢ (u) v for all u € U and v € V. Write
Why, (7) for the space of -Whittaker functionals for =.

The space Why,(I(x)) for an unramified principal series I(x) could be described as
follows:

e First, let Ftn(i(x)) be the vector space of functions ¢ on T satisfying
c(t-z)=c(t)-x(z) for teT and z € A.
The support of any ¢ € Ftn(i(x)) is a disjoint union of cosets in T/A. We have
dimFen(i(x)) = | Z.nl,
since T/A~Y /Yo n= 20.n-
e Second, for every v € T, let ¢, € Ftn(i(x)) be the unique element satisfying
supp(c,) =v-A and ¢, (y) = 1.

Clearly, c.q = x(a)~!-c, for every a € A. If {;} C T is a chosen set of representatives
of T/A, then {c,,} forms a basis for Ftn(i(x)). Let i(x)¥ be the vector space of
functionals of i(x). The set {v;} gives rise to linear functionals [, € i(x)" such that
ly, (qﬁvj) = di;, where ¢,, €i(x) is the unique element such that

supp (¢,) = A+ and ¢y, (7;71) = 1.
It is easy to see that for any v € T and a € A, we have
$ra=x(a) ¢y, La=x(a)"" L.
Moreover, there is a natural isomorphism of vector spaces
Fn(i(x)) ~i(x)”

given by

cr o= Z c(vi) -1y,

vET/A

It can be checked easily that this isomorphism does not depend on the choice of
representatives for T /A.
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e Third, there is an isomorphism between i(x)" and the space Why(I(x)) of -
Whittaker functionals of I(x) (see [37, §6]), given by A — W) with

Wy I(x) > C, fHA</f >1u<u>),

where f € I(x) is an i(x)-valued function on G. Here Wg = Wy, Wa, -+ Wa, € K is
the representative of wg, where wg = wq, Wa, -+ Waq, is @ minimum decomposition of
WG

k

Thus, we have a chain of natural isomorphisms of vector spaces all of dimension | Zq, ,|:

Fn(i(x)) ~i(x)" = Why(I(x))-

For every c € Ftn(i(x)), by abuse of notation we will write AX¥ € Why,(I(x)) for the
resulting ¥-Whittaker functional of I(x) obtained from this isomorphism.
The operator A(w,x) : I(x) — I(*x) induces a homomorphism of vector spaces

Alw,x)" s Why (1(*x)) = Why (I(x))

(Aex=) = (A AW (),

given by

where ¢ € Ftn(i(*x)).

5.2. The scattering matrix Sm(w,i(x))
Let R, C T be two ordered sets of representatives of T/A = 2 ,. Let

{\rivem)
be the ordered basis for Why, (I(*'x)) and
{x;, € m’}

be the ordered basis for Why, (1(x)). The map A(w,x)* is then determined by the so-called
scattering matrix

Sg{yg:;/ ('LU,Z(X)) = [T (U)vXa'ya'y/)]'yEfR,'y’Em’
such that

A(w,x)* (Aix) = Z T(w,x,7,7") - AL (5.1)

,Y/em/
We briefly describe the matrix Sgy s (w,i(x)). First we have the following:
e For w € W and %,7’ € A, the identity
T(w,xy-27 - Z) = (“X) 7 (@) - T(w,x,77) X () (5.2)
holds.
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e For wy,wy € W such that I(wawy) = I(w2) +1(w1), we have

T(UJQZU1,X7'Y7'Y/) = Z T(w23w1X7’77’7//> ‘T(’LUl,X7’}//,’7/)7 (53)
’W'ET/X

which is referred to as the cocycle relation. By equation (5.2), this sum is independent
of the choice of representatives +".

This cocycle relation implies that in principle it suffices to understand 7(wa, x,7,7") for
~,7 €T and o € A. For this purpose, let du be the self-dual Haar measure of F with
respect to ¢ such that du(O) = 1; thus, du(O>*)=1—¢"!. Consider the Gauss sum

Gy(a,b) = /ox (u, o)y - (wbu) du for a,b € Z.
We also write
gy (k) := Gy(k, —1),
where k € Z is any integer. Denote henceforth
e:=(-1,w), € C*.

It is known that

e¥.gy(—k) for every k € Z,
gy(k) =< —q7 ! if nl|k, (5.4)
gy (k) with |gy (k)| = ¢~/ if ntk.
Here Zz denotes the complex conjugation of a complex number z.

It is shown in [24, 37] (with some refinement from [15]) that 7(wa,x,7,7") is determined
as follows:

Theorem 5.2. Suppose that v =s,, and v =s,, with y1,y € Y. First, we can write
T(Wa X1, ) = THWas X, 7,7 ) + T2 (W X,Y,7Y') satisfying the following properties:

o ' (Wa, X7 %Y F) = (Yex) T (Z) T (wa s 1Y) X (F) for all 2E € A;

o T wa,X,7,Y') =0 unless y1 =y mod Yg n;

b 7'2(’11}&,)(,’}/,’}/,) =0 unless Y1 = Wa [y] mod YQ,n

Second:

o if y1 =y, then

- k

_ ha(wna)) Y,

Tl(waaXﬁﬁ/) =(l—g¢ ! X(f—7 where ky o = {
( ) 1= X(ha(wm)) !

<y,a>w ;

Ng
o if y1 = waly|, then

7 (Wax,7,7) = €W P g ((y,0) Q(a¥)).
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5.3. The main conjecture
If R =9, then
Sm(wvl(X)) = Sﬁ%,%(wai(X))

is a square matrix with entries indexed by a single ordered set R. Since W acts on
Zo.n=Y/Yq, , with respect to w[—], there is a decomposition

Zon = |_| O,
0,0y

into W-orbits. This gives a natural partition

"= || R,

0,e0n
where SR, C R is the subset of representatives of O,. For each W-orbit O,, denote
89% (w7Z(X))Oy = [T(waX7szasz’)]z,z’€9‘iy .

It follows from the cocycle relation (5.3) and Theorem 5.2 that Sg,(w,i(x)) is a block-
diagonal matrix with blocks Se(w,i(x))o, for O, € O4-, which we write as

Su(wi(x) = P Sn(w,i(x))o,- (5.5)
(’)yeOg
In fact, for y € Zg n, let
Whi (1), = Span {AX, : 2 € R, } € Why(I(x)) (5.6)

be the ‘O,-subspace’ of the Whittaker space of I(x). It is well defined and independent

of the representatives for y € 2., and moreover,
dimWhy (I(x))o, =|0y|.

