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Abstract

Given a vector field on a manifold M, we define a globally conserved quantity to be a differential form
whose Lie derivative is exact. Integrals of conserved quantities over suitable submanifolds are constant
under time evolution, the Kelvin circulation theorem being a well-known special case. More generally,
conserved quantities are well behaved under transgression to spaces of maps into M. We focus on the
case of multisymplectic manifolds and Hamiltonian vector fields. Our main result is that in the presence
of a Lie group of symmetries admitting a homotopy co-momentum map, one obtains a whole family of
globally conserved quantities. This extends a classical result in symplectic geometry. We carry this out in
a general setting, considering several variants of the notion of globally conserved quantity.
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Introduction

The mathematical formulation and application of conserved quantities is most
transparent in the case of classical point mechanics in its symplectic (or Hamiltonian)
presentation. Given a symplectic manifold (M, ω) and a Hamiltonian function H in
C∞(M,R) = Ω0(M), a function f on M is a ‘conserved quantity’ if the Lie derivative
LvH ( f ) = −{H, f } vanishes, where vH is the Hamiltonian vector field associated to
H (that is, fulfilling ιvHω = −dH) and { , } is the Poisson bracket of (M, ω). If d f
is different from zero, the dimension of the phase space (M, ω) can be reduced
by two and the associated Hamilton equation descends to the reduction. Iterating
this process leads—at least locally—to the essentially trivial problem of solving a
Hamilton equation on the real plane with its standard symplectic form. A typical
source of conserved quantities is given by the Noether mechanism, here very simple:
if a finite-dimensional Lie algebra g acts on (M, ω) with a (co-)momentum map and
the Hamiltonian function is g-invariant, then the image of every element of g under the
co-momentum is a conserved quantity.
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The advent of a mathematically rigorous framework for observables and
symmetries on a multisymplectic manifold (M, ω)—that is, a manifold with a closed,
nondegenerate (n+1)-form for n ≥ 1 (cf. [8, 9])—raises the question whether the above
generalises from symplectic to multisymplectic geometry. Accordingly, we consider
the set-up of a multisymplectic manifold (M, ω) and a Hamiltonian form H ∈ Ωn−1(M),
allowing for a vector field vH such that ιvHω = −dH. In fact, on a multisymplectic
manifold, there are more general ‘Hamilton(–de Donder–Weyl) equations’: given a
k-form η with 0 ≤ k ≤ n − 1, one asks for the existence of a multivector field vη in
ΓC∞(M,Λn−kT M) such that ιvηω = −dη. The case k = 0 corresponds to classical field
theories with n-dimensional sources (compare, for example, [6, Section 3.1] for these
‘Hamiltonian n-curves’).

Going back to the case that η = H is a Hamiltonian (n−1)-form, we call a
differential form α ∈ Ω•(M) ‘strictly conserved by H (or under vH)’ if LvHα = 0.
Working with forms rather than functions, we immediately have two natural weakened
notions: ‘global conservation’ (respectively ‘local conservation’) in caseLvHα is exact
(respectively closed). Since conserved quantities are typically considered in integrated
form, it is often enough that a ‘quantity is preserved up to a total divergence’, which
corresponds to these two weakened notions, that are less interesting in the symplectic
case. Among these three kinds of conserved quantities, the one we consider most
useful are the globally conserved quantities.

As recalled earlier, in symplectic geometry all the components of co-momentum
maps are conserved quantities. Our main goal is to understand to which extent
a homotopy co-momentum associated to a multisymplectic action of a finite-
dimensional Lie algebra g (cf. [2, 10]) furnishes conserved quantities if g keeps
the Hamiltonian form H invariant. Given the more involved algebraic structure of
the observables (and of the homotopy co-momentum), we find the following as the
‘correct’ generalisation of the above conservation law on symplectic manifolds (see
Theorem 2.19).

Theorem. Let (M, ω) be a multisymplectic manifold, H ∈ Ωn−1
Ham(M), and ( f ) a

homotopy co-momentum map for an infinitesimal action g→ X(M) which leaves H
invariant. Let p be a k-cycle in the complex defining the Lie algebra homology of g.
Then fk(p) is a globally conserved quantity.

In fact, denoting the cycles of Lie algebra homology by Zk(g) and the boundaries
by Bk(g), we have the following table, whose last column reflects the above theorem
(see Definition 2.5 for the three notions of preservation of H by the action of the Lie
algebra g).

H locally g-preserved H globally g-preserved H strictly g-preserved
fk(Zk(g)) locally conserved locally conserved globally conserved
fk(Bk(g)) globally conserved globally conserved globally conserved
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We underline that all implications in the table are sharp, as we show by explicit
examples. Further, our results hold even on relaxing the assumption that ω be
multisymplectic, allowing ω to be any closed (n + 1)-form.

In discussing conserved quantities (in the flavors strong/global/local), it turns out
to be useful to first work in the more general situation of a manifold M together
with a vector field v and to discuss differential forms ‘preserved by this continuous
dynamical system’. In this general context, we associate ‘integral invariants’ to
conserved quantities by integrating the conserved forms over manifolds that are
smoothly mapped to M. We obtain a very general form of Kelvin’s classical circulation
theorem that should be of use in continuum mechanics beyond the case of isentropic,
incompressible fluids. More precisely, we have (compare with Theorem 4.1): let Σ be
a compact, oriented d-dimensional manifold (without boundary), v a vector field on
M with flow φt, and σ0 : Σ→ M a smooth map. Consider σt := φt ◦ σ0 : Σ→ M. If
α ∈ Ωd(M) is a differential form, then the number∫

Σ

(σt)∗α

is independent of the time parameter t if α is globally conserved by v.
The above theorem makes apparent, in a geometric way, the usefulness of conserved

quantities.
Let us now describe the content of the different sections in more detail. In Section 1

we introduce multisymplectic manifolds and define the various notions of conserved
quantities. The heart of this note is Section 2: given a Lie group or Lie algebra
action on a multisymplectic manifold that preserves (in one of the ways we make
precise) a Hamiltonian form, we show that certain components of the homotopy
co-momentum map are conserved quantities. Further, in Section 2.5 we provide an
alternative, homological approach to prove these statements. In Section 3 we explain
how the set-up needed in the previous section arises naturally and we make remarks
on conserved quantities. We provide in Section 3.4 an example exhibiting a globally
conserved quantity (with respect to a strictly H-preserving action) that is not strictly
conserved. Finally, Section 4 is devoted to applications: we present a geometric
version of Kelvin’s circulation theorem and, more generally, we show that conserved
quantities on a manifold M induce conserved quantities on spaces of maps into M.

A source of multisymplectic forms is field theory, but those considered there are of
a very special kind, allowing notably for Darboux-type coordinates. For a discussion
of the relation between conserved quantities in multisymplectic geometry on one side
and classical field theory on the other side, we refer to Schreiber [11, Section 1.2.11].

1. Conserved quantities in multisymplectic geometry
The purpose of this section is to address conserved quantities associated to a vector

field on a manifold. We will be mainly interested in the case that the manifold carries
a multisymplectic structure and the vector field is Hamiltonian. We introduce these
notions in Sections 1.1 and 1.2 and display some algebraic properties of conserved
quantities in Section 1.3.
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1.1. Multisymplectic manifolds.

Definition 1.1. A manifold M equipped with a closed (n+1)-form ω ∈ Ωn+1(M) is
called a pre-n-plectic manifold. It is called an n-plectic or multisymplectic manifold if
the following map is injective for all p ∈ M:

TpM → ΛnT ∗pM, v 7→ ιvωp.

Definition 1.2. Let (M, ω) be a pre-n-plectic manifold. An (n−1)-form α is called
Hamiltonian if there exists a vector field vα ∈ X(M) such that

dα = −ιvαω.

We say that vα is a Hamiltonian vector field for α. In the n-plectic case, vα is unique.
The set of Hamiltonian (n−1)-forms is denoted as Ωn−1

Ham(M).

Remark 1.3. Observe that if vα is a Hamiltonian vector field corresponding to α, then
Lvαω = 0 by Cartan’s formula.

The following L∞-algebra was constructed for n-plectic manifolds in [8,
Theorem 5.2] and generalised to the pre-n-plectic case in [12, Theorem 6.7]. In the
symplectic case, it reduces to the well-known Poisson algebra of functions.

