Bull. Aust. Math. Soc. **100** (2019), 328–337 doi:10.1017/S000497271900008X

APPROXIMATIONS OF SUBHOMOGENEOUS ALGEBRAS

TATIANA SHULMAN and OTGONBAYAR UUYE[∞]

(Received 29 November 2018; accepted 10 December 2018; first published online 7 February 2019)

Abstract

Let *n* be a positive integer. A C^* -algebra is said to be *n*-subhomogeneous if all its irreducible representations have dimension at most *n*. We give various approximation properties characterising *n*-subhomogeneous C^* -algebras.

2010 *Mathematics subject classification*: primary 46B28; secondary 46L07, 47L30, 47L55. *Keywords and phrases*: subhomogeneous algebra, *C**-algebra, finite-dimensional algebra, completely positive, completely contractive.

1. Introduction

Let *A* and *B* be *C*^{*}-algebras and let $\phi \colon A \to B$ be a bounded linear map. For each integer $n \ge 1$, we can define maps

$$\phi \otimes \operatorname{id}_{\mathbb{M}_n} : A \otimes \mathbb{M}_n \to B \otimes \mathbb{M}_n,$$

where \mathbb{M}_n denotes the C^* -algebra of $n \times n$ matrices. We say that ϕ is *n*-positive if $\phi \otimes \operatorname{id}_{\mathbb{M}_n}$ is positive and *n*-contractive if $\phi \otimes \operatorname{id}_{\mathbb{M}_n}$ is contractive. We say that a map is completely positive (completely contractive) if it is *n*-positive (*n*-contractive) for all $n \ge 1$. As usual, we abbreviate completely positive by c.p., contractive and completely positive by c.c.p., unital and completely positive by u.c.p. and completely contractive by c.c. by the Stinespring dilation theorem [10, Theorem 1].

Finite-dimensional approximation properties of maps and C^* -algebras play an important role in the study of C^* -algebras (see [2] for a comprehensive treatment).

DEFINITION 1.1. A c.c.p. map $\theta: A \to B$ is said to be *nuclear* if there exist *finite-dimensional* C^* -algebras F_{α} and nets of c.c.p. maps $\phi_{\alpha}: A \to F_{\alpha}$ and $\psi_{\alpha}: F_{\alpha} \to B$ such that for all $x \in A$,

$$\|(\theta - \psi_{\alpha} \circ \phi_{\alpha})(x)\| \to 0 \text{ as } \alpha \to \infty.$$

© 2019 Australian Mathematical Publishing Association Inc.

The first author was supported by a Polish National Science Centre grant under the contract number DEC2012/06/A/ST1/00256 and by the grant H2020-MSCA-RISE-2015-691246-QUANTUM DYNAMICS. The second author was supported by Mongolian Science and Technology Foundation grants SSA-012/2016 and ShuSs-2017/76.

DEFINITION 1.2. A *C*^{*}-algebra *A* is said to be *nuclear* if the identity map $id_A : A \to A$ is nuclear and *exact* if there exists a faithful representation $\pi : A \to B(H)$ which is nuclear.

The following is the standard example.

EXAMPLE 1.3. Let Γ be a countable discrete group. Then the *reduced group* C^* -algebra $C^*_{\lambda}(\Gamma)$ is nuclear if and only if Γ is amenable. In particular, the reduced group C^* -algebra $C^*_{\lambda}(F_2)$ of a free group on two generators is non-nuclear (see [2, Section 2.6]).

It is well known that a C^* -algebra is nuclear if and only if the identity map is a point-norm limit of finite-rank c.c.p. maps. On the other hand, it was shown by De Cannière and Haagerup [4, Corollary 3.11] that the identity map on $C^*_{\lambda}(F_2)$ is a point-norm limit of finite-rank c.c. maps. This is in contrast to the following theorem of Smith, which says that we recover nuclearity if we insist that the finite-rank c.c. maps factor through finite-dimensional C^* -algebras.