Y

We have a decomposition

Why(I(x) = € Why(I(x)o,-
0,04

For every o € Irr (R,), the inclusion h, : 7, < I(x) induces a surjection of vector spaces
hg : Why (1(x)) = Why (7o)
Denote
Why(r0)o, = h% (Why(I(x))o,). (5.7)
Consider the natural permutation representation

0% W —— Perm(Zg,n)

of W given by o4 (w)(y) = w[y]. Clearly, there is a decomposition

X _ Z
g = @ on’

0,€0
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where
aéi : W — Perm (O,)

is the permutation representation on the W-orbit O,. As we always identify R, as a

subgroup of W, C W, we can thus view aéz as a representation of R, by restriction.

Conjecture ig Let G be a saturated n-fold cover of a semisimple simply connected
group G with G ~G". Let x be a unitary unramified genuine character of Z (T) Then
for the natural correspondence (as discussed in Section 4.1)

Irr(R,) — II(x), 0 T,

we have

dimWhy, (7,)o, = <a,ao‘gi>R
X

for every W-orbit O,, where <01,02>Rx is the pairing of the two representations 01,02 of
R,. In particular, dim Why, (7,) = <0,0‘%>Rx for every o € Irr (R,,).

Note that the conjecture is trivially true for arbitrary G if R, = {1}. This should apply
in particular to all Brylinski-Deligne covers of GL,., for which R, is expected to be trivial.
We also recall that if G is simply connected, then by Definition 2.1 G is saturated if and
only if the dual group G’ is of adjoint type — that is, Y, = Y3, in this case. In fact, it

follows from G ~ GV that G is necessarily saturated.

Remark 5.4. Conjecture 5.3 is compatible with the decomposition

I(x) = @ T

o€lrr(Ry)

Indeed, we have

o€lrr(Ry)
which is equal to dim Why,(1(x))o, -

Remark 5.5. Ginzburg proposed in [21, Conjecture 1] that if 7 is an irreducible
unramified representation of G which is nongeneric, then there exists a nongeneric theta
representation © of a Levi subgroup M C P C G such that 7 — Ind%(). On the other
hand, Conjecture 5.3 implies that for simply connected G, we have dim Why, (w;") =
o
is vacuously true for such an unramified representation 7
case of regular unramified x, see [18, Remark 7.4].

= . That is, Ginzburg’s conjecture

the number of R, -orbits in 2., ), since 7
X Qn)s

un

" For a comparison with the
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5.4. A formula for dim Why, (7)

In this subsection, let G' be a general connected reductive group and let G be an n-fold
cover, unless specified otherwise. Consider the decomposition

I(x) = @ Ty

o€lrr(Ry)
Set w € W,,. We have “x ~ x, and thus an endomorphism
A (w,x)" : Whyy(I(x)) = Wha(1(x))

induced from & (w,x) = v(w,x) - A(w,x) (see Lemma 4.1). In fact, if w € R,, then the
normalising factor is nonzero, and thus A(w,x) is already holomorphic for every w € R,.
In any case, it follows from Corollary 4.7 that for w € R,, we have

A (w,x)* = @ o(w) -idwh, (x,);
oelrr(Ry)
and therefore the characteristic polynomial of &7 (w,x)* is
det (X -id — o (w,x)*) =det (X - I o, .| — (w,x)")

— H (X—O'(W))dimth(ﬂ—”).
o€lrr(Ry)

For every w € W and O, € O g, the restriction of o7 (w,x)* : Why, (I(*'x)) = Why (1(x))
to Why (I(*x))o, gives a well-defined homomorphism

A (w,X)o, : Why (I("X))o, = Why (I(x))o,
represented by Sm(w,i(x))o, (see [18, Proposition 4.4]). Moreover,

Y

d(wx) = @ Z(wx)b, (5.8)
OyGO@f

where the sum is taken over all W-orbits in 24, ,. For w € R,, this gives

A (w,X)o,= P o) idwny(r)o,- (5.9)
o€lrr(Ry)

For every W-orbit O, C Z¢ n, consider the map
o Ry — GL(Why(I1(x))o,)
given by
ngh(w) = (w,X)o,-
Also let
oWh R, — GL(Why(I(x))) (5.10)

be the map given by

https://doi.org/10.1017/51474748021000128 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000128

250 F. Gao

It is then clear from equation (5.8) that

Wh _ @ Wh
o = o), -

(’)y [Sors

Theorem 5.6. Let G be an n-fold cover of a connected reductive group G. Then for every
Oy € Og, the map J%Vyh is a well-defined group homomorphism and

dimWhy (7,)o, = <U’U%Vyh>R
X

for every o € Irr (R,). Hence, diimWhy,(7,) = <U’UWh>R )
X

Proof. For w,w' € R,,, we have
abl(w)ood! (W) = (w,x)5, o (', X)5,
et (w, )b, 0. (W, "X,
(@ (W) 0 (X)),
=/ (w'w,x)p,
Wh Wh

=0p, (W'w) =05, (w),

where the last equality follows from the fact that R, is abelian (see Theorem 4.6). This
shows that J%Vyh is a representation of R, on Why,(/(x))o, . Clearly, equation (5.9) gives

a(VQV:l: @ dimWhy (7)o, - 0,
o€lrr(Ry)

and thus it follows that
dimWh(r)o, = (0.08")
This completes the proof. O

If w € R,, then cg(w,x) ' =v(w,x) — see Lemma 4.1 — is actually holomorphic and
nonzero at x. Denote by 9031}1 the character of ogyh. For w € R,,, we have
Y

90%\/; (W) = 'Y(w,X) -Tr (A(waX)Z’)y)

and thus

dim Why (7)o, = CHIN o i (A(w,x)?oy) :

Recall the permutation representation

aéi : W — Perm (O,)
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associated to the W-orbit O,. Let 0,2 be the character of Ugy . Then for every we W,
Y

we have

O, (w) =1(0y)"],

pay
Oy

where

(0y)" ={y€ O, : [yl =y}.

