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Data-driven discovery of governing equations is of great significance for helping us
understand intrinsic mechanisms and build physical models. Recently, numerous highly
innovative algorithms have emerged, aimed at inversely discovering the underlying
governing equations from data, such as sparse regression-based methods and symbolic
regression-based methods. Along this direction, a novel dimensional homogeneity
constrained gene expression programming (DHC-GEP) method is proposed in this
work. The DHC-GEP simultaneously discovers the forms and coefficients of functions
using basic mathematical operators and physical variables, without requiring preassumed
candidate functions. The constraint of dimensional homogeneity is capable of filtering out
the overfitting equations effectively. The key advantages of DHC-GEP compared with the
original gene expression programming, including being more robust to hyperparameters,
the noise level and the size of datasets, are demonstrated on two benchmark studies.
Furthermore, DHC-GEP is employed to discover the unknown constitutive relations of
two representative non-equilibrium flows. Galilean invariance and the second law of
thermodynamics are imposed as constraints to enhance the reliability of the discovered
constitutive relations. Comparisons, both quantitative and qualitative, indicate that the
derived constitutive relations are more accurate than the conventional Burnett equations in
a wide range of Knudsen numbers and Mach numbers, and are also applicable to the cases
beyond the parameter space of the training data.

Key words: machine learning

1. Introduction

Machine-learning-assisted modelling has become a new paradigm of research in a
variety of scientific and engineering disciplines (Brunton, Noack & Koumoutsakos 2020;
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Weinan 2021). A very incomplete list includes Ling, Kurzawski & Templeton (2016),
Koch-Janusz & Ringel (2018), Bergen et al. (2019), Sengupta et al. (2020), Ma, Zhang &
Yu (2021), Guastoni et al. (2021), Park & Choi (2021), Karniadakis et al. (2021), Yu et al.
(2022) and Juniper (2023), the vast majority of which present improved performance, but a
prominent critique is that the resulting models are ‘black boxes’. They cannot be explicitly
expressed in mathematical forms. This not only sacrifices interpretability but also makes
the resulting models difficult to disseminate between end users (Beetham & Capecelatro
2020).

In contrast to the aforementioned studies, Bongard & Lipson (2007) and Schmidt &
Lipson (2009) proposed using stratified symbolic regression and genetic programming
to discover governing equations from data in low-dimensional systems. While this
approach is innovative, it is difficult to scale up to high-dimensional systems. Genetic
programming encodes equations using the nonlinear parse trees with varying sizes and
shapes, which can become bloated in high-dimensional problems, making evolutions
computationally expensive (Vaddireddy et al. 2020). Subsequently, Brunton, Proctor
& Kutz (2016) proposed a seminal work called sparse identification of nonlinear
dynamics (SINDy), which employs sparse regression to identify the most informative
subset from a large predetermined library of candidate functions and determines the
corresponding coefficients. The SINDy is advantageous in deriving models that are
explicit and concise, and has been widely used to discover equations in the form of
first-order ordinary differential equations, alternatively with linear embedding (Lusch,
Kutz & Brunton 2018; Champion et al. 2019a), for applications in fluid systems (Loiseau
& Brunton 2018; Loiseau, Noack & Brunton 2018; Zhang & Ma 2020), predictive control
of nonlinear dynamics (Kaiser, Kutz & Brunton 2018) and multi-time-scale systems
(Champion, Brunton & Kutz 2019b). To date, there have been many extensions to SINDy,
such as partial differential equation functional identification of nonlinear dynamic (Rudy
et al. 2017; Schaeffer 2017), implicit sparse regression (Mangan et al. 2016; Kaheman,
Kutz & Brunton 2020), physics-constrained sparse regression (Loiseau & Brunton 2018)
and sparse relaxed regularized regression (Zheng et al. 2018). Basically, the sparse
regression-based methods are confronted with two issues: the difficulty in accurately
computing the derivative of noisy data and the requirement that all variables in the
equation are observable. Gurevich, Reinbold & Grigoriev (2019), Reinbold, Gurevich &
Grigoriev (2020) and Alves & Fiuza (2022) employed the weak formulation of differential
equations to decrease the noise sensitivity and eliminate the dependence on unobservable
variables. Furthermore, Reinbold & Grigoriev (2019), Reinbold et al. (2021) and Gurevich,
Reinbold & Grigoriev (2021) considered three appropriate physical constraints, including
locality, smoothness and symmetries, to dramatically constrain the size of candidate
library to be concise and effective.