THEOREM 1.4 (Smith [9]). A C^{*}-algebra A is nuclear if and only if there exist finitedimensional C^{*}-algebras F_{α} and nets of c.c. maps $\phi_{\alpha} \colon A \to F_{\alpha}$ and $\psi_{\alpha} \colon F_{\alpha} \to A$ such that for all $x \in A$,

 $\|(\mathrm{id}_A - \psi_\alpha \circ \phi_\alpha)(x)\| \to 0 \quad as \ \alpha \to \infty.$

All *abelian* C^* -algebras are nuclear. In fact, the standard proof based on partition of unities shows that one can take the finite-dimensional C^* -algebras F_{α} to be abelian and the c.c.p. maps ϕ_{α} to be *-homomorphisms (see [2, Proposition 2.4.2]).

Our investigation grew out of the following simple question.

QUESTION 1.5. Suppose that the there exist finite-dimensional *abelian* C^* -algebras F_{α} and nets of c.c.p. maps $\phi_{\alpha} \colon A \to F_{\alpha}$ and $\psi_{\alpha} \colon F_{\alpha} \to A$ such that for all $x \in A$,

 $\|(\mathrm{id}_A - \psi_\alpha \circ \phi_\alpha)(x)\| \to 0 \text{ as } \alpha \to \infty.$

Can we conclude that A is abelian? Can we still conclude that A is abelian if we assume that the maps ϕ_{α} and ψ_{α} are only c.c.?

Not surprisingly, the answer is positive. In this paper we prove the following result.

DEFINITION 1.6. Let $n \ge 1$. A C^{*}-algebra is said to be *n*-subhomogeneous if all of its irreducible representations have dimension $\le n$.

Clearly, a C^* -algebra is abelian if and only if it is 1-subhomogeneous. A finitedimensional C^* -algebra is *n*-subhomogeneous if and only if it is a finite product of matrix algebras \mathbb{M}_k of size $k \leq n$.

THEOREM 1.7. Let A be a C^* -algebra and let $n \ge 1$ be an integer. Then the following are equivalent.

(i) The C*-algebra A is n-subhomogeneous.

(ii) There exist nets of *-homomorphisms $\phi_{\alpha} \colon A \to F_{\alpha}$ and c.c.p. maps $\psi_{\alpha} \colon F_{\alpha} \to A$, with F_{α} finite dimensional and n-subhomogeneous, such that for all $x \in A$,

$$||x - \psi_{\alpha} \circ \phi_{\alpha}(x)|| \to 0 \quad as \ \alpha \to \infty.$$

(iii) There exist nets of c.c.p. maps $\phi_{\alpha} \colon A \to F_{\alpha}$ and $\psi_{\alpha} \colon F_{\alpha} \to A$, with F_{α} (finite dimensional and) n-subhomogeneous, such that for all $x \in A$,

$$||x - \psi_{\alpha} \circ \phi_{\alpha}(x)|| \to 0 \quad as \ \alpha \to \infty.$$

(iv) There exist nets of c.c. maps $\phi_{\alpha} \colon A \to F_{\alpha}$ and $\psi_{\alpha} \colon F_{\alpha} \to A$, with F_{α} (finite dimensional and) n-subhomogeneous, such that for all $x \in A$,

$$||x - \psi_{\alpha} \circ \phi_{\alpha}(x)|| \to 0 \quad as \ \alpha \to \infty.$$

PROOF. The nontrivial implications are (i) \Rightarrow (ii), (iii) \Rightarrow (i) and (iv) \Rightarrow (i). See Theorem 1.8 below.

Our proof is based on the solution of the Choi conjecture [3], due to Tomiyama [12] and Smith [8], and a contractive analogue of the Choi conjecture (see Theorem 2.13). See also [5, 6].

The following is a summary of the results.

THEOREM 1.8. Let A be a C^{*}-algebra and let $n \ge 1$ be an integer. Then the following are equivalent.