Definition 1.4. Given a pre-n-plectic manifold (M, ω), the Lie n-algebra of
observables L∞(M, ω) = (L, {lk}) is the graded vector space given by

Li =

Ωn−1
Ham(M), i = 0,

Ωn−1−i(M), 0 < i ≤ n − 1,

together with the maps {lk : L⊗k → L | 1 ≤ k ≤ n+1} given by

l1(α) = dα if degα > 0,

l1(α) = 0 for degα = 0, and, for all k > 1,

lk(α1, . . . , αk) =

0 if degα1 ⊗ · · · ⊗ αk > 0,
ς(k)ι(vα1 ∧ · · · ∧ vαk )ω if degα1 ⊗ · · · ⊗ αk = 0,

where vαi is a Hamiltonian vector field associated to αi ∈ Ωn−1
Ham(M) and ς(k) =

−(−1)k(k+1)/2. Here the contraction with multivector fields is defined by ι(vα1 ∧ · · · ∧

vαk ) = ιvαk
. . . ιvα1

.

1.2. Conserved quantities.

Definition 1.5. Let M be a manifold and v a vector field on M. A form α ∈ Ω•(M) is
called a:

(a) locally conserved quantity if Lvα is a closed form;
(b) globally conserved quantity if Lvα is an exact form;
(c) strictly conserved quantity if Lvα = 0.
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We denote the graded vector spaces of those quantities by Cloc(v), C(v), and Cstr(v),
respectively.

Remark 1.6. In the sequel we will observe that condition (c) is very restrictive,
whereas condition (a) is often too weak.

The following inclusions follow directly from Cartan’s formula.

Lemma 1.7. Let M be a manifold and v a vector field on M. Then:

(i) Cstr(v) ⊂ C(v) ⊂ Cloc(v);
(ii) Ω•cl(M) ⊂ C(v);
(iii) d(Cloc(v)) ⊂ Cstr(v).

We will be especially interested in the case where (M, ω) is pre-n-plectic and v
preserves ω. In this case, additional results hold.

Lemma 1.8. Let (M, ω) be a pre-n-plectic manifold and v a vector field on M such that
Lvω = 0. Then:

(i) α ∈ Ωn−1
Ham(M) is locally conserved by v if and only if ι[vα,v]ω = 0 for some (or

equivalently for every) Hamiltonian vector field vα for α.

If moreover v = vH is a Hamiltonian vector field for H ∈ Ωn−1
Ham(M), then:

(ii) α ∈ Ωn−1
Ham(M) is locally conserved by vH if and only if LvαH is closed for some

(or equivalently for every) Hamiltonian vector field vα for α;
(iii) α ∈ Ωn−1

Ham(M) is globally conserved by vH if and only if LvαH is exact for some
(or equivalently for every) Hamiltonian vector field vα for α;

(iv) H ∈ C(vH).

Proof. Assertion (i) follows from the identity LX ◦ ιY = ιY ◦ LX + ι[X,Y] applied to ω.
Assertions (ii)–(iv) follow from Cartan’s formula. �

Remark 1.9. We observe that the closedness (respectively exactness) of LvαH is
equivalent to the closedness (respectively exactness) of l2(α,H).

As the following example illustrates, even in the n-plectic case, in general
LvH H , 0.

Example 1.10. Let M = R3, ω = dx ∧ dy ∧ dz, and H = x dy + z dz. Then vH = −(∂/∂z),
so ιvH H = −z and LvH H = −dz.

Remark 1.11. In the symplectic (that is, the 1-plectic) case with H ∈ C∞(M) =

Ω0
Ham(M), we have the following statements for f ∈ C∞(M) and v = vH:

(1) f is globally conserved if and only if f is strictly conserved and this is the case
if and only if {H, f } = 0;

(2) f is locally conserved if and only if {H, f } is locally constant.
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As the following example shows, in the symplectic situation local conservedness
does not suffice to formulate a ‘conservation law’.

Example 1.12. Let M = R2 with coordinates q, p, ω = dp ∧ dq, and H = p. Taking f =

q, the Hamiltonian vector field is given by vH = ∂/∂q and thus LvH f = 1, that is, f is
locally but not globally conserved. Then, for any integral curve γ(t) = (q0 + (t − t0), p0)
of vH , we have f (γ(t)) = f (γ(t0)) + (t − t0), that is, f is not a constant of motion.

1.3. The algebraic structure of conserved quantities. Throughout this subsection
M will denote a manifold and v a vector field on M. We present here elementary
methods to construct new conserved quantities from known ones.

Lemma 1.13. The space Cstr(v) is a graded subalgebra of Ω•(M).

As the following example illustrates, the spaces C(v) and Cloc(v), unlike Cstr(v), are
not closed under wedge multiplication.

Example 1.14. Let M = R3, ω = dx ∧ dy ∧ dz, and H = −x dy. We observe that dH =

−dx ∧ dy and consequently vH = ∂/∂z. We set α = z dx and β = z dy. Then LvHα = dx
and LvHβ = dy are exact but LvH (α ∧ β) = 2z dx ∧ dy is not even closed.

However, stability under multiplication with elements from the following graded-
commutative subalgebra of Ω•(M) is assured:

A(v) := {β ∈ Ω(M) | dβ = 0 and Lvβ = 0} ⊂ Cstr(v).

Lemma 1.15. The spaces C(v) and Cloc(v) are graded modules overA(v).

Proof. We prove the statement for C(v), the proof for Cloc(v) being identical. Let
α ∈ C(v) (that is, there is a form γ with Lvα = dγ) and β ∈ A(v). Then

Lv(α ∧ β) = Lvα ∧ β + α ∧ Lvβ = dγ ∧ β = d(γ ∧ β). �

Again, more can be said if (M, ω) is pre-n-plectic and v preserves ω.

Proposition 1.16. Let (M, ω) be pre-n-plectic and v a vector field satisfying Lvω = 0.
The graded vector spaces

L∞(M, ω) ∩ Cloc(v), L∞(M, ω) ∩ C(v), and L∞(M, ω) ∩ Cstr(v)

are L∞-subalgebras of L∞(M, ω). Moreover, Lv(lk(β1, . . . , βk)) = 0 for k ≥ 1 and
β1, . . . , βk ∈ L∞(M, ω) ∩ Cloc(v).

Proof. We claim that brackets of locally conserved quantities in L∞(M, ω) are strictly
conserved. The only bracket which is nontrivial on components other than Ωn−1

Ham(M) is
l1 = d. It follows from part (iii) of Lemma 1.7 that l1 = d applied to a locally conserved
quantity is strictly conserved. Now for k ≥ 2 consider β1, . . . , βk ∈ Ωn−1

Ham(M) such that
Lvβi is closed for all i. We want to show that

Lv(lk(β1, . . . , βk)) = 0.
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As lk(β1, . . . , βk) = ±ι(vβ1 ∧ · · · ∧ vβk )ω, for any collection of Hamiltonian vector fields
{vβi} for {βi} this is equivalent to showing that

Lvιvβk
· · · ιvβ1

ω = 0.

Using the identity LX ◦ ιY = ιY ◦ LX + ι[X,Y], we can move Lv past the ιvβi
since

ι[v,vβi ]ω = 0 by part (i) of Lemma 1.8. We find that

Lvιvβk
· · · ιvβ1

ω = ιvβk
· · · ιvβ1

Lvω = 0,

proving our claim. �

2. Conserved quantities from homotopy co-momentum maps

In this section we consider (infinitesimal) actions. More precisely, (M, ω) will
always denote a pre-n-plectic manifold and G a Lie group (respectively g a Lie algebra)
acting on M.

Given a Hamiltonian form H on M, we define three notions of ‘preservedness’
of H with respect to the action; see Definition 2.5. Suitable conserved quantities are
constructed from co-momentum maps for each of these three notions of preservedness,
respectively, in Sections 2.2–2.4. Finally, in Section 2.5 we propose a less intuitive
homological approach that has the advantage of being rather concise.