More recently, in addition to sparse regression-based methods, two promising categories
of data-driven methods have been proposed for discovering explicit models. The first
category is the neural network-based method, such as PDE-Net (Long et al. 2018; Long,
Lu & Dong 2019) and equation learner (EQL) (Sahoo, Lampert & Martius 2018). The
PDE-Net approximates differential operators with convolutions and employs a symbolic
multilayer neural network for model recovery, resulting in high expressivity and flexibility.
The EQL uses a special neural network structure whose activation functions are symbolic
operators, and it was demonstrated that the derived models can be generalized to the
parameter spaces not covered by the training dataset. However, both neural network-based
methods are criticized for the resulting equations being overly complex.

Another category is gene expression programming (GEP)-based methods (Ferreira
2001; Vaddireddy et al. 2020; Xing et al. 2022), which learn the forms of functions and
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their corresponding coefficients concurrently. The preselected elements for GEP include
only mathematical operators, physical constants and physical variables. The resulting
equations are constructed by randomly combining basic elements while satisfying the
syntactic requirements of the mathematical expression, rather than by linearly combining
the predetermined candidate functions. Unlike the genetic programming method used
in Schmidt & Lipson (2009), GEP encodes equations with fixed length linear strings
that have unfixed open reading frames (ORFs). This feature of fixed length prevents
bloating issues and excessive computational costs when dealing with complex problems.
Additionally, variable ORFs ensure the variety of expression products, thus providing
strong expressivity. Moreover, GEP performs a global exploration in the space of
mathematical expressions, tending to obtain good results in a reasonable time. Therefore,
in terms of data fitting, GEP has almost all the advantages of the aforementioned methods,
featuring explicitness, concision, enhanced expressivity and flexibility without assuming
the forms of candidate functions. Generally, GEP endeavours to discover the equations
with less error; however, dimensional homogeneity cannot be guaranteed, particularly
for problems with a variety of variables. Without any constraints or assumptions on the
function forms, it is highly probable to obtain some overfitting and unphysical equations,
which are sensitive to hyperparameters.

Considering the pros and cons of GEP, we propose a novel dimensional homogeneity
constrained GEP (DHC-GEP) method for discovering governing equations. To the best
of our knowledge, this is the first time that the constraint of dimensional homogeneity
has been introduced to GEP. The constraint is implemented via a dimensional verification
process before evaluating loss, without altering the fundamental features of the original
GEP (Original-GEP) (Ferreira 2001), including the structure of chromosomes, the rules
of expression, selection and genetic operators. Therefore, DHC-GEP inherits all the
advantages of Original-GEP. More importantly, through two benchmark studies, we
demonstrate that DHC-GEP has three critical improvements over Original-GEP: (a) robust
to the size and noise level of datasets; (b) less sensitive to hyperparameters; (c) lower
computational costs.

Furthermore, we extend the application of DHC-GEP to discover the unknown
constitutive relations for non-equilibrium flows, including one-dimensional shock wave
and rarefied Poiseuille flow. The conventional governing equations for fluid flows are the
Navier–Stokes–Fourier (NSF) equations, which are derived based on the conservation of
mass, momentum and energy, as well as the empirical assumptions of linear constitutive
relations for the viscous stress and heat flux. Note that in strong non-equilibrium flows,
these linear constitutive relations breakdown, and thus NSF equations are no longer
applicable. Although high-order constitutive relations can be derived based on kinetic
theory (Chapman & Cowling 1990), such as Burnett equations (Burnett 1936), their
applicability is still very limited. Instead, our data-driven strategy is to derive the unknown
constitutive relations from the data generated with molecular simulations. A general
flowchart is shown in figure 1. Considering that constitutive relations describe the
local transport mechanisms of momentum and energy, we regard local non-equilibrium
parameters as key factors, and meticulously select the imported variables to satisfy the
Galilean invariance (Han et al. 2019; Huang et al. 2021). Besides, the constraint of the
second law of thermodynamics is embedded by adding an additional loss term, which is
related to entropy production, to the loss function. The derived equations are more accurate
than conventional Burnett equations over a wide range of Knudsen number and Mach
number.