- (i) The C^{*}-algebra A is n-subhomogeneous.
- (ii) There exist nets of *-homomorphisms $\phi_{\alpha} \colon A \to F_{\alpha}$ and c.c.p. maps $\psi_{\alpha} \colon F_{\alpha} \to A$, with F_{α} finite dimensional and n-subhomogeneous, such that for all $x \in A$,

$$||x - \psi_{\alpha} \circ \phi_{\alpha}(x)|| \to 0 \quad as \ \alpha \to \infty.$$

(iii) There exist nets of n-positive maps φ_α: A → F_α and ψ_α: F_α → A, with F_α finite dimensional and n-subhomogeneous, such that for all x ∈ A,

$$||x - \psi_{\alpha} \circ \phi_{\alpha}(x)|| \to 0 \quad as \ \alpha \to \infty.$$

- (iv) All n-positive maps with domain and/or range A are completely positive.
- (v) There exist nets of n-contractive maps $\phi_{\alpha} \colon A \to F_{\alpha}$ and (n + 1)-contractive maps $\psi_{\alpha} \colon F_{\alpha} \to A$, with F_{α} finite dimensional and n-subhomogeneous, such that for all $x \in A$,

$$||x - \psi_{\alpha} \circ \phi_{\alpha}(x)|| \to 0 \quad as \ \alpha \to \infty.$$

(vi) All n-contractive maps with range A are completely contractive.

PROOF. See Theorems 2.7, 2.9 and 2.14.

In Section 3, we show that an even weaker approximation property characterises abelianness. See Theorem 3.2.

2. Subhomogeneous algebras

In the following proposition, we summarise some well-known properties of *n*-subhomogeneous C^* -algebras (see also [1, Subsection IV.1.4]).

PROPOSITION 2.1. Let $n \ge 1$ be an integer. The following statements hold.

- (i) A C^{*}-subalgebra of an n-subhomogeneous algebra is n-subhomogeneous.
- (ii) A C^{*}-algebra A is n-subhomogeneous if and only if $A \subseteq \mathbb{M}_n(B)$ for some abelian C^{*}-algebra B.
- (iii) A C*-algebra A is n-subhomogeneous if and only if its bidual A** is n-subhomogeneous as a C*-algebra.
- (iv) The product/sum of C^* -algebras A_i , $i \in I$, is n-subhomogeneous if and only if each A_i , $i \in I$, is n-subhomogeneous.
- (v) Let $0 \rightarrow I \rightarrow A \rightarrow B \rightarrow 0$ be an extension of C^* -algebras. Then A is n-subhomogeneous if and only if I and B are n-subhomogeneous.

PROOF. (i) Follows from [7, Proposition 4.1.8].

- (ii) If A is *n*-subhomogeneous, then $A \subseteq \mathbb{M}_n(l^{\infty}(\widehat{A}))$, where \widehat{A} denotes the set of unitary equivalence classes of irreducible representations of A. The other direction follows from (i).
- (iii) Since $A \subseteq A^{**}$, if A^{**} is *n*-subhomogeneous, then so is A by (i). Conversely, if A is *n*-subhomogeneous, then writing $A \subseteq M_n(B)$ with B abelian and using (ii), we see that $A^{**} \subseteq M_n(B^{**})$. The assertion follows from (ii), since B^{**} is abelian.
- (iv) Follows from (ii).
- (v) Follows from (iii) and (iv), since $A^{**} \cong I^{**} \oplus B^{**}$.

The structure of *n*-subhomogeneous C^* -algebras can be rather complicated (see, for instance, [13]). However, the situation for von Neumann algebras is well known to be very simple.

LEMMA 2.2. Suppose that a von Neumann algebra M is n-subhomogeneous as a C^* -algebra. Then

$$M\cong\prod_{k\leq n}\mathbb{M}_k(B_k),$$

where B_k , $k \leq n$, are abelian von Neumann algebras.

PROOF. Since exactness passes to C^* -subalgebras, *n*-subhomogeneous algebras are exact by Proposition 2.1(ii). Now [2, Proposition 2.4.9] completes the proof.

Subhomogeneous algebras are type I and hence nuclear (see [2, Proposition 2.7.7]). Scrutinising the proof, we see that the following slightly stronger approximation property holds. We consider the unital case first.