2.1. Actions on multisymplectic manifolds.

Definition 2.1. Let (M, ω) be a pre-n-plectic manifold. A right action ϑ of a Lie group
G on M is called multisymplectic if ϑ∗gω = ω for all g ∈ G, where ϑg = ϑ(·, g). An
infinitesimal right action of a Lie algebra g on M, that is, a Lie algebra homomorphism
g→ X(M), x 7→ vx, is called multisymplectic if Lvxω = 0 for all x ∈ g. For a connected
Lie group G, a right action ϑ is multisymplectic if and only if the corresponding
infinitesimal right action (given by x 7→ vx, where vx(m) = d/dt|0ϑ(m, exp(tx)) at all
m ∈ M) is multisymplectic.

A multisymplectic infinitesimal action is thus a Lie algebra homomorphism from
g to X(M, ω) = {X ∈ X(M)|LXω = 0}. One may ask whether such an action admits an
‘L∞-lift’ to L∞(M, ω). For an explicit description of the equations fulfilled by such a
lift, the following definition is useful.

Definition 2.2. Let g be a Lie algebra. We define the Lie algebra homology differential
∂ by setting

∂k = ∂|Λkg : Λk
g→ Λk−1

g,

x1 ∧ · · · ∧ xk 7→
∑

1≤i< j≤k

(−1)i+ j[xi, x j] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂ j ∧ · · · ∧ xk

for k ≥ 1. We put Λ−1g = {0} and ∂0 to be the zero map.
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We recall from [2, Section 5] the higher analogue of momentum map in symplectic
geometry, obtained in a natural way by replacing Lie algebra morphisms by L∞-
algebra morphisms.

Definition 2.3. A (homotopy) co-momentum map for a multisymplectic infinitesimal
action v : g→ X(M) on (M, ω) is a collection of maps ( f ) = { fi : Λig→ Ωn−i(M)|1 ≤
i ≤ n} such that the generator of the action associated to x ∈ g is a Hamiltonian vector
field for f1(x) and satisfying the equation

− fk−1(∂(p)) = d fk(p) + ς(k)ι(vp)ω (2.1)

for all k = 1, . . . , n + 1 and p ∈ Λkg (setting f0 and fn+1 to be zero). Here we use the
shorthand notation vp := vx1 ∧ · · · ∧ vxk whenever p = x1 ∧ · · · ∧ xk for xi ∈ g and we
set, as above, ς(k) = −(−1)k(k+1)/2.

Remark 2.4.

(1) Equation (2.1) of course is the general definition of an L∞-algebra morphism
specialised to the case at hand of the Lie algebra g and the Lie n-algebra of
observables L∞(M, ω).

(2) In [5, 10], (2.1) is interpreted as a co-boundary condition on a certain chain
complex.

(3) A co-momentum map ( f ) is G-equivariant if the components fi : Λig→ Ωn−i(M)
are equivariant for all i ∈ {1, . . . , n}. When G is connected, this can be expressed
infinitesimally: for all q ∈ Λig and for all x ∈ g = TeG, the equality Lvx ( fi(q)) =

fi([x, q]) holds. Here [x, ·] is ad(x) acting on Λ•g.

Now we turn to infinitesimal actions preserving a Hamiltonian (n−1)-form H on a
pre-n-plectic manifold (M, ω). As in the case of the conserved quantities, one has to
distinguish to which extent the action preserves the Hamiltonian form.

Definition 2.5. Let g→ X(M, ω), x 7→ vx be an infinitesimal action. It is called:

(a) locally H-preserving if Lvx H is closed for all x ∈ g;
(b) globally H-preserving if Lvx H is exact for all x ∈ g;
(c) strictly H-preserving if Lvx H = 0 for all x ∈ g.

Remark 2.6. Usually a differential form would be called ‘preserved by an infinitesimal
action’ if condition (c) is fulfilled.

In the following, we will investigate the conserved quantities arising from co-
momentum maps separately for these three cases.

2.2. Conserved quantities from locally H-preserving actions. In this subsection
we assume that (M, ω) is a pre-n-plectic manifold, H ∈ Ωn−1

Ham(M), and that ( f ) :
g→ L∞(M, ω) is the co-momentum of a locally H-preserving infinitesimal action
g→ X(M, ω), x 7→ vx.

By the definition of a co-momentum map, the generator of the infinitesimal action
associated to x in g is a Hamiltonian vector field of f1(x). As earlier, for p =

x1 ∧ · · · ∧ xk ∈ Λkg, we write vp := vx1 ∧ · · · ∧ vxk and ι(vp) = ιvxk
· · · ιvx1

.
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Lemma 2.7. Let ( f ) = { fi|1 ≤ i ≤ n} be a co-momentum for v : g→ X(M, ω) and H ∈
Ωn−1

Ham(M). Then, for any Hamiltonian vector field vH of H:

(i) f1(x) ∈ Cloc(vH) for all x ∈ g;
(ii) ι[vH ,vx]ω = 0 for all x ∈ g;
(iii) ι(vp)ω ∈ Cstr(vH) for all p ∈ Λkg.

Proof. (i) Follows from Lemma 1.8(ii) and (ii) from Lemma 1.8(i). Further, (iii)
follows upon recalling that [Lv, ιw] = ι[v,w] and (ii):

LvH (ι(vp)ω) = LvH ιvxk
· · · ιvx1

ω = −ιvxk
LvH · · · ιvx1

ω = · · · = ±ι(vp)(LvHω) = 0. �

It turns out that certain subspaces of the image of the higher components of the
co-momentum map consist of locally conserved quantities. To specify this, we recall
the definition of Lie algebra homology.

Definition 2.8. Let g be a Lie algebra, k ≥ 1, and ∂k the kth Lie algebra homology
differential. We define:

(a) the cycles Zk(g) = ker(∂k) ⊂ Λkg;
(b) the boundaries Bk(g) = im(∂k+1) ⊂ Λkg; and
(c) the kth Lie algebra homology space Hk(g) = Zk(g)/Bk(g).

Remark 2.9. The space Zk(g) is denoted by Pg,k and called the kth Lie kernel of g in
[7].

Proposition 2.10. Let p ∈ Zk(g). Then fk(p) is locally conserved by any Hamiltonian
vector field vH of H.

Proof. The case k = 1 is part (i) of Lemma 2.7. Assume now that k > 1. We have to
show that LvH fk(p) is closed. We have

dLvH fk(p) = LvH d fk(p) = −ς(k)LvH ι(vp)ω = 0,

where the first equality holds because the Lie derivative commutes with the
exterior derivative, the second one, because of (2.1), and the last one, because of
Lemma 2.7(iii). �

Proposition 2.10 states that LvH fk(p) is a closed (n−k)-form; hence, we obtain the
following corollary.

Corollary 2.11. Let p ∈ Zk(g). If Hn−k
dR (M) is zero, then fk(p) is globally conserved by

any Hamiltonian vector field vH of H.

For boundaries, the statement of Proposition 2.10 can be strengthened.

Proposition 2.12. If p ∈ Bk(g) ⊂ Zk(g), then fk(p) is globally conserved by any
Hamiltonian vector field vH of H.
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Proof. Let q be a potential for p, that is, ∂k+1q = p. Then

LvH ( fk(p)) = LvH ( fk(∂q)) = LvH (−d fk+1(q) − ς(k + 1)ι(vq)ω)
= −dLvH fk+1(q) − ς(k + 1)LvH ι(vq)ω),

using (2.1). The statement then follows by Lemma 2.7(iii). �

The following example shows sharpness of the statement of Proposition 2.10, that
is, for p ∈ Λkg the condition ∂p = 0, in general, does not imply that fk(p) is globally
conserved.

Example 2.13. Let M = R3, ω = dx ∧ dy ∧ dz, and H = −x dy. We already observed
that dH = −dx ∧ dy and vH = ∂/∂z. We consider the two-dimensional abelian Lie
algebra g = 〈a, b〉R and the homomorphism v : g→ X(M) given by va = ∂/∂x and
vb = ∂/∂y. We have that Lva H = −dy is exact and Lvb H = 0. We construct a co-
momentum map for this action by f1(a) = −y dz, f1(b) = x dz, and f2(a ∧ b) = −z. Then
a ∧ b ∈ Z2(g) is a cycle and −z is locally conserved, as predicted by Proposition 2.10,
but not globally:

LvH (−z) = ι∂/∂zd(−z) = −1 , 0.