By restriction, we view both ¢ and o(‘%; as representations of R,. Conjecture 5.3 can
be reformulated as follows:

Conjecture 5.3. Let G be a saturated n-fold cover of a semisimple simply connected
group G with G* ~GV. Let x be a unitary unramified genwine character of Z (T) Then
for every W-orbit Oy, we have

Wh o, % .
on _Joy,

equivalently but more explicitly, for every w € R,
Tr (A )5, ) = 1(0,)"] 7w ) ™

The equivalence between Conjectures 5.3 and 5.7 follows from Theorem 5.6. The
computation of Tr (A(w,x)’(i)y) is equivalent to that of Tr(Sw(w,i(x))o,) for any
representative set R C Y of Zg ».

Remark 5.8. Conjecture 5.7 answers in a special case for the scattering matrix the
analogous question raised in [19, §3.2] regarding the trace of a local coefficient matrix.
We note that if “y = x, then both the local coefficient matrix and the scattering matrix
associated to the operator A(w,x)* give invariants of the operator, albeit different. In this
paper, it is the latter that is used and plays a crucial role in determining dim Why, (7).
We hope that this phenomenon also helps justify our viewpoint in [19] that both the local
coefficient matrix and the scattering matrix are important objects and should be studied
together.

5.5. Double cover of GSp,,
In this subsection, we apply Theorem 5.6 to the double cover of GSp,, and show that it
recovers [48, Corollary 6.6]. Meanwhile, we also show that the analogue of Conjecture 5.7
fails for such covers. This example shows that the conjecture cannot be extended in a
naive way to covers of a reductive group whose derived subgroup is simply connected.

Let GSp,, be the group of similitudes of symplectic type, and let (X,AY,AV) be its
root data, given as follows. The character group X ~ Z"*! has a standard basis

{e; :1<i<riu{es},

where the simple roots are

A={ef—e 1 :1<i<r—1}U{2e; —¢€}}.
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The cocharacter group Y ~ Z™+! is given with a basis
{e;:1<i<r}u{ep}.
The simple coroots are

AV ={e;—eit1:1<i<r—1}U{e}.

: L ok % VvV __
Write a; = e —ej,, af =

Consider the covering GSp,,. incarnated by (D,1). We are interested in those GSp,,. whose
restriction to Sp,, is the one with @ (') = 1. That is, we assume

e; —ejy1 for 1 <4 <r—1, and also o, = 2¢ — ¢, ay =e;.

Q(a))=2for1<i<r—1,and Q(a,) = 1.

Since AV U{ep} gives a basis for Y, to determine @ it suffices to specify Q(eg). For
n = 2, we will obtain a double cover GSp,, which restricts to the classical metaplectic
double cover Sp,,.. The number Q(eg) € Z/2Z determines whether the similitude factor
F* corresponding to the cocharacter eg splits into GSp,,. or not. To recover the classical
double cover of GSp,,. (see [48]), we take Q(ep) to be an even number in this subsection.

In this case, we have

Yoo = {Zkiaiv—s—keoeY:kieZ for 1§i§r—1,k¢r,ke2z}.

i=1

The sublattice Y% is spanned by {OL,XQJ} — that is,

1<i<r
{O‘\l/aa;/w"7a7\*/—1v2a7\"/} :
Regarding the dual group of the double cover GSps,., we have

v ] GSp,,.(C) if r is odd,
e PGSp,, (C) x GL1(C) if r is even.

Thus, H is GSp,,. (resp., Spiny,.,; X GLy) if r is odd (resp., even). Note that
Zq2=Y/Yq2={0er,e0,er+eo},

which is isomorphic to Z/2Z x Z/2Z.
If  is odd, then the torus T o of H acts transitively on all nondegenerate characters of
the unipotent subgroup of the Borel subgroup of H. Thus, R, = {1} for every unramified

unitary character y (see [32, Lemma 2.5]). Therefore, the R-group R, for GSp,, with r
odd is trivial for e;ery unitary unramified genuine character y.

We assume that r is even. For every a € ®, recall that we have the notation (see
Section 3.2)

Xa =X, (@) = X (ha(@")).

It follows from [26, Page 399] that the only nontrivial R, is {1,w} ~ Z/2Z, which is
generated by

W= Wa, Wag ** Wan_ 1
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with the character x satisfying
Xo, =—1forall i =2k—1,1<k<r/2.

Proposition 5.9. Assume r is even and x is an unramified character satisfying the
foregoing condition. Then as a representation of R,

oVb~ 2,162 ¢,
where € denotes the nontrivial character of R,,.

Proof. It suffices to compute the trace of o"WP. It is easy to see that for every y € 2,2
and wq,;,7 =1,3,...,r—1, we have

Wo, [yl =y € 2q.2-
Thus, by [19, Proposition 4.12], the (y,y)-entry of A(w,y)* is given by

T(wxsysy) =vwx) " [ X =q(w) Tt ()@

i=1,3,...,r—1
We see
1 ify=0,
) rlnxss) =4 LT
-1 ify=e,.+ep.
This shows that Tr (O'Wh) (w) =0. Thus, cWh =2.1®2-¢, as claimed. O

Theorem 5.10 ([48, Corollary 6.6]). If r is odd, then every unitary unramified genuine
principal series 1(x) for the double cover GSp,. is irreducible. If r is even, then the only
reducibility of 1(x) occurs when Ry ~7Z/27Z; in this case, I(x) = 7" © 7., and

dim Why, (7") = dim Why () = 2.

Proof. We only need to show the last two equalities, which follow from combining
Theorem 5.6 and Proposition 5.9. O

Remark 5.11. It follows from the proof of Proposition 5.9 that w[y] =y for every y €
Z0,2. Thus,

0%24-1;

in particular, it is not isomorphic to oW

Conjecture 5.7 fails for such GSp,,..

. We see that the (naive) analogue of

6. On the dimension of Why, (77;”)

6.1. Lower bound for dimWhy,, (71';”)

In this subsection, we will prove Conjecture 5.7 for «
lower bound of dim Wh, (w;‘”)

un

+ " In a special case, which gives a
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Let G be an n-fold covering group of a connected reductive group G. Assume that G is
not of metaplectic type (see Definition 2.1). We call z € Y an exceptional point (see [19,
Definition 5.1]) if

<vaa> = Nq
for every o € A — that is,

walz] = 24 ag, for every a € A.