THEOREM 2.3. Let $n \ge 1$ and let A be a unital n-subhomogeneous C^* -algebra. Then there exist finite-dimensional n-subhomogeneous C^* -algebras F_{α} and nets of unital *-homomorphisms $\phi_{\alpha} \colon A \to F_{\alpha}$ and u.c.p. maps $\psi_{\alpha} \colon F_{\alpha} \to A$, such that for all $x \in A$,

$$||x - \psi_{\alpha} \circ \phi_{\alpha}(x)|| \to 0 \quad as \ \alpha \to \infty.$$

DEFINITION 2.4. Let *A* and *B* be unital *C*^{*}-algebras. We say that a u.c.p. map $\theta: A \to B$ is *n*-factorable if it can be expressed as a composition $\theta = \psi \circ \phi$, where $\phi: A \to F$ is a unital *-homomorphism, $\psi: F \to B$ a u.c.p. map and *F* a finite-dimensional *n*-subhomogeneous *C*^{*}-algebra.

LEMMA 2.5. For any unital C^* -algebras A and B, the set of n-factorable maps $A \rightarrow B$ is convex.

PROOF. The proof of [2, Lemma 2.3.6] applies.

LEMMA 2.6. Let *F* be a finite-dimensional C^* -algebra and let *A* be a unital C^* -algebra. Then u.c.p. maps $F \to A^{**}$ can be approximated by u.c.p. maps $F \to A$ in the pointultraweak topology.

PROOF. We claim that c.p. maps $F \to A$ correspond bijectively to positive elements in $F \otimes A$. Indeed, for matrix algebras this is a well-known result of Arveson (cf. [2, Proposition 1.5.12]). The general case follows, since F is a finite product of matrix algebras and for c.p. maps finite products and finite coproducts coincide. Since positive elements in $F \otimes A$ are ultraweakly dense in the positive elements in $F \otimes A^{**} \cong (F \otimes A)^{**}$, we see that c.p. maps $F \to A^{**}$ can be approximated by c.p. maps $F \to A$ in the point-ultraweak topology.

Let $\psi: F \to A^{**}$ be a u.c.p. map and let $\psi_{\lambda}: F \to A$ be a net of c.p. maps converging to ψ in the point-ultraweak topology. Since $\psi_{\lambda}(1_F) \in A$ is a net converging to 1_A weakly, by passing to convex linear combinations, we may assume that $\psi_{\lambda}(1_F)$ converges to 1_A in norm and passing to a subnet we may assume that $\psi_{\lambda}(1_F)$ is invertible. Then $\tilde{\psi}_{\lambda}(x) \coloneqq \psi_{\lambda}(1_F)^{-1/2} \psi_{\lambda}(x) \psi_{\lambda}(1_F)^{-1/2}$, $x \in F$, gives the required approximation.

PROOF OF THEOREM 2.3. For n = 1 and A unital abelian, the claim follows from the classical proof of nuclearity for abelian algebras (see [2, Proposition 2.4.2]).

For general *n*, first assume that *A* is of the form

$$\prod_{k \le n} \mathbb{M}_k(A_k), \tag{2.1}$$

where A_k , $k \le n$, are unital abelian C^* -algebras. Then the claim is easily deduced from the case n = 1.

Now we consider a general *n*-subhomogeneous *A*. By Proposition 2.1(iii) and Lemma 2.2, the bidual A^{**} is of the form (2.1) and hence $id_{A^{**}}$ can be approximated by *n*-factorable maps $A^{**} \rightarrow A^{**}$ in the point-norm topology. Then, by Lemma 2.6, id_A can be approximated by *n*-factorable maps in the point-weak topology. Now Lemma 2.5 and [2, Lemma 2.3.4] complete the proof.

As a corollary, we obtain the following result.