The remainder of this paper is organized as follows. In § 2.1, we briefly introduce the
molecular simulation method, i.e. the direct simulation Monte Carlo (DSMC) method.
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Microscopic molecular simulation Macroscopic flow field Non-equilibrium flow

DHC-GEP

Unknown macroscopic governing equation

qx = –0.468  6Knρ + 

AD

u
ρ
θ

Knθ

Knρ
 + 

Knρ

Knθ

∂θ

∂x
κ

Basic elements

Terminals

Functions

Knθ Knρ

u

ux ρx θx

θ μ κρ

+ – × ÷

Figure 1. Flowchart of discovering unknown governing equations from data. First, macroscopic flow field
data is generated via microscopic molecular simulation. Then, the basic elements preselected for DHC-GEP
are constituted with state variables, mathematical operators and other variables of concern. Taking the
one-dimensional shock wave case as an example, the terminal set involves fundamental physical parameters
(viscosity (μ), heat conductivity (κ)), state variables (velocity (u), density (ρ), temperature (θ )), gradient terms
(ux, ρx, θx) and gradient-length local (GLL) Knudsen number (Knρ , Knθ ). The target variable is the heat flux in
the x direction (qx). The gradient terms are computed with auto differentiation (AD) based on neural networks,
which is introduced in Appendix A. Finally, based on the terminal and function sets, DHC-GEP conducts a
global search in the space of mathematical expressions until a satisfactory equation that fits well with the target
variable is obtained.

In § 2.2, the DHC-GEP method is introduced in detail. In § 3, we demonstrate the
improved performance of DHC-GEP on two benchmark studies. Then, in § 4, we extend its
applications to discovering unknown constitutive relations for two non-equilibrium flows.
Conclusions and discussions are drawn in § 6.

2. Methodology

2.1. Direct simulation Monte Carlo
Generally, the Knudsen number (Kn), which is defined as the ratio of the molecular mean
free path to the characteristic length scale of system, is used to classify various flow
regimes, with the continuum regime being in the range of Kn ≤ 0.01, the slip regime being
0.01 < Kn ≤ 0.1, the transition regime being 0.1 < Kn ≤ 10 and the free molecular flow
being Kn > 10. While the computational fluid dynamics (CFD) methods based on the NSF
equations have been successfully applied to the continuum regime and can also be used for
the slip regime with appropriate slip boundary conditions, they cannot accurately simulate
transitional and free molecular gas flows. On the contrary, the Boltzmann equation can
describe gas flows in all flow regimes, which can be written as

∂f
∂t

+ c
∂f
∂x

+ G
∂f
∂c

= S. (2.1)

Here, f is the molecular velocity distribution function, which represents the density of
molecules in phase-space (i.e. the space spanned by position and velocity). Here c is
molecular velocity, G is external force and S is a complex integral term, which represents
the change of distribution function due to the interaction between molecules. Owing to the
presence of S, the Boltzmann equation is difficult to solve numerically.
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The DSMC is a stochastic molecule-based method that approximates the molecular
velocity distribution function in the Boltzmann equation with simulation molecules (Oran,
Oh & Cybyk 1998). It has been demonstrated that DSMC converges to the solution of the
Boltzmann equation in the limit of a large number of simulation molecules (Wagner 1992).
In DSMC, each simulation molecule represents F real molecules and F is the so-called
simulation ratio. The DSMC tracks the simulation molecules as they move, collide with
other molecules and reflect from boundaries. The macroscopic physical quantities are
obtained via sampling corresponding molecular information and making an average at
the sampling cells. Specifically, density (ρ) and macroscopic velocity (vi) are computed
with

ρ = mFNp

Vcell
, and vi = 1

Np

∑
cell

ci, (2.2a,b)

where m is molecular mass, Np is the number of simulation molecules in the sampling cell,
and Vcell is the volume of the sampling cell. The velocity of each molecule can be regarded
as a sum of two parts, i.e. the macroscopic velocity of the cell to which it belongs and the
molecular thermal velocity (which is defined as Ci = ci − vi). Based on the molecular
thermal velocity, temperature (T) is computed with