Note that the definition here is the same as [19, Definition 5.1], since we have assumed
that G is not of metaplectic type.
For G not of metaplectic type, denote by Y *¢ C Y the set of exceptional points. Let

Y > Zgn
be the quotient map, and denote
Lo = (V7).
If y €Y is exceptional, then y € f~1 (%gvn), that is,
X w
Zgn C(Zon)™ -
Denoting
1
Pani=5 Y ad,eYoQ,
a>0

we always have

({p— P} NY) YO

If G is a semisimple group and G is not of metaplectic type, then (see [19, Lemma 5.2])
Y7 ={p—poninY;

tha‘i is, Y;*¢ contains the unique element p—pg , if it lies in Y. The dependence of Y;*¢
on G for covers of simply connected groups is also determined explicitly in [19, §6-§7].

Theorem 6.1. Let G be an n-fold cover of a connected reductive group G. Assume that G
is not of metaplectic type. Then for every z € Z 5% and w € Ry, we have Sp(w,i(x))o. =
y(w,x) 1. Therefore,

Wh X

UOZ = Uoz = ILRX’
and thus
dim Why, (74") > | 25%]-

un

" is generic. Moreover, Conjecture 5.7 holds for

In particular, if p—pon €Y, then
such O,.
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Proof. Since O, = {z}, we have

Sm(w»Z(X))OZ = T('lU,X,SZ,SZ)~

First, we note that by equation (5.2) and the fact that x is fixed by w € R,, the
entry 7(w,X,s,5,) is independent of the representative for z € ZS*°. It follows from

[19, Proposition 4.12] (as G is not of metaplectic type) that

T(w»X7Szsz) = W(MvX)_l

for every z € %Qex;;', and Conjecture 5.7 holds for such O,. In fact, agzh = aéi =1g,, and

thus
dimWhy, (7y"), = (Lod") r, =1
Therefore, dim Why, (w;”) > |2”Qexfl| This completes the proof. O

For covers of a semisimple and simply connected group G, it follows from [19, Theorem
6.3] that
exc w
0< |25 < (2| < 1.
In fact, in [19, §7] we determined explicitly the size of the two sets 2% and (%Q,n)w.

On the other hand, if G is semisimple but not simply connected, then it is possible to
have

25 <1< |(Zam)"|.

See [19] for details.

We note that the equality oy = ¢ in Theorem 6.1 might fail for z € (2g,)" — 25
for covers of a semisimple group; we will consider such an example from n-fold covers of
SO3 in the next section. This example shows that the naive analogue of Conjecture 5.3
does not hold for general semisimple groups.

Remark 6.2. If G is almost simple and G is of metaplectic type, then it follows from the
discussion after Definition 2.1 that G' = Sp,,. with n, =2 (mod 4). Moreover, Example 4.11
shows that R, = {1} in this case, and thus the (in-)equalities dim Why, (7%") = [20,n| >
| 25| hold trivially.

6.2. Unramified Whittaker function
un

We note that Theorem 6.1 applied to the case n =1 shows that 7" is the only generic
constituent of I(x) for the linear algebraic group G. This fact also follows from the
Casselman—Shalika formula [12]. Motivated by this, for covering groups we consider in this
subsection the relation between dim Why, (ﬂ;”) and the unramified Whittaker function,
which is also the approach taken in [21], but for a general unramified genuine character.

First, by restriction, we obtain a surjection of vector spaces

Y™ i Why, (1(x)) - Why, (7‘(;”) .
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Let f® e n%™ C I(x) be the normalised unramified function. For ¢ € Ftn(i(x)), let
Ae € Why, (I(x)) be the associated Whittaker functional, also viewed as an element in
Why, (71‘;"); that is, we may still use A for h*""(Ac) if no confusion arises. The unramified
Whittaker function on G associated with c is given by

We (@) = Ac (13" (9) £°) = Ae (1(x) (9) £°)
We have a decomposition G = BK = UTK and
We (utk) =(u) - We () forueUteTk e K.

Thus, the value of W, is determined by its restriction to T If ¢ = ¢, for v € T, then we
denote

Wy i=We. .
Recall that # € T is called dominant if
T (UNK)-T'CK.
Let
YT ={yeY:{ya)>0 forall « € A}.

Then an element s, € T' is dominant if and only if y € Y. The following result regarding
W, (%) is shown in [24, 38, 13] for coverings of GL,. For a general covering group, the
idea is the same; it is implicit in [37] and explicated in [17].

Proposition 6.3. We have W, (f) =0 unlesst € T is dominant. Moreover, for dominant
t,

W, () = 5}3/2 (%) Z Cek (wGw_17x) T (w,wflx,'y,wg -f-wal) ,
weW
where 6 is the modular character of B.

It follows that for z€Y and y €Y,

W (

z

1/2 _ -1 _ .
)= 63/ (8y) > wew Cak (wGw 1,)() T (w,w X,sz,wg-sy-wcl> ifycYT,
Y 0 otherwise.

For every ~,t € T, we define
—_ 1/2 /~ —1 _ -1 —
w; (t) = 53/ (t) ‘ Z Cgk (wGw 1,)() T (w,“’ X»’Y»t> .
weW
We emphasise that here ¢ is not required to be dominant. In particular,

W2 (s) =012 ()" D e (wow™x) -7 (w0, xisesy) (6.1)
weWw

—1

for every z,y € Y. We can extend by linearity and define W} (%) for every ¢ € Ftn(i(x)).
If walfwg is dominant, then

Wi (f) =W, (walfwg) )
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We denote
W= {W::ceFtn(i(x))}.

If Wi =0 as a function of T, then W, = 0, and it follows that A(v) = 0 for every v € 7"
as the unramified vector f° generates my"". Thus, we have an injection of vector spaces

Why, (74") —— W* (6.2)

given by
Ae — WE.

For 2 € Zg n, let Wi, C W™ be the subspace spanned by {Ws*z, e i)‘{z}, where
R. CY is a set of representatives of 0. Note that Wy , depends on the representative
z'; however, the space W, depends only on O.. From the restriction of formula (6.2),
we obtain

Why, (727),, s Wp_. (6.3)

0.
Let C!9:! be the |O,|-dimensional complex vector space. Endow it with the coordinates
indexed by R.. Thus we write (c,) for a general vector in C!©:|. Depending on .,
there is an evaluation map

YyER,

v, : Wh — ClO:l,
with the yth coordinate of v, (Wsz,) 4,2 € R, given by

v (W5), = W2 (50);
that is,

v (W2, ) = (Wi, ) el

yER,

If RCY is a set of representatives for Z¢ ,, then we have a unique subset R, C R
representing O,. By combining all the v _, we obtain an evaluation map

v:W* —— ClZanl,
which depends on the chosen fR. In particular, for a general ¢ € Ftn(i(x)), we have
vWe)y =We (sy)-

For every O, € O 4, composing formula (6.3) with v, gives a vector space homomor-
phism
vay, : Why (1y"),, —— ClO:L.