[5]

THEOREM 2.7. Let A be a C*-algebra and let $n \ge 1$ be an integer. Then A is nsubhomogeneous if and only if there exist nets of *-homomorphisms $\phi_{\alpha} : A \to F_{\alpha}$ and c.c.p. maps $\psi_{\alpha} : F_{\alpha} \to A$, with F_{α} finite-dimensional n-subhomogeneous, such that for all $x \in A$,

$$||x - \psi_{\alpha} \circ \phi_{\alpha}(x)|| \to 0 \quad as \ \alpha \to \infty.$$

PROOF. (\Rightarrow) The unitisation A^+ is *n*-subhomogeneous, so id_{A^+} can be approximated as in Theorem 2.3. Now restrict ϕ_{α} to *A* and replace ψ_{α} by $e_{\beta}\psi_{\alpha}e_{\beta}$, where e_{β} is an approximate unit in *A* (see [2, Exercise 2.3.4]).

(⇐) Clearly A is a C^{*}-subalgebra of $\prod_{\alpha} F_{\alpha}$. By Proposition 2.1(iv) and (i), A is *n*-subhomogeneous.

It turns out that much weaker approximation properties imply *n*-subhomogeneity. Our first result depends on the following theorem.

THEOREM 2.8 (Choi, Tomyama, Smith). Let A and B be C^* -algebras and let $n \ge 1$ be an integer. Then all n-positive maps $A \to B$ are completely positive if and only if A or B is n-subhomogeneous.

PROOF. Choi proved the sufficiency (\Leftarrow) for $A = \mathbb{M}_n(D)$ (see [3, Theorem 8]) and $B = \mathbb{M}_n(D)$ (see [3, Theorem 7]) with D abelian and conjectured the necessity (\Rightarrow). A complete proof was obtained by Tomiyama (see [12, Theorem 1.2]). The necessity was also proved by Smith (see [8, Theorem 3.1]).

THEOREM 2.9. Let A be a C^{*}-algebra and let $n \ge 1$ be an integer. Then the following are equivalent.

 (i) There exist nets of n-positive maps φ_α: A → F_α and ψ_α: F_α → A, with F_α finitedimensional n-subhomogeneous, such that for all x ∈ A,

$$||x - \psi_{\alpha} \circ \phi_{\alpha}(x)|| \to 0 \quad as \ \alpha \to \infty.$$

- (ii) All n-positive maps with domain A are completely positive.
- (iii) All n-positive maps with range A are completely positive.
- (iv) All *n*-positive maps $A \rightarrow A$ are completely positive.
- (v) The C^* -algebra A is n-subhomogeneous.

PROOF. Let $\phi_{\alpha}: A \to F_{\alpha}$ and $\psi_{\alpha}: F_{\alpha} \to A$ be an *n*-positive approximation of id_A in the point-norm topology, with F_{α} (finite-dimensional) *n*-subhomogeneous. Let $\theta: A \to B$ be an *n*-positive map. Then $\theta \circ \psi_{\alpha}: F_{\alpha} \to B$ is an *n*-positive map with *n*-subhomogeneous domain and hence a c.p. map by Theorem 2.8 and $\phi_{\alpha}: A \to F_{\alpha}$ is an *n*-positive map with *n*-subhomogeneous range and hence also c.p. Since θ is the point-norm limit of $(\theta \circ \psi_{\alpha}) \circ \phi_{\alpha}$, we see that θ is c.p. Hence, (i) \Rightarrow (ii). Similarly, (i) \Rightarrow (iii).

The implications (ii) \Rightarrow (iv) and (iii) \Rightarrow (iv) are clear and the implication (iv) \Rightarrow (v) is immediate from Theorem 2.8. Finally, the implication (v) \Rightarrow (i) follows from Theorem 2.7.

REMARK 2.10. The sufficiency in Theorem 2.8 can be deduced from the cases $A = M_n$ (see [3, Theorem 6]) and $B = M_n$ (see [3, Theorem 5]) using Theorem 2.9.

Now we consider the contractive analogue.