2.3. Conserved quantities from globally H-preserving actions. In this subsection
we assume that (M, ω) is a pre-n-plectic manifold, H ∈ Ωn−1

Ham(M), and that ( f ) :
g→ L∞(M, ω) is the co-momentum of a globally H-preserving infinitesimal action
g→ X(M, ω), x 7→ vx.

As Example 2.13 indicates, no significant improvements of the above results are to
be expected upon passing from locally to globally H-preserving actions. There is only
a slight improvement of Lemma 2.7(i) with essentially the same proof.

Lemma 2.14. Let ( f ) = { fi|1 ≤ i ≤ n} be a co-momentum for v : g → X(M). Then
f1(x) ∈ C(vH) for all x ∈ g and for any Hamiltonian vector field vH of H.

Remark 2.15. Notice that Lemmas 2.7 and 2.14 hold for any element Ωn−1
Ham(M) whose

Hamiltonian vector field is vx.

2.4. Conserved quantities from strictly H-preserving actions. In this subsection
we assume that (M, ω) is a pre-n-plectic manifold, H ∈ Ωn−1

Ham(M), and that ( f ) :
g→ L∞(M, ω) is the co-momentum of a strictly H-preserving infinitesimal action
g→ X(M, ω), x 7→ vx. The assumption that the action is strictly H-preserving can be
easily realised if there is a connected compact Lie group G with a smooth action on M
whose differential is the infinitesimal action of g on M; see Lemma 3.1.

To prove a stronger result than Proposition 2.10 in this situation, we need the
following observation (cf., for example, [7, Lemma 3.4]).

Lemma 2.16. Let M be a manifold and let Ω be a not necessarily closed differential
form on M. For all m ≥ 1 and all vector fields v1, . . . , vm in the Lie algebra X(M),

(−1)mdι(v1 ∧ · · · ∧ vm)Ω = ι(∂(v1 ∧ · · · ∧ vm))Ω

+

m∑
1=1

(−1)iι(v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vm)LviΩ + ι(v1 ∧ · · · ∧ vm)dΩ.
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Definition 2.17. Given a differential form Ω ∈ Ω•(M) and a multivector field Y ∈
Γ(ΛmT M), the Lie derivative of Ω along Y is defined, as a graded commutator, by
LYΩ := dιYΩ − (−1)mιYdΩ.

Remark 2.18. This definition allows us to combine the first and last terms in the above
formula into a Lie derivative. Hence, the above formula can be written Lv1∧···∧vmΩ =

(−1)m[ι(∂(v1 ∧ · · · ∧ vm))Ω +
∑m

1=1(−1)iι(v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vm)LviΩ].

Theorem 2.19. Let p ∈ Zk(g). Then fk(p) is a globally conserved quantity.

Proof. We have

ιvH d fk(p) = −ς(k)ιvH ι(vp)ω = (−1)kς(k)ι(vp)dH = ς(k)d(ι(vp)H),

where we used (2.1) in the first equality and in the last equality Lemma 2.16 applied
to the form H, as well as the g-invariance of H and once more the assumption that
p ∈ Zk(g).

Therefore, we conclude from Cartan’s formula that

LvH fk(p) = d(ιvH fk(p) + ς(k)ι(vp)H). �

Remark 2.20. In the symplectic case, a homotopy co-momentum map boils down to
its first component, f1 : g→ Ω0(M), a classical co-momentum map. Upon observing
that Z1(g) = g, the preceding theorem then reduces to the obvious but important fact
that if a Hamiltonian function H is g-invariant, then for all x in g, we have that
{ f1(x),H} = LvH f1(x) = 0.

In particular, by Theorem 2.19, f1(x) is a globally conserved quantity for all x ∈ g.
Even in the case at hand of strictly H-preserving actions, f1(x) is not strictly conserved
in general, as the following example shows.

Example 2.21. Let M = R3, ω = dx ∧ dy ∧ dz, and H = −x dy. Then vH = ∂/∂z.
Furthermore, we consider α = zdx and the R-action given by g = R→ X(M), 1 7→ vα =

−(∂/∂y). This action clearly admits a co-momentum map determined by f1(1) = α.
Then LvαH = 0 but LvHα = dx , 0.

More is true: even if one assumes that x ∈ B1(g) is a boundary, f1(x) is still not
strictly conserved in general, as Example 3.19 below shows.

Specialising k to n in Theorem 2.19, we obtain scalar functions fn(x1, . . . , xn) on
M. Assembling these functions, we obtain a map M → Zn(g)∗, very similar to the
multimomentum maps of Madsen–Swann, cf. [7], except that it is not equivariant in
general. As in the symplectic case, it satisfies the following corollary.

Corollary 2.22. The vector field vH is tangent to the level sets of the map M
φ
→ Zn(g)∗

given by φ(m)(p) = fn(p)(m).
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Proof. We have to show that vH(m) ∈ ker(Tmφ : TmM → Tφ(m)Zn(g)∗ = Zn(g)∗). We
have

((Tmφ)(vH(m)))(p) = (d fn(p))(vH(m))
= (ιvH d fn(p))(m) = (LvH fn(p))(m) = 0,

where the last equation uses the fact that LvH fn(p) is exact and an exact function is
necessarily 0. �

Remark 2.23. An analogue of this result, where Zn(g) is substituted by Bn(g), holds in
the setting of Proposition 2.12.

We close this subsection by showing how a co-momentum map yields elements of
the algebraA(vH) from Lemma 1.15.

Lemma 2.24. For a strictly H-preserving infinitesimal action x 7→ vx:

(i) let p ∈ Zk(g) for k ≥ 1. Then ι(vp)ω ∈ A(vH);
(ii) let ( f ) be a co-momentum map for the g-action. Let p ∈ Zk−1(g) for k ≥ 2. Then

lk( f1(x1), . . . , f1(xk−1),H) ∈ A(vH).

Proof. Let us first observe that if α ∈ C(vH), then dα ∈ A(vH). In fact, dα, being exact,
is closed. Furthermore, LvH (dα) = d(LvHα) = 0 since LvHα is zero.

(i) By Theorem 2.19, fk(p) is a globally conserved quantity. As ι(vp)ω = ±d fk(p)
due to (2.1), it is an element ofA(vH) because of the preceding observation.

(ii) By Proposition 1.16, lk( f1(x1), . . . , f1(xk−1),H) is conserved. We compute

d(ι(v1 ∧ · · · ∧ vk−1)H) = (−1)k−1(ι(v1 ∧ · · · ∧ vk−1)dH)
= −(ι(v1 ∧ · · · ∧ vk−1 ∧ vH)ω) = −ς(k)lk( f1(x1), . . . , f1(xk−1),H),

so lk( f1(x1), . . . , f1(xk−1),H) is exact and in particular closed. �

2.5. The homological point of view. In this subsection we rephrase the ‘generation
of conserved quantities’ via a co-momentum in a homological fashion.

Let g be a Lie algebra acting on a pre-n-plectic manifold (M, ω), let H be a
Hamiltonian (n−1)-form, and let vH be a Hamiltonian vector field of H. Assume
that the action is locally H-preserving, that is, Lvx H is closed for all x ∈ g. The
map g→ Hn−1

dR (M), x 7→ [Lvx H] measures how far the action is from being globally
H-preserving. This map is 0 on [g, g] and can thus be defined on H1(g) = g/[g, g].
Furthermore, it can be extended to a map on the whole Lie algebra homology.

Proposition 2.25. For every k = 1, . . . , dim(g), the map

A : Hk(g)→ Hn−k
dR (M), [p] 7→ [Lvp H]

is well defined.
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Proof. Let p ∈ Zk(g). We first check that Lvp H is closed: putting vp =
∑

l vl
1 ∧ · · · ∧ vl

k,

dLvp H = (−1)k+1Lvp dH

= −

(
ι(v∂p)dH +

∑
l

k∑
i=1

(−1)iι(vl
1 ∧ · · · ∧ v̂l

i ∧ · · · ∧ vl
m)Lvl

i
dH

)
= 0,

where the first equality follows from Definition 2.17, the second one from Remark
2.18, and the last one from ∂p = 0 and the closedness of Lvl

i
H.