Similarly, we have

VX : Why, (77) —— Cl#en|
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with
X — X
= @D
O0.€eO0x

Conjecture 6.4. For every W-orbit O, and every choice of R,, the homomorphism
Vg, + Why, (7‘(‘;")0 — Cl9:1 js injective. Thus, dim Why, (mum),, =rank (v ) and

dim Why, (W;‘”) = Z rank (1/5%2) .
Oz EOR’

(@]

For application purposes — that is, to determine dim Why, (7¢") , — it is sufficient to

consider one R,. More precisely, for low-rank groups, or low-degree covering groups, we
can verify the injectivity in Conjecture 6.4 for a particular R, and compute rank (I/;)%z)
explicitly.

Theorem 6.5. Let G be an n-fold cover of a linear algebraic group G, which is not of
metaplectic type (see Definition 2.1). For every z € Y,2*¢, taking R, = {z}, we have

rank (13 ) = 1.
Hence, dimWhy, (74") > | 25%].

Proof. If z € Y,2*°, then —z is dominant and it follows from [19, Theorem 5.6] that we
have a Casselman—Shalika formula for G which reads

Wi () =652 (:) " [ (1—a 'xa)-

a>0
Since x is unitary, we see that
Vz))giz (As.) = W:z (s2) #0.
This shows that Vﬁ)gﬁz is an isomorphism between the 1-dimensional vector spaces. The

result follows. O

Theorem 6.5 is compatible with Theorem 6.1, though the approach in the former
highlights the role of unramified Whittaker functions.

7. Covers of symplectic groups

The goal of this section is to show that Conjecture 5.7 (equivalently Conjecture 5.3) holds

for %g:),r >1, and ﬁéz). Recall that for every a € ®, we denote
Xo =X, (@) = X (ha(@")) .

7.1. Covers of Sp,,.,r > 1

Consider the Dynkin diagram for the simple coroots of Sps,.:
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Let Y =Y* = (ay,ay,...,0y_1,a)) be the cocharacter lattice of Sp,,, where o, is
the short coroot as shown in the diagram. For simplicity, let @ be the Weyl-invariant
quadratic form on Y such that @ (o) = 1. The bilinear form By, is given by

2 ifi=j=r,
4 ifl<i=j<r—1,
—2 ifj=i+1,

0 if oy,a are not adjacent.

Bg (a;/,ajv) =

Let G := %gf) be the n-fold cover of Sp,,. We have

e Spa,. if n is even,
8027-4_1 if n is odd.

By Corollary 4.10, we have R, = {1} if n is even. For odd n, it is clear that n,, =n for
all a; € A and

Following notations in [10, Page 267], we consider the map

T r
Doy -+ e
i=1 i=1
given by
(21,T2,X3,...; ) > (T1,X9 — T1,L3 — T2yeery Tp—] — Ty, Ty — L1 ),

which is an isomorphism. The Weyl group is W = S, x (Z/2Z)", where S, is the
permutation group on @, Ze; and each (Z/2Z); acts by e; — £e;. In particular, w,,,1 <
i <r—1, acts on (y1,y2,...Yr) € P, Ze; by exchanging y; and y;41, while w,, acts by
(—1) on Ze,.

For odd n, it follows from Propositions 4.4 and 4.5 and [26, §3] that the only possible
nontrivial R-group (up to isomorphism) for G is

RX = {lvwar}v
where x is the unramified genuine character of Z (T) C G such that

e X Is any unitary unramified linear character for all 1 <i <r—1, and

e furthermore,

Xi»z]landxajé]l.

In particular, X, = —1. Denote by e the nontrivial character of R,. We have a
decomposition

I(x) =" &,

where 7. is nonisomorphic to 71';2’” =y.
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Theorem 7.1. For odd n and x as before, Conjecture 5.7 holds for ?péz) ; in this case,

T r—1 r__ar—1
dimWhy (m) = 20— dimWhy (r.) = " —

Proof. For n odd,
Zon=Y/Yq .~ (Z/nZ)".
For every W-orbit O, C Zg », we will compute and check explicitly that

T (A0, 05, ) = 10,7 -7 (10,0 ()

There is a decomposition

0,=| |0

iel
of O, into R,-orbits, where
O = {2} or OFx = {2,w,, [2]}.

To show equation (7.1), it suffices to prove that for every R,-orbit Of" C Zg,n, we have

Z T(war7X7SZ'aSZ/) = ‘(Ofx)war "Y(thT;X)_l . (72)

z’EOf'X

First, if Ofx = {z}, then w, [z] =2 € Zg . Write z = 22:1 zie; € Zg,n, with 0 <
z; <n—1. The equality w,,[z] =z is equivalent to z,. = (n+1)/2. It follows from [19,
Proposition 4.12] that

~1 —1
T (Wa,,X:82,82) = Xa, "7 (Wa,,X) T =17 (Wa,,X) -

That is, equation (7.2) holds for such O In fact, we also see that the character 0,2 of
the representation o : R, — Perm (Z¢,n) is given by

Oy (1)=n", Oy (Wa,) =n"L

Second, assume QL% = {z,wa, [2]}; then n{ (z,,a,). It follows from the proof of [15,
Lemma 3.9] that

kz,ar + kwa,,, (2], = L.
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We obtain

T (szMXﬂSZaSZ) +7 (wosza Swa, [2]Swa, [z])

1—q! k —q! k

_ P wap [2] ap
1— X, (Xa,.) + 1 Xa, (Xa,.)
1—qg ! 1—qg ! _

=y (D (2 e

On the other hand,

(Ofx > Yoy

Therefore, Conjecture 5.7 holds for %g:) The desired dimension formula for the
Whittaker spaces of 7" and 7. follows from Theorem 5.6 and the character 6,2 already
computed. This completes the proof. O

= 0; this shows that equation (7.2) holds in this case.