LEMMA 2.11. Let $\tau_n \colon \mathbb{M}_n \to \mathbb{M}_n$, $n \ge 1$, denote the transpose map and let $m \ge 1$. Then

 $\|\tau_n \otimes \mathrm{id}_{\mathbb{M}_m} \colon \mathbb{M}_n \otimes \mathbb{M}_m \to \mathbb{M}_n \otimes \mathbb{M}_m \| = \min\{m, n\}.$

PROOF. For $n \le m$, this is well known. The general case follows from the identity

$$(\tau_n \otimes \tau_m) \circ (\tau_n \otimes \mathrm{id}_{\mathbb{M}_m}) = \mathrm{id}_{\mathbb{M}_n} \otimes \tau_m,$$

since $\tau_n \otimes \tau_m$ can be identified with τ_{nm} and hence is an isometry.

COROLLARY 2.12. Let $n \ge 2$ be an integer. Then the map

$$\frac{1}{n-1}\tau_n\colon \mathbb{M}_n\to\mathbb{M}_n$$

is (n-1)-contractive, but not n-contractive.

As a corollary, we obtain the following contractive analogue of Theorem 2.8. Note that we have only one of the directions (see [6, Theorem C]).

THEOREM 2.13. Let A and B be C^{*}-algebras and let $n \ge 1$ be an integer. If A and B both admit irreducible representations of dimension $\ge (n + 1)$, then there exists an *n*-contractive map $A \rightarrow B$ which is not (n + 1)-contractive.

PROOF. The proof of [8, Theorem 3.1] applies. See also [12, Lemma 1.1 and Theorem 1.2].

THEOREM 2.14. Let A be a C^* -algebra and let $n \ge 1$ be an integer. Then the following are equivalent.

(i) There exist nets of n-contractive maps φ_α: A → F_α and (n + 1)-contractive maps ψ_α: F_α → A, with F_α finite-dimensional n-subhomogeneous, such that for all x ∈ A,

$$||x - \psi_{\alpha} \circ \phi_{\alpha}(x)|| \to 0 \quad as \ \alpha \to \infty.$$

- (ii) All *n*-contractive maps with range A are (n + 1)-contractive.
- (iii) All n-contractive maps with range A are completely contractive.
- (iv) All *n*-contractive maps $A \rightarrow A$ are (n + 1)-contractive.
- (v) All n-contractive maps $A \rightarrow A$ are completely contractive.
- (vi) The C^{*}-algebra A is n-subhomogeneous.

PROOF. We prove the implications

[7]

The implications (iii) \Rightarrow (v), (v) \Rightarrow (iv) and (ii) \Rightarrow (iv) are clear. The implication (iv) \Rightarrow (vi) follows from Theorem 2.13 and the implication (vi) \Rightarrow (i) follows from Theorem 2.7. The implication (vi) \Rightarrow (ii) follows from [8, Theorem 2.10]. Since (iii) \Rightarrow (ii) is clear, we also have (vi) \Rightarrow (ii).

Finally, the implication (i) \Rightarrow (ii) is analogous to the proof of Theorem 2.9((i) \Rightarrow (iii)).

Compare with the Loebl conjecture [6], solved affirmatively by Huruya and Tomiyama [5] and Smith [8].

REMARK 2.15. Note that the statement

(vii) All *n*-contractive maps with *domain* A are (n + 1)-contractive

is not equivalent to the conditions in Theorem 2.14 in general (see [6, Theorem C]).

3. The abelian case

Specialising to n = 1 in Theorem 2.9, we obtain the following result.

THEOREM 3.1. Let A be a C^{*}-algebra. Suppose that there exist nets of contractive positive maps $\phi_{\alpha} : A \to F_{\alpha}$ and $\psi_{\alpha} : F_{\alpha} \to A$, with F_{α} abelian, such that for all $x \in A$,

$$||x - \psi_{\alpha} \circ \phi_{\alpha}(x)|| \to 0 \quad as \ \alpha \to \infty.$$

Then A is abelian.

We give an alternative proof.

PROOF. First note that ϕ_{α} and ψ_{α} are c.c.p. (see [10, Theorems 3 and 4]).