Let q ∈ Λk+1g. Similarly to the above, we write vq =
∑

l vl
1 ∧ · · · ∧ vl

k+1. We check
that Lv∂q H is exact. By the definition of Lie derivative, this follows since

ι(v∂q)dH = (−1)k+1Lvq dH −
k+1∑
i=1

∑
l

(−1)iι(vl
1 ∧ · · · ∧ v̂l

i ∧ · · · ∧ vl
k+1)Lvl

i
dH

= −dLvq H

is exact. Again, here in the first equality we used Remark 2.18 and in the second that
Lvl

i
H is closed since the action is locally H-preserving. �

Remark 2.26.

(1) If the action is globally H-preserving, the map g→ Hn−1
dR (M) is zero, but the

higher components of A do not necessarily vanish. This is exhibited by Example
2.13: ι(va ∧ vb)dH = −ι(∂/∂x ∧ ∂/∂y)(dx ∧ dy) = −1 is closed but not exact.

(2) If the action is strictly H-preserving, then the map A is identically zero. Indeed,
for every p ∈ Zk(g), we have Lvp H = 0, as can be seen applying Lemma 2.16
to H.

When a co-momentum map exists, we can be more explicit.

Lemma 2.27. If ( f ) is a co-momentum map for the g-action, then the map A can be
written as follows: for all p ∈ Zk(g),

A([p]) = −ς(k)[LvH fk(p)].

Proof. Let p ∈ Zk(g). We have A([p]) = [Lvp H] = (−1)k[ι(vp)ιvHω] using the definition
of Lie derivative for multivector fields (see Remark 2.18). We can express this in terms
of the co-momentum map using

(−1)kι(vp)ιvHω = ιvH ι(vp)ω
= −ς(k)ιvH d fk(p) = −ς(k)(−dιvH fk(p) +LvH fk(p)).

Passing to the cohomology class finishes the proof. �

Lemma 2.27 has several consequences, allowing us to recover some of our previous
statements.
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Remark 2.28.

(1) The form fk(p) is locally conserved if p ∈ Zk(g) and globally conserved if
p ∈ Bk(g). Hence, we recover Propositions 2.10 and 2.12.

(2) There is a canonical injective map J : Cloc(vH)/C(vH) ↪→ HdR(M), [α] 7→ [LvHα],
as follows immediately from the definitions. The map A factors as

Hk(g)−→
Cn−k

loc (vH)
Cn−k(vH)

J
−→ Hn−k

dR (M)

for every k, where the first map is induced by fk multiplied by −ς(k). In
particular, the map A takes values in the subspace J(Cloc(H)/C(H)) of HdR(M).

(3) If the action is strictly H-preserving, by Remark 2.26(2), fk(p) is globally
conserved for all p ∈ Zk(g). Hence, we recover Theorem 2.19.

3. Examples and constructions

In the previous section we proved the existence of conserved quantities in the
following set-up: G is a Lie group acting on a pre-n-plectic manifold (M, ω),
H ∈ Ωn−1

Ham(M) is locally, globally, or strictly preserved, and ( f ) is a co-momentum
map. Here we give several constructions that ensure the existence of a preserved
Hamiltonian H and of a co-momentum map, in Sections 3.1 and 3.2. Further, in
Section 3.3 we investigate actions which can be centrally extended by a Hamiltonian
vector field and in Section 3.4 we construct an interesting class of examples for
multisymplectic manifolds.

3.1. Constructing preserved Hamiltonians. In this subsection we consider a
natural geometric situation in which the above machinery can be applied. We do not
assume the existence of an invariant Hamiltonian form here, but we always assume a
smooth action ϑ : M ×G→ M of a connected Lie group G on a pre-n-plectic manifold
(M, ω) such that ϑ∗g(ω) = ω for all g ∈ G.

Lemma 3.1. Consider a connected compact Lie group G acting on the pre-n-plectic
manifold (M, ω) and let H̃ ∈ Ωn−1

Ham(M), which is locally preserved by the action.
Then there exists H ∈ Ωn−1

Ham(M) which is strictly preserved by the action and has the
following property: any Hamiltonian vector field of H̃ is also a Hamiltonian vector
field of H.

Proof. Define H :=
∫

G ϑ
∗
g(H̃)µ(dg), the average of H̃ using the normalised Haar

measure µ(dg) on G. Then H is strictly preserved by the action. Furthermore,

dH =

∫
G
ϑ∗g(dH̃)µ(dg) = dH̃.

The last equality holds because ϑ∗g(dH̃) = dH̃ for all g ∈ G, as a consequence of
dLvx H̃ = Lvx dH̃ = 0 for all x ∈ g. Hence, the Hamiltonian vector fields of H̃ are exactly
the Hamiltonian vector fields of H. �
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Proposition 3.2. Consider a connected compact Lie group G acting on the pre-n-
plectic manifold (M, ω). Let v be a G-invariant vector field on M with Lvω = 0.
Suppose that Hn

dR(M) = 0. Then v is the Hamiltonian vector field of some Hamiltonian
form H which is G-invariant, which is strictly preserved by the action.

Proof. The condition Lvω = 0 implies that ιvω is closed and, by our cohomological
assumption, it is exact:

ιvω = −dH̃

for some H̃ ∈ Ωn−1
Ham(M). Now we average both sides of the above equation. Notice that

ιvω is G-invariant, since v and ω are; hence, the averaged form H :=
∫

G ϑ
∗
g(H̃)µ(dg)

(where µ is the normalised Haar measure on G) satisfies the same equation: ιvω =

−dH. �

An interesting special case is the one of volume forms.

Corollary 3.3. Consider a connected compact Lie group G acting on (M, ω), where
ω is a volume form. Let v be a G-invariant vector field on M which is divergence-free
(that is, Lvω = 0). Suppose that Hdim(M)−1

dR (M) = 0. Then v is the Hamiltonian vector
field of some G-invariant Hamiltonian form H.

Remark 3.4. If M is compact and simply connected, then Hdim(M)−1
dR (M) vanishes by

Poincaré duality and the above result is applicable.

The following statement is a variation of Proposition 3.2, in which the compactness
assumption on G is replaced with the condition Hn−1

dR (M) = 0 and which leads to a
globally preserved Hamiltonian.

Proposition 3.5. Consider a connected Lie group G acting on the pre-n-plectic
manifold (M, ω). Let v be a G-invariant vector field on M with Lvω = 0. Suppose that
Hn

dR(M) = 0 = Hn−1
dR (M). Then v is the Hamiltonian vector field of some Hamiltonian

form H which is globally preserved by the action.

Proof. Since Lvω = 0 and Hn
dR(M) = 0, we have ιvω = −dH for some (usually not G-

invariant) H ∈ Ωn−1
Ham(M). The form ιvω is G-invariant, since v and ω are. Hence, for all

x ∈ g, we have 0 = Lvx dH = d(Lvx H). The condition Hn−1
dR (M) = 0 implies that Lvx H

is exact. �

3.2. Induced actions of isotropy subgroups. Let G act on a pre-n-plectic manifold
(M, ω). In this whole subsection we fix p ∈ Zk(g) ⊂ Λkg for some k ≥ 1 (see Definition
2.8). We denote by Gp the corresponding isotropy group for the adjoint action of G on
Λkg and by gp its Lie algebra. Explicitly, gp = {x ∈ g : [x, p] = 0}.

Remark 3.6. Let p ∈ Zk(g) and x ∈ g. From Lemma 3.12, it follows that x ∧ p ∈ Zk+1(g)
iff x ∈ gp.

Lemma 3.7. The form ι(vp)ω ∈ Ωn+1−k(M) is closed and invariant under the action of
G0

p, the connected component of the identity in Gp.
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Proof. The equality d(ι(vp)ω) = 0 follows upon applying Lemma 2.16. The invariance
holds since for every y ∈ gp, Lvy ι(vp)ω = ι([vy, vp])ω + ι(vp)Lvyω = 0, where the
bracket is defined analogously to Lemma 3.12 later on. �

Now assume that there is a co-momentum map ( f ) : g→ L∞(M, ω).

Proposition 3.8. A co-momentum map for the action of G0
p on (M, ι(vp)ω) is given by

( f p) : gp → L∞(M, ι(vp)ω) with components ( j = 1, . . . , n − k):

f p
j : Λ j

gp → Ωn−k− j(M),
q 7→ −ς(k) f j+k(q ∧ p).