Remark 7.2. Equation (7.2) might fail for covers of a general simply connected group.
More precisely, for a general G, we have the decomposition of a W-orbit O, into R,-orbits

0, =| |0
icl
Conjecture 5.7 predicts that for every w € R, , we have
S>> T(w,x,sz/,sz/):Z‘(Oix) ’-V(w»c)’l- (7.3)
i€l Lcofx i€l
However, the inner summands indexed by I on the two sides may not be equal. A

counterexample arises from considering STP with y =3 A ", in which case |O,| = 6.

This subtlety is the main difficulty with verifying Conjecture 5.7 by direct computation.
Indeed, it follows from Tables 1 and 2 (or, more precisely, [26, §3]) that the nontrivial
unramified group R, for covers of simply connected groups of type B;,D,,Fs and E7 is

small; thus the orbits C’)g" are all small. However, as just noted, one needs to consider
the whole W-orbit O,,, whose size could be large, depending on W and n. This hinders
direct computation in the general situation.

Theorem 7.1 could also be obtained from the consideration in Subject 6.2, especially

Conjecture 6.4. We illustrate this by considering the case of ST;n). Write n =2d+1 and
A = {a}. The twisted Weyl action on Z¢ , = Z/nZ is given by

wo [ka¥]=(1—k)a¥ € 24 n.

In total there are (d+ 1)-many W-orbits. Every orbit except that of —da" is free. We
choose a set of representatives of 2 , as

R={i-a":—d<i<d}.
The W-orbits in Zg ,, are
05?7 = {Oiav 1<i < d}U {Ofdav}a
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with

Riav = {ia’,(1—-1i)a"} for 1 <i<dand R_gov = {—da’}.
Proposition 7.3. Conjecture 6.4 holds for R;ov, and moreover,

rank (1/3% V) =1
for every 1 <i<d and i=—d.
Proof. Since —da¥ €Y is an exceptional point, in view of Theorem 6.5 it suffices to deal

with the case 1 <i <d. We denote z :=ia”. Let A\c € Why,(I(x))o., viewed as an element

in Why, (71';(‘") o by restriction. Then

supp(c) Cs. - AUs, ;- A.
We have
Wi =c(s:) Wi +c(sup)) W

EVER

Recall the projection map h*" : Why,(I(x))o, — Why, (7%") from Section 6.2. Assume ¢
is such that

var. (Ae) = (Wi (s2), Wi (swp1)) = (0,0). (7.4)
We want to show that h*"()\.) = 0. For each z = ia", we denote

My = ( Wi (sz)  WZ (sufz) )
= W:W[Z] (SZ) W* 1 (SW[Z]) '

Sw[z

It is easy to see that
Vﬁ))%z ()‘C) = (C(Sz)7C (Sw[z]))M‘ﬁz (75)
Now by equation (6.1) we have
W2 (54) -6 (54) = Cat(wa, ) 7(id x:52,8,) + 7 (wa, " x5,y ).
Since we are in the case where Xi =1 but X, =1, we have
X, (@) =X (ha(@")) = —1.

We also note that W~y = x. Thus a straightforward computation gives

Mo — We | (siav) Wi | (sa—iav) _ < g ¢ gy (1 —2i)>
iV W:(lfi)a\/ (Siav) W:(lﬂ_mv (S(l—i)a\/) qlgw71 (2i—1) q—z—l .
Combining equations (7.4) and (7.5), we get
g " c(Siav) +8yp-1(2i—1) ¢ (S(1—iav) = 0. (7.6)

Consider the map

Py :Why(I(x)) —— Why(1(x))
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induced from the projection Py : I(x) — I(x). Showing that h*™(Ac) = 0 is equivalent to
proving Pf(Ac) =0. Now

Pr(Ac)
“Ae+ 4 (w,x)"(Ae))

(C(SZ) + C(SZ)’Y(w7X)T(w7X7ZaZ) +c (Sw[z]) "y(’LU,X)T(’LU,X,W[ZLZ)) : )\Sz

+ (C (Sw[z]) +C(Sz)’y(w,X)T(w,X,Z,W[Z]) +c (Sw[z]) fY(IlU,X)T(w?XaW[Z]vW[Z])) : ASW[Z] .

O = N ==

A simplification gives that the coefficient in front of As_ is

1

T (Csia)a " +e(sanav) gur (2= 1),

which is equal to 0 by equation (7.6). Similarly, it can be checked easily that the coefficient
in front of As ., is also 0. This shows that Conjecture 6.4 holds.
It is clear that for every 1 <i¢ < d, we have

rank (uggmv> =rank (Mg, ) =1.

The proof is now completed. O

It follows from Proposition 7.3 that
dimWhy, (72") = (Lo? ), =|0a|=d+1=——.
Consequently,

dimWhy(r.) = (e,0% ), =d= 5

the number of free R,-orbits in Zq .
Remark 7.4. Let n be odd and x be the nontrivial quadratic genuine character of
Z (T) C Spy,. The Whittaker dimension for the constituents in 74" @} = Ind%) 27 (i(x))

can be deduced from that of STén) as follows. Here we write 7} for .. Each of the rank
1 lattice (Ze;) C Y gives rise to an n-fold covering @1,61- of the torus GL; ~ F'*, by
restriction from 7. We have an isomorphism (see [20, §5.1.3])

I GLu.,/H~T, (7.7)

1<j<r

where H = {(Cj) € () I G = 1}; that is, block-commutativity holds for coverings of

Levi subgroups of Sp,,.. Thus, we can write
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where i(Xj) € Irr (@1763') is of dimension n. Note also that Ty := @l,er is just the
covering torus of SLo associated to «,. Let M = H1gj§r71@1,ej x SLs be the Levi

subgroup of the parabolic subgroup P C ?pé? associated to «,. The character x, is a
nontrivial quadratic character of Z (TO) and thus we have
Ind%f (i(xs)) = Tir @ .

By induction in stages, we have

T = Ind%’” (Mr<j<r-1i(xy)) Emy

and similarly,

o= Indsﬁp” (M1 <j<r1i(x;)) K7 .

r

Now it follows from the equalities

1 -1
dimi(x;) =7, dimWhy (m) = 22 dimWhy (7, ) = "~
and Rodier’s heredity that
: un r—1 1 +1 . r—1 N 1
dim Why, (73") =n"""- — dim Why, (7)) = n —

which agrees with Theorem 7.1.