Unitising if necessary, we may assume that *A* is unital. Let A^{opp} denote the opposite algebra of *A*. Then the canonical map $\iota: A \to A^{opp}$ is a pointwise limit of c.c.p. maps $\psi_{\alpha}^{opp} \circ \phi_{\alpha}: A \to F_{\alpha} \cong F_{\alpha}^{opp} \to A^{opp}$ and hence a c.c.p. map. Moreover, since ι sends unitaries to unitaries, its multiplicative domain is the whole of *A*. It follows that ι is a *-homomorphism and *A* is abelian. Alternatively, we may use Walter's 3×3 trick to conclude that *A* is abelian (cf. [14]).

In fact, the following is true.

THEOREM 3.2. Let $\theta: A \to B$ be an injective *-homomorphism. Suppose that there exist nets of contractive maps $\phi_{\alpha}: A \to F_{\alpha}$ and 2-contractive maps $\psi_{\alpha}: F_{\alpha} \to B$, with F_{α} abelian, such that for all $x \in A$,

$$\|(\theta - \psi_{\alpha} \circ \phi_{\alpha})(x)\| \to 0 \quad as \ \alpha \to \infty.$$

Then A is abelian.

Our main tool is the following beautiful theorem of Takesaki. Let A_1 and A_2 be C^* -algebras. The *injective cross-norm* of A_1 and A_2 is defined by

$$||x||_{\lambda} \coloneqq \sup |(\varphi_1 \otimes \varphi_2)(x)|_{\lambda}$$

where φ_1 and φ_2 run over all contractive linear functionals of A_1 and A_2 , respectively. The *injective* C^* -*cross-norm* of A_1 and A_2 is defined by

$$||x||_{\min} \coloneqq \sup ||(\pi_1 \otimes \pi_2)(x)||,$$

where π_1 and π_2 run over all unitary representations of A_1 and A_2 , respectively.

Note that we always have $\|\cdot\|_{\lambda} \leq \|\cdot\|_{\min}$ (see [11, Section IV.4, Inequality (12)]).

THEOREM 3.3 (Takesaki [11, Theorem IV.4.14]). Let A_1 and A_2 be C^* -algebras. Then the norms $\|\cdot\|_{\min}$ and $\|\cdot\|_{\lambda}$ on $A_1 \otimes A_2$ are equal if and only if A_1 or A_2 is abelian. \Box

Equipped with Takesaki's theorem, we can now mimic the proof that nuclear C^* -algebras are tensor-nuclear (see [2, Proposition 3.6.12]).

PROOF OF THEOREM 3.2. We show that for any $x \in A \otimes \mathbb{M}_2$, we have $||x||_{\min} \leq ||x||_{\lambda}$. Then Theorem 3.3 completes the proof.

Let $x \in A \otimes M_2$. The map

$$\theta \otimes_{\min} \operatorname{id}_{\mathbb{M}_2} : A \otimes_{\min} \mathbb{M}_2 \to B \otimes_{\min} \mathbb{M}_2$$

is an injective *-homomorphism and hence an isometry. Thus,

 $||x||_{A\otimes_{\min}\mathbb{M}_2} = ||\theta \otimes \mathrm{id}_{\mathbb{M}_2}(x)||_{B\otimes_{\min}\mathbb{M}_2}.$

Writing *x* as the sum of elementary tensors,

 $\|(\theta - \psi_{\alpha} \circ \phi_{\alpha}) \otimes \operatorname{id}_{\mathbb{M}_2}(x)\|_{B \otimes_{\min} \mathbb{M}_2} \to 0 \quad \text{as } \alpha \to \infty.$

Hence,

$$||x||_{A\otimes_{\min}\mathbb{M}_2} = \lim_{n\to\infty} ||(\psi_{\alpha}\circ\phi_{\alpha})\otimes \mathrm{id}_{\mathbb{M}_2}(x)||_{B\otimes_{\min}\mathbb{M}_2}.$$