T = 1
3kBNp

∑
cell

mC2, (2.3)

where kB is the Boltzmann constant, and C2 = C2
1 + C2

2 + C2
3. Pressure tensor (pij) is

computed with

pij = mF
Vcell

(∑
cell

cicj − Npvivj

)
, (2.4)

and is generally split into its trace and trace-free parts, i.e. pressure (p) and stress tensor
(τij), pij = pδij + τij. Here, δij is Kronecker delta (Heinbockel 2001). Therefore, pressure
(p) and stress tensor (τij) are computed with

p = 1
3 ( p11 + p22 + p33) and τij = pij − pδij. (2.5a,b)

The heat flux (qi) is computed with

qi = F
2Vcell

∑
cell

mC2Ci. (2.6)

The local viscosity coefficient is computed with

μ = μ0

(
T
T0

)ω

, (2.7)

where μ0 = 2.117 × 10−5 kg m−1 s−1 is the reference viscosity at the reference
temperature T0 = 273 K. Here ω is the viscosity exponent and is determined by the
molecular model employed. For the hard sphere (HS) model (Bird 1994), the Maxwell
molecule model (Bird 1994) and the variable hard sphere (VHS) model (Bird 1981), ω is
equal to 0.5, 1.0 and 0.81, respectively. The local heat conductivity coefficient is computed
according to the local viscosity coefficient using

κ = 5
2

μ

Pr
, (2.8)

where Pr is the Prandtl number and is equal to 2/3 for a monatomic gas.
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For a specific application, DSMC first initializes the simulation molecules according
to the initial distributions of density, temperature and macroscopic velocity. Then, the
molecular motions and intermolecular collisions are sequentially conducted in each
computational time step. The molecular motions are implemented in a deterministic way.
Each molecule moves ballistically from its original position to a new position, and the
displacement is equal to the product of its velocity times the time step. If the trajectory
crosses any boundaries, an appropriate gas–wall interaction model would be employed to
determine the reflected velocity. Common gas–wall interaction models include specular,
diffuse and Maxwell reflection models. In our simulations, the diffuse model is employed.
The intermolecular collisions are implemented in a probabilistic way. Among the several
algorithms for modelling intermolecular collisions, the no-time-counter technique (Bird
1994) is the most widely used. In the no-time-counter, any two molecules in the same
computational cell are selected as a collision pair with a probability that is proportional
to the relative speed between them. Then, the post-collision velocities of molecules are
determined depending on the molecular model employed. In this work we employ the HS
model for the first two benchmark cases (diffusion flow and Taylor–Green vortex), the
Maxwell molecule model for the shock wave case and the VHS model for the Poiseuille
flow case. It is noteworthy that because the molecular motions and intermolecular
collisions are conducted in a decoupled manner, the time step in DSMC needs to be smaller
than the molecular mean collision time, and the cell size for the selection of collision pairs
needs to be smaller than the molecular mean free path.

The DSMC has been successfully applied to simulate gas flows in the whole flow
regimes, and the results have been well validated (Stefanov, Roussinov & Cercignani 2002;
Sun & Boyd 2002; Zhang, Fan & Fei 2010; Gallis et al. 2017). The advantage of the
DSMC method is that there is no need to assume any macroscopic governing equations a
priori. The macroscopic quantities, such as density and velocity, are obtained by sampling
molecular information and making an average at the sampling cells. In this work, the aim
of using data generated by DSMC is to prove the ability of DHC-GEP to discover the
governing equations that could be unknown.