Furthermore, if the co-momentum map ( f ) is G-equivariant, then ( f p) is G0
p-

equivariant.

Proof. We first show that ( f p) is a co-momentum map. Let q ∈ Λ jgp. We have

ς(k + j)ιvq (ι(vp)ω) = ς(k + j)ι(vp∧q)ω = − fk+ j−1(∂(p ∧ q)) − d( fk+ j(p ∧ q))

using in the second equality that ( f ) is a co-momentum map (see (2.1)). From
Lemma 3.12, we obtain ∂(p ∧ q) = (−1)k p ∧ ∂(q) = (−1)k j∂(q) ∧ p since p ∈ Zk(g) and
q ∈ ∧ jgp. Using ς(k + j) = ς(k)ς( j)(−1)k j+1,

ς( j)ιvq (ι(vp)ω) = − f p
j−1(∂(q)) − d f p

j (q).

For the equivariance statement, notice that for all y ∈ gp,

Lvy ( f p
j (q)) = Lvy ( fk+ j(p ∧ q)) = fk+ j([ y, p ∧ q]) = fk+ j(p ∧ [ y, q]) = f p

j ([ y, q]),

where we used the equivariance of ( f ) in the second equality. �

Remark 3.9. The existence of a co-momentum map ( f ) implies that ι(vp)ω is exact
with primitive −ς(k) fk(p), by (2.1). Assume further that fk is G-equivariant. Then
this primitive is G0

p-invariant for Lvy fk(p) = fk([ y, p]) = 0 for all y ∈ gp. Hence, by [2,
Lemma 8.1], an equivariant co-momentum map for the action of G0

p on (M, ι(vp)ω) is
given by ( j = 1, . . . , n − k)

Λ j
gp → Ωn−k− j(M),

q 7→ (−1)kι(vq)( fk(p)).

Notice that this co-momentum map may differ from the one given in
Proposition 3.8.

Finally, we consider Hamiltonian forms.

Proposition 3.10. Let H ∈ Ωn−1
Ham(M) be G-invariant; then ι(vp)H is G0

p-invariant and
it is a Hamiltonian form with respect to ι(vp)ω with Hamiltonian vector field vH .

Proof. The G0
p-invariance of ι(vp)H is shown exactly as in Lemma 3.7. For the second

statement, using Lemma 2.16, we compute

d(ι(vp)H) = (−1)kι(vp)dH = ιXH (ι(vp)ω). �

Remark 3.11. Consider the case k = n − 1. Then ι(vp)ω is a 2-form and, from
Proposition 3.10, we recover the fact that ι(vp)H is a conserved quantity (a special
case of Proposition 3.15 later on).
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3.3. Co-momentum maps for g ⊕ R. We extend the results of Section 2.4 under a
nondegeneracy assumption for ω. We assume that (M, ω) is an n-plectic manifold,
H ∈ Ωn−1

Ham(M), and that ( f ) : g → L∞(M, ω) is a co-momentum for a strictly H-
preserving infinitesimal action g→ X(M, ω), x 7→ vx.

By Lemma 1.8(i), the generators of the action commute with the Hamiltonian vector
field vH of H, so the infinitesimal g-action on M extends to an action of the direct sum
Lie algebra g̃ := g ⊕ 〈c〉R, by means of c 7→ vH . Notice that Λkg̃ = Λkg ⊕ (Λk−1g ⊗ 〈c〉R).

In the sequel we will make use of the following lemma several times. Recall that
the differential ∂ was defined in Definition 2.2.

Lemma 3.12. Let p ∈ Λkg and q ∈ Λlg. Then

∂(p ∧ q) = ∂(p) ∧ q + (−1)k p ∧ ∂(q) + (−1)k[p, q],

where [x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yl] =
∑

(−1)i+ j[xi, y j] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xk ∧ y1 ∧

· · · ∧ ŷ j ∧ · · · ∧ yl.

Proof. It is sufficient to prove the assertion for monomials p = x1 ∧ · · · ∧ xk and
q = xk+1 ∧ · · · ∧ xk+l. In that case ∂(p ∧ q) is given by a sum over indices i, j with
1 ≤ i < j ≤ k + l. Splitting it into sums over i < j ≤ k, k < i < j, and i ≤ k < j proves
the assertion. �

Remark 3.13. The bracket [·, ·] : Λ•g × Λ•g→ Λ•g defined above turns Λ•g into a
Gerstenhaber algebra.

Lemma 3.14. There is a canonical extension of ( f ) to a co-momentum map ( f̃ ) for the
g̃-action, determined by

f̃k(x1, . . . , xk−1, c) = ς(k)ι(vx1 ∧ · · · ∧ vxk−1 )H (3.1)

for all k ≥ 1 and x1, . . . , xk−1 ∈ g.

Proof. We have to check that (2.1) is satisfied. Without loss of generality, assume that
p = x1 ∧ · · · ∧ xk−1 ∈ ∧

k−1g and notice that [xi, c] = 0 for all i implies that ∂(p ⊗ c) =

(∂p) ⊗ c, by Lemma 3.12. Using the definition of f̃k, (2.1) applied to p ⊗ c reads

−ς(k − 1)ι(v∂p)H = ς(k)dι(vp)H + ς(k)(−1)k−1ι(vp)ιvHω.

Using ιvHω = −dH, we see that this equation is satisfied by Lemma 2.16, since H is
g-invariant and using the identity ς(k)ς(k − 1) = (−1)k. �

Notice that, even when ( f ) is equivariant, ( f̃ ) is not equivariant in general. For
instance, LvH f1(x) is usually different from f̃1([c, x]) = f̃1(0) = 0. In general, it cannot
be made equivariant by an averaging procedure since the group G × R integrating g̃ is
noncompact.

If ( f̃ ) is equivariant, one has strong consequences: LvH fk(x1, . . . , xk) = 0 and in
particular fk(x1, . . . , xk) is a strictly conserved quantity for all x1 ∧ · · · ∧ xk ∈ ∧

kg.
If we assume that LvH H = 0, then the g̃-action strictly preserves the Hamiltonian H

and hence we can apply Theorem 2.19 to the g̃-action and obtain globally conserved
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quantities for vH for all elements of Zk(g̃). As the latter is isomorphic to Zk(g) ⊕
(Zk−1(g) ⊗ 〈c〉R), these globally conserved quantities are those we already know from
Theorem 2.19, plus those arising from Zk−1(g) ⊗ 〈c〉R. Somewhat surprisingly, it turns
out that the latter are globally conserved quantities even without the assumption that
LvH H = 0. This fact is not predicted by Proposition 2.10, which only ensures the
existence of locally conserved quantities.

Proposition 3.15. Assume that (M, ω) is an n-plectic manifold, H in Ωn−1
Ham(M), and

that ( f ) : g→ L∞(M, ω) is the co-momentum of a strictly H-preserving Lie algebra
action. The f̃k(p ⊗ c) as in (3.1) is a globally conserved quantity for all p ∈ Zk−1(g).

Proof. Because of Cartan’s formula, it suffices to show that ιvH d f̃k(p ⊗ c) is exact. We
will show that it actually vanishes. By Lemma 3.14 and using (2.1),

ιvH d f̃k(p ⊗ c) = ιvH (− f̃k−1(∂(p ⊗ c)) − ς(k)ι(vp⊗c)ω).

Applying Lemma 3.12 to the Lie algebra g̃, we see that ∂(p ⊗ c) = 0. Further, vc = vH ,
so by the skew symmetry of ω we get ιvH ι(vp⊗c)ω = 0, which finishes the proof. �

3.4. The multisymplectic analogue of magnetic terms. In this subsection we
explain how to generalise the well-known magnetic term from symplectic geometry
to the multisymplectic situation (compare [3, Section 7] for this construction) and
provide the example announced in Section 2.4.

Construction 3.16. Let N be a manifold and c a closed (k + 1)-form on N. Denoting
the canonical projection from ΛkT ∗N → N by π and the canonical k-form on ΛkT ∗N
by −θ, the (k + 1)-form ω = dθ + π∗c is always k-plectic, that is, nondegenerate and
closed on M = ΛkT ∗N. The form π∗c is called the magnetic term.