7.2. Double cover of SLj3

Before we proceed, we recall some observations from Section 5.4. By Tables 1 and 2 and
Theorem 4.6, the group R, is always cyclic for all semisimple type except the D, case
when r is even. Recall that

A (w,x)* = v(w,x) - A(w,x)"

Assume R, is cyclic and let w be a generator; then o(w),o € Irr (R, ) are distinct and
dimWhy (7, ),0 € Irr (R, ) are just the multiplicities of the distinct eigenvalues o(w) -
y(w,x)~! of the polynomial

det (X -id — A(w,x)*) = det (X - I 2, | — Sm(w,i(x))) -

. . . =(2) . . .
This will be the observation we apply to the double cover SLé ) in this subsection.
Let aY,a3 be the two simple coroots of SL:

af asy
o—o0

For convenience, we write w; = w,, for i =1,2. Let az =a) +ay € ®T. Let Q: Y — Z be
the unique Weyl-invariant quadratic form such that @ () = 1. Taking n = 2, we get

Yo2=Y55=2Y
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and thus ﬁ;’/ =PGL3 and also
20.2~(Z/2Z)D(Z/2Z).
The ordered set
R={00f,05,05} CY
is a set of representatives of 2 2. There are two W-orbits
O = {0,0),a3 }, Ouy ={ay}.
Let x be a unitary unramified genuine character of Z (T) Since the dual group of ST?

is PGL3, we see that R{® = R, by Proposition 4.4; moreover, R, is either trivial or Z /3Z.
Assuming R, = Z/3Z, we see that &, =) and R, =W, = (w1wa) = (waw1) C W — that

is,

WoW1

This implies that
Xar =€ = Xa and Yo, = (%, (7.8)
where ¢ € C* is a primitive third root of unity. For such y, we have the decomposition
I(0) = " & m By

of I(x) into nonisomorphic irreducible components. We have dim Why,(I(x)) =4, and the
permutation representation

0% 1Ry — Perm (20.2)
is such that in 274 o:
wawy [ay ] = oy, wow1[0] = oy, wowy [a)] = a3, wawy [y ] = ag .
We have Irr (R, ) = {11,0,02}, where o is the generator given by
o(wawp) =C.
It then follows easily that
o =(2-1)@o@o?.
Thus, we could label constituents of I(x) as

Ty =Tq = Tg0, T = To, My = Ty2.

Since R, is cyclic and wowy is a generator of Irr (R, ), to determine dimWhy (7y:) it
suffices to compute the characteristic polynomial of A(wqwi,x)* which takes the form
. . ; _ 1\ dimWhy (7,
det (X 'ld_A(wahX) ) = H (X _Cl "Y(w2w17X) 1) " v )7
0<i<2
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where

(e (=g Yey) T T g
(1_Xo<1)(1_Xa3) 3 .

Let Sm(wowsy,i(x)) be the scattering matrix associated to the ordered set 9. For
simplicity of computation, we assume g C F*, and hence € = 1. Using equations (5.2)
and (5.3) and Theorem 5.2, we obtain in this case an explicit form (again, using the
shorthand notation Xa,,Xass Xas):

y(waw1,X)

S (waw1,i(X))

—1\2
(=) - 1oy
TN Y g,—1(—1 v(x ) gy—1(-1)1=%— 0
(xan)(xag) S 7 e v TS
—1
1—g—1 1-g~ 1 -1
_ g,,,,71(1)1,)m3 Xe Toxag 7<X03 q 0
—1 1og—1 -1
gw—l(U’Y (ch) 0 Xasg W’Y (Ea1>
-1 -1
0 0 0 xalxtxgw(zaJ W(Xa:;)

A straightforward computation gives

det (X - I — Sor (wow1,i(x)))

and thus
det (X - In — o (wowy, x)*) = (X —1)*- (X =) - (X = ¢?).
Therefore,
dimWhy (m3) =2 and dimWhy(7,:) =1 for i =1,2.
Clearly,

oWVh = (2.1)@odo>
Proposition 7.5. For ﬁf), we have
oWV =6% = (2. 1)®oP o
Moreover, Conjecture 5.7 holds.

Proof. The equalities are clear. It suffices to prove that Conjecture 5.7 holds for the two
orbits Op and Oy, which is a priori stronger than the equalities. This follows from a
direct computation, or we can argue alternatively by using the fact that O 9 = {OO,Oag },
with ay € 25%. Indeed, by Theorem 6.1, 05", = o, = 1. However, since

3

Vv
3

X X

Wh ‘Wh Wh __ —
Dop, =07,

_ P
o = ang D 0oy = U(’)a

@<

it enforces
Uooh = CTOOh = 1@0—@0—2.

The proof is completed. O
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8. Two remarks

In this section, we consider two examples to justify the necessary constraints imposed on
G and G in Conjecture 5.7. First, we consider %g") and show that a naive analogous
formula does not hold for general covers of semisimple groups which are not simply
connected. Second, we consider the double cover of the simply connected Sping ~ SLy,
whose dual group is SL4/ps, and show that analogous Conjecture 5.7 does not hold. This
shows that it is necessary to require the cover G to be saturated.

8.1. Covers of SO3

Let Y = Z- e be the cocharacter lattice of SOz with oV = 2e generating the coroot lattice
Ys¢. Let @Q:Y — Z be the Weyl-invariant quadratic form such that @Q(e) = 1. Thus,
Q () =4. We get
v n v
fon = ged(@n)
On the other hand,
n
Yon=2Z-—————e.
@ ged(2,n) ¢
The equality W=y = x is equivalent to

(o) -

Lemma 8.1. Let x be a unitary unramified genuine character of Z (T) Then R, =W
if and only if 4|n and X, isa nontrivial quadratic character.

for all a € F'*.

Proof. Clearly, R, = W if and only if ®, =0 and W, = W. We discuss case by case.
First, if 41 n, then ged(4,n) = ged(2,n), and in this case R, = {1}. Second, if n =4m, then
ab,, =ma’ and n/ged(2,n) = 2m. In this case, if x  is a nontrivial quadratic character,
we have R, = W. O

Remark 8.2. For G of adjoint type, if x is a unitary unramified character of T', then
I(x) is always irreducible (see Corollary 4.10). The result shows that this may fail for
covers of groups of adjoint type.