On the other hand, it follows from the assumptions that the maps

$$\phi_{\alpha} \otimes_{\lambda} \operatorname{id}_{\mathbb{M}_{2}} \colon A \otimes_{\lambda} \mathbb{M}_{2} \to F_{\alpha} \otimes_{\lambda} \mathbb{M}_{2},$$

$$\psi_{\alpha} \otimes_{\min} \operatorname{id}_{\mathbb{M}_{2}} \colon F_{\alpha} \otimes_{\min} \mathbb{M}_{2} \to B \otimes_{\min} \mathbb{M}_{2}$$

are contractions and, since F_{α} is abelian, the canonical map

$$F_{\alpha} \otimes_{\min} \mathbb{M}_2 \to F_{\alpha} \otimes_{\lambda} \mathbb{M}_2$$

is an isometry by Theorem 3.3. Hence,

$$\begin{split} \|(\psi_{\alpha} \circ \phi_{\alpha}) \otimes \mathrm{id}_{\mathbb{M}_{2}}(x)\|_{B\otimes_{\min}\mathbb{M}_{2}} &\leq \|\phi_{\alpha} \otimes \mathrm{id}_{\mathbb{M}_{2}}(x)\|_{F_{\alpha}\otimes_{\min}\mathbb{M}_{2}} \\ &= \|\phi_{\alpha} \otimes \mathrm{id}_{\mathbb{M}_{2}}(x)\|_{F_{\alpha}\otimes_{\lambda}\mathbb{M}_{2}} \\ &\leq \|x\|_{A\otimes_{\lambda}\mathbb{M}_{2}}. \end{split}$$

It follows that $||x||_{\min} \le ||x||_{\lambda}$.

References

- B. Blackadar, Operator Algebras: Theory of C*-Algebras and von Neumann Algebras, Encyclopaedia of Mathematical Sciences, 122 [Operator Algebras and Non-commutative Geometry III] (Springer, Berlin, 2006).
- [2] N. P. Brown and N. Ozawa, *C**-*Algebras and Finite-dimensional Approximations*, Graduate Studies in Mathematics, 88 (American Mathematical Society, Providence, RI, 2008).
- [3] M. D. Choi, 'Positive linear maps on C*-algebras', Canad. J. Math. 24 (1972), 520–529.
- [4] J. De Cannière and U. Haagerup, 'Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups', *Amer. J. Math.* **107**(2) (1985), 455–500.
- [5] T. Huruya and J. Tomiyama, 'Completely bounded maps of C^* -algebras', J. Operator Theory **10**(1) (1983), 141–152.
- [6] R. I. Loebl, 'Contractive linear maps on C*-algebras', Michigan Math. J. 22(4) (1976), 361–366.
- [7] G. K. Pedersen, C*-Algebras and Their Automorphism Groups, London Mathematical Society Monographs, 14 (Academic Press [Harcourt Brace Jovanovich], London, 1979).
- [8] R. R. Smith, 'Completely bounded maps between C*-algebras', J. Lond. Math. Soc. (2) 27(1) (1983), 157–166.
- [9] R. R. Smith, 'Completely contractive factorizations of *C**-algebras', *J. Funct. Anal.* **64**(3) (1985), 330–337.
- [10] W. F. Stinespring, 'Positive functions on C*-algebras', Proc. Amer. Math. Soc. 6 (1955), 211–216.
- [11] M. Takesaki, *Theory of Operator Algebras. I*, Encyclopaedia of Mathematical Sciences, 124 (Springer, Berlin, 2002), reprint of the first (1979) edition.
- [12] J. Tomiyama, 'On the difference of n-positivity and complete positivity in C*-algebras', J. Funct. Anal. 49(1) (1982), 1–9.
- [13] J. Tomiyama and M. Takesaki, 'Applications of fibre bundles to the certain class of C*-algebras', *Tôhoku Math. J.* (2) 13 (1961), 498–522.
- [14] M. E. Walter, 'Algebraic structures determined by 3 by 3 matrix geometry', *Proc. Amer. Math. Soc.* 131(7) (2003), 2129–2131 (electronic).

TATIANA SHULMAN, Institute of Mathematics,

Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warszawa, Poland e-mail: tshulman@impan.pl

OTGONBAYAR UUYE, Institute of Mathematics,

National University of Mongolia, Ikh Surguuliin Gudamj 1, Sukhbaatar District, Ulaanbaatar, Mongolia e-mail: otogo@num.edu.mn