2.2. Dimensional homogeneity constrained gene expression programming

2.2.1. General framework
The DHC-GEP is an enhanced GEP method, which compiles mathematical expressions
into chromosomes and iteratively discovers the equation that is suitable for describing the
training data by mimicking the natural law of evolution. The flowchart of DHC-GEP is
shown in figure 2(a). It starts with creating Ni random individuals of initial population.
Each individual has two forms: genotype (chromosome (CS)) and phenotype (expression
tree (ET)). Phenotype is the expression product of genotype. Each CS is composed of one
or more genes. A specific schematic diagram of a gene is shown in figure 2(b). There
are two parts in a gene, i.e. head and tail. The head consists of the symbols from the
function set or terminal set, while the tail consists of only symbols from the terminal set.
The function set and terminal set are both predefined according to the specific problem.
For the problems in this work, the function set includes basic mathematical operators
(+, −, ×, ÷). If necessary for other problems, the function set can also include nonlinear
functions such as sin, cos and even user-defined functions. The terminal set includes the
symbols of variables and physical constants. Taking the first symbol of the gene as the
root node, we can translate the gene into the ET (shown in figure 2b) through level-order
traversal according to the argument requirement of each function. Note that the final
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Create individuals of initial population

Individual 1

CS 1 ET 1
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CS 2 ET 2
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CS Ni ET Ni

…

Evaluate loss

Execute each program

Individual 1

ET 1 ME 1

Individual 2

ET 2 ME 2

Individual Ni
ET Ni ME Ni

…f1(X,ϑ) f2(X,ϑ) fNi(X,ϑ)

Input data

Iterate?

Output
Y = f (X,ϑ)

Best individual?

Selection

(a)

÷ u u uμ

Head
Length: n

Tail
Length: n × (h – 1) + 1

Open reading frame

Function set:
{+, –, ×, ÷}

Terminal set:
{α, μ, u, p, θ}

Gene ET
(b)

New individuals of next generation

ME p + u ÷ μ × θ

No

No

Yes

Yes

Reproduction

Replication
Mutation
Transposition
Recombination

Dimensional verification
Invalid

Valid

×

u

p

L, M, T, I, Θ, N, J

Step 1. Assign prime number tags to base dimensions

=

Step 2. Derive the tags for derived variables

[u] = L/T
[ρ] = M/L3

[θ] = L2/T2

[ p] = M/(LT2)

2, 3, 5, 7, 11, 13, 17

u : 2/5

ρ: 3/23

θ: 22/52

p : 3/(2*52)

Step 3. Calculate dimensions with number tags

Step 4. Compare tags

(3/(2*52))

(22/52)

(22/52) (3/23)

(22/52) (22/52) (2/5)

False

False

(3/2 3)

(c)

p pθ θ

θ

×+

ρ

θθ

×

+ ρ

θ

×

+

u

+

μ

÷

p

t

Figure 2. Main characteristics of DHC-GEP. (a) Flowchart of DHC-GEP. (b) Schematic diagram of a gene
and its corresponding expression tree and mathematical expression. (c) Strategy of dimensional verification.

four symbols are not expressed, and the region before them is called ORF. The length
of ORF is variable, which is determined by the argument requirement of the function
nodes in the head. On the contrary, the length of gene is fixed, preventing the individuals
from bloating. Assuming the length of the head is n, then the length of the tail must be
n × (h − 1) + 1, where h is the maximum number of arguments in the functions. Four
genes with different ORFs are shown in figure 3. Although the four genes have the same
length, the complexities of their expression products are different. Therefore, ORF is the
decisive factor that ensures the diversity of expression products and the strong expressivity
of DHC-GEP. This is also the reason that the length of the head determines only the upper
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Gene 1

(a) (b)

(c) (d )

ET 1

Gene 2

ET 2

Gene 3

ET 3

Gene 4

ET 4

u puρθ θ u

u

θ×

×

+

+ –

–

u puρρ θθ

ρθ

ρθ

θ

θ uθ×

u puρθθ θ uθ×

××

+

+

u puρρ θθ

ρθ

θ

θ

θ

θ uθ

Figure 3. Four genes with different ORFs.

limit of complexity, not the lower limit. When discovering unknown governing equations, a
relatively long head would be a good choice. Because with ORF, a long gene can represent
either a simple equation or a complex equation.