Proposition 3.17. Let k ≥ 1 and N be a manifold, b ∈ Ωk(N), and w a vector field on
N such that Lwb = da for some a ∈ Ωk−1(N) (that is, b is globally conserved by w).
Denote the canonical lift of w to M = ΛkT ∗N by wh. Then wh is a Hamiltonian vector
field on (M, ω = dθ + π∗db) with the following Hamiltonian (k−1)-form:

H = −π∗a + ιwh (θ + π∗b). (3.2)

Proof. Upon observing that ιwh (π∗b) = π∗(ιwb) and consequently Lwh (π∗b) = π∗(Lwb),

dH = −π∗Lwb + d(ιwhθ) + π∗(dιwb)
= −π∗da − ιwh dθ +Lwhθ − π∗(ιwdb) + π∗Lwb
= −π∗da − ιwh dθ − π∗(ιwdb) + π∗da = −ιwh (dθ + π∗db)
= −ιwhω,

where in the third equality we used Lwhθ = 0, as in the symplectic case. �

Remark 3.18. If N ×G→ N is a right action and b a G-invariant k-form on N, then the
k-plectic form ω = d(θ + π∗b) on M = ΛkT ∗N has a G-invariant potential. This ensures
the existence of a co-momentum map (see [2, Section 8.1]) whose first component
f1 : g→ Ωk−1

Ham(M) is given by f1(x) = ιvh
x
(θ + π∗b).
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In Section 2.4 we announced an example of a strictly H-preserving action on a
multisymplectic manifold admitting a co-momentum ( f ) such that, for some boundary
x ∈ B1(g), f1(x) is a globally conserved quantity that is not strictly conserved. We now
provide this example.

Example 3.19. Let N ×G→ N be a right action and assume that, in the set-up of the
preceding proposition, the vector field w and the forms a and b are G-invariant. Then
H (see (3.2)) is invariant under the induced G-action on M = ΛkT ∗N.

Assuming furthermore that db = 0, we can choose a := ιwb. Specialise to k = 2 and
N = G with the action by N ×G→ N, (n, g) 7→ g−1·n. Thus:

• for x ∈ g = TeG and g ∈ G, vx(g) = −(rg)∗(x), where rg(h) = h·g for h ∈ G. In
particular, the generators vx of the action are right-invariant vector fields on G;

• w is a left-invariant vector field, that is, there exists w̃ ∈ g such that for g ∈ G,
w(g) = (lg)∗(w̃), where lg(h) = g·h for h ∈ G;

• b is a closed left-invariant 2-form, that is, there exists a b̃ ∈ Λ2g∗ which is closed
under the Chevalley–Eilenberg differential (the dual of the Lie algebra homology
differential) and b(g) = (lg−1 )∗(b̃) = ((lg−1 )∗)∗(b̃) for all g ∈ G.

Denote by ( f ) the co-momentum map recalled in Remark 3.18. For any x ∈ g, we
compute

Lwh f1(x) = ιvh
x
π∗(Lwb) = −π∗(d(ιvx a)),

so f1(x) being a strictly conserved quantity is equivalent to ιvx a being a constant
function on N. Evaluating the function ιvx a = b(w, vx) at g ∈ N = G,

−b̃(w̃, Adg−1 (x)). (3.3)

It is clear that the function (3.3) is not constant in general. For instance, take
G = S L2(R). A basis for g := sl2(R) is

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
,

and [h, e] = 2e, [h, f ] = −2 f , [e, f ] = h. So, notably, all elements of g are boundaries.
The form b̃ := e∗ ∧ f ∗ ∈ Λ2g∗ is closed (actually exact) with respect to the Chevalley–
Eilenberg differential. Taking w̃ := f and x := h ∈ g = B1(g), one computes that the
function (3.3) attains the value 2βδ at g =

(
α β
γ δ

)
∈ G and hence it is not a constant

function on G. We conclude that for this choice of x ∈ B1(g), the form f1(x) is not
strictly conserved.

4. Applications of conserved quantities

In Section 2 we saw that many conserved quantities exist on pre-n-plectic manifolds
endowed with a co-momentum map. In this section we show some geometric
consequences of the existence of conserved quantities on a manifold M, by looking
at maps from a compact oriented manifold Σ into M. In most of our statements M does
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not need any additional geometric structure (but we specialise to the pre-n-plectic case
for example in Proposition 4.9). In Section 4.1 we consider conserved quantities whose
degree, as differential forms on M, equals dim(Σ). In Section 4.2 we extend some of
the results to arbitrary degrees.

4.1. A general Kelvin circulation theorem. Let M be a manifold and v ∈ X(M) a
vector field. Let Σ be a compact, oriented d-dimensional manifold and σ0 : Σ→ M
a smooth map. We view Σ as a ‘membrane’ in M, which evolves under the flow of
the vector field, and want to find quantities which are unchanged under the evolution.
The following theorem can be considered as folklore and can be viewed as a general
version of Kelvin’s circulation theorem, as we explain in Remark 4.6 below.

Theorem 4.1. Let Σ be a compact, oriented d-dimensional manifold (possibly with
boundary), v a vector field on M with flow φt, andσ0 : Σ→ M a smooth map. Consider
σt := φt ◦ σ0 : Σ→ M. If α ∈ Ωd(M) is a differential form, then the number∫

Σ

(σt)∗α

is independent of the time parameter t if one of the following conditions holds:

(i) α is strictly conserved by v;
(ii) α is globally conserved by v and Σ has no boundary;
(iii) α is locally conserved by v and there exists a compact, oriented manifold with

boundary N such that Σ = ∂N and a map σ̃0 : N → M with σ̃0|∂N = σ0.

Remark 4.2. Since Σ is compact, there exists an ε = ε(σ0) > 0 such that φt is defined
at least on (−ε, ε) × σ0(Σ) ⊂ R × M. Obviously in (i) and (ii) we can consider |t| <
ε = ε(σ0). Mutatis mutandis, we consider only |t| < ε(σ̃0) in case (iii). Notice that if
dim(M) = d, or more generally if α is closed, then α is globally conserved.

Proof. We only prove that condition (ii) suffices, for the other implications follow
analogously. The diffeomorphisms φt satisfy d/dt(φ∗t α) = φ∗t (Lvα). Pre-composing
with the pullback (σ0)∗,

d
dt

(σ∗t α) = σ∗t (Lvα). (4.1)

Hence, by compactness of Σ,

d
dt

∫
Σ

σ∗t α =

∫
Σ

σ∗t (Lvα) =

∫
Σ

d(σ∗t γ) = 0,

where in the first equality we used (4.1), in the second one that Lvα = dγ for some
form γ, and in the last one Stokes’ theorem. �

Remark 4.3. The sufficiency of Condition (ii) in Theorem 4.1 is not surprising.
By assumption, v preserves α up to an exact form and, by Stokes’ theorem, the
contribution given by exact forms vanishes upon integration over Σ.

The following statement addresses a variation of condition (iii) in Theorem 4.1.
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Proposition 4.4. Let Σ be a compact, oriented manifold without boundary of dimension
d and v a vector field on M with flow φt. If α ∈ Ωd(M) is locally conserved, then, for
every fixed time t, one obtains a well-defined map

Ft : [Σ,M]→ R, [σ0] 7→
∫

Σ

(σt)∗α −
∫

Σ

(σ0)∗α.

Here [Σ, M] denotes the set of smooth homotopy classes of maps from Σ to M,
σ0 : Σ→ M denotes a smooth map, and σt := φt ◦ σ0 : Σ→ M.

Further, the dependence on t is linear: Ft[σ0] = t · c([σ0]), where c([σ0]) :=∫
Σ
(σ0)∗(Lvα).

Proof. We have∫
Σ

(σt)∗α −
∫

Σ

(σ0)∗α =

∫ t

0

[ d
ds

∫
Σ

(σs)∗α
]

ds =

∫ t

0

[∫
Σ

σ∗s(Lvα)
]

ds,

where the last equality is obtained as in the proof of Theorem 4.1. Now recall that
Lvα is a closed form on M. Hence, by Stokes’ theorem, the term in the square bracket
depends only on the homotopy class of σs, which agrees with the homotopy class of
σ0 since σs = φs ◦ σ0. We conclude that the above expression equals t · c([σ0]). �

We present an example for Theorem 4.1 and Proposition 4.4.