Now we assume that n = 4m and X, Iisa nontrivial quadratic character — that is,
Xo =X (ﬁa(w"“)) =—1.
In this case, R, = W and
I(x)=m" @
We have
Yon=Y50 =2 -, =Z-(ma’) =2Z-(2me).
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Therefore, G’ ~ SOj3 is of adjoint type. It is clear that
Zon~=2Z/(2m)Z,
with the twisted Weyl action given by
walie] = (—i)e+2e = (2—1)e.

We have |Og | =m+1 - that is, there are m+ 1 many W-orbits in Zg . Let R CY be
the following set of representatives of Zq »:

R={iec:—m+1<i<m}.
The two trivial W-orbits are
Oc={e},  Ocmsne={(-m+1)e};
while for all other ie € R with 2 < i <m, the orbit
Oic ={le,(2—1i)e} C Zo.n

is W-free. We thus have R, R(_y,41)e and R C R to represent the three families of
orbits.

Proposition 8.3. Assume n=4m and X, isa nontrivial quadratic character. Then
oV =m -l @m-ew, and 0¥ = (m+1)- Ly & (m—1)-ew.
Hence,
dim Why, (ﬂ';n) =m = dim Why ().

Proof. Choosing R as before, the scattering matrix Sm(wq,i(X)) is the block-diagonal
matrix with blocks Sp(wq,i(x))o,, for i=—m+1 and 1 <i < m. Here,
1-¢"'xa _14¢"

. 1
Sm(wocaz(X))O(ﬂnJrl)e =Y(Wa,x)” = 1— xa = 2

and

1+q !
2 b

S (Wai(X)) 0. = Xa -V (Wa,X)H = —

also, for 2 <i <m,

—1

Somite — [ X g¢—1(<i—1>4>>'
ot (Wi (X))o, (gwl((l_w e

It follows that for 2 <i <m,
Wh z 1¢e

Uoie = Uoie -
and

‘Wh _ X —_1-
UO(,7n+1)e - UO(—WL+1)€ - :ll’
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however,
U%Veh =ew, crg’; =1.
The last result on the Whittaker dimension follows from Theorem 5.6. O

Proposition 8.3 can also be proved by using the method described in Section 5.4. That
is, we can compute dim Wh,, (71';”) by showing that

(i) Conjecture 6.4 holds for SO3 and

(ii) we have

1 if2<i<mori=-m+1,
0 ifi=1.

() - {

Here (i) can be verified exactly in the same way as Proposition 7.3, and thus we omit
the details. We discuss (ii) for the three cases i = —m+1, i =1 and 2 < i < m separately.

e First, since (—m+1)e = p—pg, n, it is the unique element in Y;$*°. In this case, the

equality rank (l/é%(li ) ) =1 follows from Theorem 6.5.

e Second, for M. = {e}, we have rank (1/3%6) =1 if and only if W; (sc) # 0. A
straightforward computation from equation (6.1) gives
W; (se) = 0.
Thus, rank (I/ée) =0.

e Third, we deal with free W-orbits O;,2 < i < m. Similar to the case of ST;n), we
have rank (v ) = rank (Mg,, ), where

4% (Sie) Wwe (5(272')6)
M%e = ( * Sie * Sie .
' WS(27i)e(Sie) Ws(zfi)c (5(271‘)@)
Again, since Yo x = x and x, = —1, it follows from equation (6.1) that
=, Q2 e (1 ),
Y e L I el

Note that we have 1 <i—1<m—1 and thus det (Mgn,,) = 0. Clearly, this implies
that rank (M, ) = 1.

Combining the foregoing gives dim Why, (71';”) = m. It follows from this example of

%@") that a naive analogue of Conjecture 5.7 does not hold for coverings of a general

semisimple group. Here the difference between 2 5% and (%Qm)w plays a sensitive role

and accounts for the failure. Indeed, in the case of @é”), we have

| 25| =1 and ](%,n)w‘ =2

,n
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8.2. Double cover of Sping

We consider in this subsection only the double cover of Sping o~ SL4, though the
phenomenon appears for general 2m-fold covers of Spin,, with m and k£ being both
odd. For this reason, we would like to consider the situation from the perspective of spin
groups.
Consider the Dynkin diagram of simple coroots for the simply connected G = Sping:
o

a1

.

Let @ be the Weyl-invariant quadratic form @ of ¥ such that @ (o) =1for all 1 <i<3.
Let G be the double cover of G arising from Q. We have Y5% =2-Y and

3
Yo, = {Zyiaiv : 2]y, for all ¢ and 2(y; +yo +y3)}.
i=1

Thus we have
G’ =50,
and the principal endoscopic group H for G is SOg. We have
Zo.2=1{0,0),0,0f + 3 }.

Note that oy = o € 2@, There are two W-orbits of 2 o represented by the following
graph:

Waz

Q Wayq

was (7 @ o ay v ; (1
T e D
e Wag U

Wus

We have Zg.n = OoUO4y 1ay-
It then follows from [22, Theorme 6.8] that the only nontrivial unramified R, is
{1,w = Wq,_,Wa, }, with

Xag = ong - _1
A direct computation using equations (5.2) and (5.3) and Theorem 5.2 gives
7(w,X,50,80) + 7 (W, X:Say Say ) = Y(w,x) —y(w,x) =0
T (waX7sa1vvsaY) = ’Y(’U},X)

T (w7X7Sa1+a;/asa1+oc2v) = —7(107)()
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Denoting Irr (R, ) = {1,e}, it then follows that

Wh _ Wh _
05, =(2-1)De, OO0,y uy =

In particular, writing I(x) = 7" © 7, we have

dim Why, (W;") =2 and dimWhy(7) = 2.

On the other hand, it is clear from the diagram that

x

0o, =31, % =

o¢ =
Oay +ay

Wg see that the analogous Conjecture 5.7 does not hold in this case. The constraint that
G be of adjoint type seems to be necessary.

For a low-rank group and ‘small’ R,, Conjecture 5.7 should be computable and
explicitly verifiable. However, for general m-fold covers of a simply connected group
G, in view of the difficulty highlighted in Remark 7.2, it is desirable to approach the
problem from a more uniform and conceptual perspective. In any case, we will leave the
investigation of this to a future work, as a continuation of the present paper.
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