Then, via dimensional verification (which will be introduced in § 2.2.2), all the
individuals are classified into valid individuals and invalid individuals according to
whether they satisfy the dimensional homogeneity. The valid individuals would be
translated into mathematical expressions (MEs) and evaluated for losses with input data
according to the loss function, which is defined using the mean relative error (MRE) as

LMRE = 1
N

N∑
i=1

∣∣∣∣∣ Ŷ i − Yi

Yi

∣∣∣∣∣. (2.9)

Here, the variable with a superscript ∧ is the predicted variable, and N is the total
number of data points. The invalid individuals would be directly assigned a significant
loss and eliminated in the subsequent iterations. The best individual (with the lowest loss)
is replicated to the next generation directly. Other individuals are selected as superior
individuals with probabilities that are inversely proportional to their losses. Based on
the superior individuals, the population of the next generation is reproduced via genetic
operators. Common genetic operators include replication, mutation, transposition and
recombination. The schematic diagrams of them are shown in figure 4; the details are
introduced as follows.

(i) Replication is responsible for copying the selected superior individuals to the next
generation. After replication, the population maintains the same size as the initial
population.

(ii) Mutation is a change in some symbols of the genes. To maintain the structural
organization of the genes, the symbols in the head can be changed into either
functions or terminals, while the symbols in the tail can only be changed into
terminals. In addition, note that mutations in genes do not necessarily lead to changes
in expression products, unless the mutation occurs in ORF.
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Mutation

Transposition (IS)

Transposition (RIS )

Recombination
(two-point)  

Recombination
(one-point)  

Parent Offspring

u p uReplication ρ θ θ× + –

u p uρ θ θ× + –

– u p uρ θ θ× +

– u p uρ θ θ× +

– u p uρ θ θ× +

– u u pρρ θ p×

– u u pρρ θ p×

– u p uρ θ θ× +

–

u p uρ θ θ× +

+

–

u p uρ θθ

θ

θ× –

pp uρ θ θ×

– u p uρρ θ θ

p uu ρ θ θ

×

– p puρθ× ×+

– u ρ

– u u ppρρ θ p

– uuρθ θ× ×+

Figure 4. Schematic diagrams of genetic operators.

(iii) Transposition is the replacement of a gene segment with another position.
Specifically, it includes insertion sequence (IS) transposition, root insertion
sequence (RIS) transposition and gene transposition. For IS transposition, a short
segment with a function or terminal in the first position is transposed to the head of
the genes. The length of the transposed segment and the insertion site are randomly
selected. The sequence before the insertion site remains unchanged. The sequence
after the insertion site is shifted backwards as a whole, and the last symbols (as
many as the length of the transposed segment) of the head are deleted. The RIS
transposition is similar to IS transposition, except that the first position of the
transposed segment must be a function, and the insertion site must be the root.
Gene transposition occurs in the CSs that consist of multiple genes. During gene
transposition, one gene switches position with another gene.

(iv) Recombination is an exchange of gene segments between two selected parent
CSs, including one-point recombination, two-point recombination and gene
recombination. For one-point recombination, one bond is randomly selected as the
crossover point. Then, both selected CSs are cut at this point, and exchange the
segments after the crossover point. For two-point recombination, two crossover
points are selected, and the exchanged segments are between these two points. For
gene recombination, the exchanged segment is an entire gene.

Note that the genetic operators, except replication, are not necessarily invoked in every
CS, but are invoked with certain probabilities. In this work, the probabilities of the genetic
operators being invoked refer to Ferreira (2006), listed in table 1, which were concluded
from various examples via the trial-and-error approach.

The above processes are iteratively conducted until a satisfactory individual is obtained.
Specifically, in benchmark studies, we manually terminate the evolution when the target
equation is discovered. In cases of discovering the unknown constitutive relations, the
evolution is terminated automatically if the optimal equation remains unchanged for 1000
consecutive generations.
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Genetic operator Probabilities

Mutation 0.05
Inversion 0.1
IS transposition 0.1
RIS transposition 0.1
Gene transposition 0.1
One-point recombination 0.3
Two-point recombination 0.2
Gene recombination 0.1

Table 1. Probabilities for genetic operators being invoked.

Other advanced knowledge is provided in the appendices, including the Dc domain
(Appendix B) for generating numerical constants and the linear scaling (Appendix C) for
discovering numerical coefficients.