Example 4.5. Let M be a manifold, v a vector field, and α ∈ Ωd(M). Take a map
σ0 : S d → M defined on the d-dimensional sphere and denote by σt the composition
of σ0 with the time-t flow φt of v. The number

∫
S d (σt)∗α is independent of the time

parameter t if the following occurs: either (i) Lvα is exact or (ii) Lvα is closed and σ0

is homotopy equivalent to a constant map. This follows from Theorem 4.1(ii) and (iii).
Further, assuming that Lvα is closed, one obtains a well-defined group

homomorphism

πd(M, x)→ R, [σ0] 7→
∫

S d
(σt)∗α −

∫
S d

(σ0)∗α

defined on the dth homotopy group of M based at some point x and where the
dependence on t is linear. This follows from Proposition 4.4 and the following
argument to show the group homomorphism property. We denote the group
multiplication of πd(M, x) by ∗. It is given by the following composition, where p
denotes a distinguished point on the sphere:

f ∗ g : (S d, p)→ (S d/S d−1, p) = (S d ∨ S d, p)
( f∨g)
−→ (M, x).

Choosing appropriate representatives of the respective homotopy classes, we may
assume that f , g, and f ∗ g are smooth. Then, for α ∈ Ωd(M), we calculate∫

S d
( f ∗ g)∗α =

∫
S d\{p}tS d\{p}

( f ∨ g)∗α =

∫
S d

f ∗α +

∫
S d

g∗α.
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Remark 4.6 (Kelvin circulation theorem). A variant of Theorem 4.1(ii) for a time-
dependent vector field vt and a time-dependent differential form αt ∈ Ωd(M) is the
following: if Lvtαt + d/(dt)αt is exact and Σ has no boundary, then the number∫

Σ

(σt)∗(αt)

is independent of the time parameter t.
We mention this because the Kelvin circulation theorem in fluid mechanics can be

understood as a special case of the above. Let vt =
∑

i vt
i∂xi be a time-dependent vector

field onR3 and use the standard metric onR3 to obtain from vt the 1-form αt =
∑

i vt
idxi.

One computes ιvt dαt =
∑

i,k vt
k(∂vt

i/∂xk)dxi −
1
2 d

∑
i(vt

i)
2, so that Lvtαt + d/(dt)αt is

exact if and only if ∑
i,k

vt
k

∂vt
i

∂xk
dxi +

∑
i

( d
dt

vt
i

)
dxi (4.2)

is exact. By the above, it then follows that
∫

Σ
(σt)∗αt is independent of t.

Upon rewriting the exactness of (4.2) as (vt · ∇)vt + ∂vt/∂t = −∇w, with ∇ the
usual gradient in R3, we recognise the first of the isentropic Euler equations (see, for
example, [4, page 15]). It is well known that this equation implies the classical Kelvin
circulation theorem [4, page 21], which is exactly the time independence of

∫
Σ
(σ∗t )(αt)

in this case.
We now bring multisymplectic forms into play. Under symmetry assumptions,

our methods from Sections 2 and 3 lead to other conserved quantities, as we now
explain. In fluid mechanics, the time-dependent vector field vt is divergence free,
that is, Lvtω = 0 for all t, where ω = dx1 ∧ dx2 ∧ dx3 is the standard volume form
on R3. In the presence of a compact group of symmetries—that is, of an action of a
compact Lie group G on R3 preserving ω and vt—it turns out by Corollary 3.3 that,
for every fixed value of t, the vector field vt is the Hamiltonian vector field of a G-
invariant Hamiltonian 1-form of (R3, ω). Further, ω is exact with G-invariant primitive,
so that the action of G on (R3, ω) admits a co-momentum map [2, Section 8.1].
The latter, by virtue of Theorem 2.19, delivers further (time-independent) globally
conserved quantities for vt for a given value of t. One can then apply the above variant
of Theorem 4.1(ii) to the time-dependent vector field vt and to the newly obtained
globally conserved quantities.

4.2. Transgression of conserved quantities. Theorem 4.1(ii) fits in the following
framework. Let Σ be a compact, oriented manifold (without boundary) and M a
manifold. Given a vector field v on M, there is a naturally associated vector field v` on
MΣ = C∞(Σ,M), the space of smooth maps from Σ to M. It is given as follows:

v`|σ = σ∗v ∈ Γ(σ∗T M) = TσMΣ

for all σ ∈ MΣ. Notice that, denoting by φt the flow of v on M, the flow of v` maps
σ ∈ MΣ to φt ◦ σ ∈ MΣ. Similarly, associated to a differential form on M there is a
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differential form on MΣ of lower degree. It is defined by the transgression map

` :=
∫

Σ

◦ ev∗ : Ω•(M)→ Ω•−s(MΣ),

where ev : Σ × MΣ→ M is the evaluation map and
∫

Σ
denotes the integration along the

fiber (cf., for example, [1, Ch. VI.4]) of the projection Σ × MΣ → MΣ.

Proposition 4.7. Let Σ be a compact, oriented manifold (without boundary) of
dimension d and let v be a vector field on M. If α ∈ Ωk(M) is globally (respectively
locally respectively strictly) conserved by v, then α` ∈ Ωk−d(MΣ) is globally
(respectively locally respectively strictly) conserved by v`.

Proof. The transgression map ` commutes with de Rham differentials and furthermore
we have (ιvα)` = ιv`α

`. Therefore, it commutes with Lie derivatives in the following
sense: Lv`α

` = (Lvα)`. Assume that α is globally conserved. We have to show that
Lv`α

` is an exact form. Since α ∈ Ωk(M) is a globally conserved quantity, there is a
γ ∈ Ωk−1(M) with Lvα = dγ. Hence,

Lv`α
` = (Lvα)` = (dγ)` = dγ`.

The other cases follow similarly. �

Remark 4.8. When k = d, Proposition 4.7 recovers Theorem 4.1(ii). Indeed, let α ∈
Ωd(M). By Proposition 4.7, the function α` on MΣ is invariant under the flow of v`.
The latter maps a point σ ∈ MΣ to φt ◦ σ, where φt denotes the flow of v on M. Finally,
for all σ ∈ MΣ,

α`|σ =

((∫
Σ

◦ ev∗
)
(α)

) ∣∣∣∣∣
σ
=

∫
Σ

(ev|Σ×{σ})∗α =

∫
Σ

σ∗α,

where in the second equality we used that ev|Σ×{σ} = σ.

Now we specialise to a pre-n-plectic manifold (M, ω) together with a vector field
vH which is Hamiltonian for some H ∈ Ωn−1

Ham(M). Notice that (vH)` is a Hamiltonian
vector field of H` on (MΣ, ω`), as follows from

ι(vH )`ω
` = (ιvHω)` = (−dH)` = −dH`.

A special case of Proposition 4.7 reads as follows.

Proposition 4.9. Consider a pre-n-plectic manifold (M, ω) together with a vector
field vH which is Hamiltonian for some H ∈ Ωn−1

Ham(M). Let Σ be a compact, oriented
manifold (without boundary) of dimension d. If α ∈ Ωk(M) is a globally conserved
quantity for vH , then

α` ∈ Ωk−d(MΣ)

is a globally conserved quantity for (vH)`, that is, L(vH )`α
` is an exact form.
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Remark 4.10. Consider a G-action on (M, ω) for which H is strictly preserved. The G-
action on M gives rise to a G-action on MΣ = C∞(Σ,M), simply given by (g · σ)(p) :=
g · σ(p) for all σ ∈ MΣ and p ∈ Σ. It can be checked that for an infinitesimal generator
vx of the action on M (x ∈ g), the corresponding infinitesimal generator of the action
on Σ is (vx)`. Hence, the lifted G-action preserves ω` and H`. In [2, Section 11] and
[5, Section 6], it is shown that a co-momentum map for the action of G on (M, ω)
transgresses to a co-momentum map for the action on (MΣ, ω`). This is consistent with
the fact that, firstly, certain components of co-momentum maps are globally conserved
quantities (Theorem 2.19) and, secondly, globally conserved quantities transgress to
give globally conserved quantities (Proposition 4.9).
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