2.2.2. Dimensional verification
The dimensional verification is the additional process to implement the constraint of
dimensional homogeneity, and is introduced as follows (a simplified version is shown in
figure 2c). The general form of a governing equation is assumed to be

Y = f (X , ϑ). (2.10)

Here, Y is the target variable, and f (·) is the mathematical expression coded by a CS.
Here X and ϑ represent variables and physical constants, respectively. Dimensional
homogeneity means that f (·) should have the same dimension as Y , and every part in
f (·) should satisfy the constraint that the parameters for operators + or − must have the
same dimensions.

Generally, dimensional verification includes calculating the dimension of f (·) and
comparing it with the dimension of Y . For calculating dimensions, there are five principles
that should be noted.

(i) Computers cannot directly deal with symbolic operations, but only numerical
operations.

(ii) In SI units, there are seven base dimensions: length (L); mass (M); time (T); electric
current (I); thermodynamic temperature (Θ); amount of substance (N); luminous
intensity (J). The dimensions of any other physical quantities can be derived by
powers, products or quotients of these base dimensions.

(iii) Base dimensions are independent of each other. Any dimension cannot be derived
by other base dimensions.

(iv) Physical quantities with different dimensions cannot be added or subtracted. Adding
or subtracting the physical quantities with the same dimension does not change the
dimension.

(v) When physical quantities are multiplied or divided, the corresponding dimensions
are multiplied or divided equally.

Considering the above principles, we propose to assign number tags to physical
quantities and replace the dimensional calculations with numerical calculations. For the
seven base dimensions, the tags are 2, 3, 5, 7, 11, 13 and 17, respectively. These numbers are
prime numbers, ensuring that the base dimensions are independent of each other. The tags
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Algorithm 1 Modified addition function
1 Input: tags for the input variables, denoted by a and b
2 Modified_addition(a,b):
3 If a or b is bool value: (# Indicates that this equation has been proved to be invalid at previous nodes.)
4 Return False (# Continue transfer the message that this equation is invalid.)
5 If a is integer: (# Indicates that the input variables is a numerical constant.)
6 Assign 1/1 (i.e. 1 in the form of fraction) to a (# Assign the number tag 1 to the numerical constant.)
7 If b is integer: (# Indicates that the input variables is a numerical constant.)
8 Assign 1/1 (i.e. 1 in the form of fraction) to b (# Assign the number tag 1 to the numerical constant.)
9 If a is equal to b: (# Indicates that the input variables have the same dimensions.)
10 Return a (# Return the tag for any input variables as the tag for this node.)
11 Else: (# Indicates that the input variables do not have the same dimensions.)
12 Return False (# Judge that this equation is invalid.)

Algorithm 2 Modified multiplication function
1 Input: tags for the input variables, denoted by a and b
2 Modified_multiplication(a,b):
3 If a or b is bool value: (# Indicates that this equation has been proved to be invalid at previous nodes.)
4 Return False (# Continue transfer the message that this equation is invalid.)
5 If a is integer: (# Indicates that the input variables is a numerical constant.)
6 Assign 1/1 (i.e. 1 in the form of fraction) to a (# Assign the number tag 1 to the numerical constant.)
7 If b is integer: (# Indicates that the input variables is a numerical constant.)
8 Assign 1/1 (i.e. 1 in the form of fraction) to b (# Assign the number tag 1 to the numerical constant.)
9 Return a×b in the form of fraction (# Return the product of the tags for the input variables as the tag for this node.)

for other physical quantities are derived according to their dimensions. For example, as
the dimension of velocity is length divided by time (L/T), its tag is defined as 2/5.
It is noteworthy that the tags are always in the form of fractions rather than floats to
avoid truncation errors. The tags for numerical constants and dimensionless quantities
are set to 1. In addition, according to the last two principles, we modify the operation
rules of mathematical operators. The pseudocodes for addition (+) and multiplication
(×) are provided in Algorithm 1 and Algorithm 2, respectively. Subtraction (−) and
division (÷) are defined in similar ways. With the number tags and modified mathematical
operators, we can compute the dimension of each node in the ET from the bottom up. If the
parameters for one function node (+ or −) do not have the same dimension, the individual
is directly identified as invalid one. Otherwise, we can calculate the specific dimension
of the individual, i.e. the number tag for the root node. Comparing it with the tag for the
target variable, we can conclude whether the individual is dimensionally homogeneous.

Note that the datasets and source codes used in this work are available on GitHub at
https://github.com/Wenjun-Ma/DHC-GEP.

3. Demonstration on benchmark studies

3.1. Diffusion equation
We employ the DSMC method to simulate a two-dimensional diffusion flow in a square
domain, as shown in figure 5(a). The side length of the square is L = 100λ, and λ is
the mean free path of argon gas molecules under standard conditions (pressure p =
1.01 × 105 Pa and temperature T = 273 K), i.e. λ = 6.25 × 10−8 m. As a result, the
Knudsen number (Kn = λ/L) is 0.01. All the four sides are set to periodic boundaries.
The simulation includes only argon gas, which is divided into two species, denoted as
species-A and species-B, respectively. At the initial instant, the density distributions of
these two species are ρA = 0.5ρ0(1 − cos(2πy/L)) and ρB = 0.5ρ0(1 + cos(2πy/L)),
respectively. Here, ρ0 = 1.78 kg m−3 is the density of argon gas under standard conditions,
and y is the spatial coordinate in the vertical direction. The initial macroscopic velocity is
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Figure 5. (a) Schematic diagram of the computational domain for the diffusion flow. (b) Distributions of
density at the instants of t = 0, 200τ, 400τ, 600τ, 800τ, 1000τ .

uniformly zero. During simulation, the macroscopic velocity and the total density of the
two species remain uniform and unchanged, while the respective densities of these two
species vary with space and time.

The computational domain is divided into 256 × 256 cells, which means that the cell
size (Δx, Δy) is approximately 0.4λ. In each cell, 4000 simulation molecules are randomly
distributed at the initial instant, with one simulation molecule representing 4 × 106 real
molecules. The initial thermal velocity for each simulation molecule is sampled randomly
from a Maxwell distribution at 273 K. The computational time step (Δt) is 0.1τ , where
τ is the mean collision time of argon gas molecules under standard conditions with the
definition of τ = λ/c̄. Here, c̄ is the molecular mean velocity, i.e. c̄ = √

8kBT/πm, where
kB and m are the Boltzmann constant and molecular mass, respectively.

Note that the density varies only along the vertical direction. We average the data along
the horizontal direction to reduce the statistical errors. During simulation, we sample
the macroscopic densities of species-A at the instants of t = 0, 10τ, 20τ, . . . , 1000τ . The
temporal evolution of density distributions is shown in figure 5(b). The final dataset is
composed of 25 856 (256 × 101) data points that are distributed in 256 cells along the
vertical direction at 101 instants.

The theoretical governing equation of this flow is the diffusion equation, i.e.

∂ρ

∂t
= D

∂2ρ

∂y2 . (3.1)

Here, D is the diffusion coefficient. According to the Chapman–Enskog theory (Chapman
& Cowling 1990), the diffusion coefficient for an HS gas at the first-order approximation
is

D = 3π

16
λ2

τ
. (3.2)

Therefore, for the argon gas in our simulation, D equals 1.40 × 10−5 m2 s−1.
Before using the dataset generated by DSMC, we test DHC-GEP and Original-GEP

on a clean dataset. The only difference between the DSMC dataset and the clean dataset
lies in the target variable (∂ρ/∂t). In the clean dataset, ∂ρ/∂t is directly computed based
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on D and ∂2ρ/∂y2, according to (3.1). We define the function set as {+, −, ×, ÷}, and
the terminal set as {μ, D, ∂ρ/∂y, ∂2ρ/∂y2, ∂3ρ/∂y3}. Here, μ is the viscosity coefficient,
and is introduced as a distraction term. According to the Chapman–Enskog theory
(Chapman & Cowling 1990), μ equals (5π/32)(λ2/τ)ρ = 2.08 × 10−5 kg m−1 s−1.
All the hyperparameters are set to be the same for both GEP methods across all cases
(see Appendix E). The derived equations are shown in table 2. It can be observed that
the derived equation of DHC-GEP is consistent with the theoretical equation, while the
derived equation of Original-GEP is partially correct. Specifically, Original-GEP identifies
the correct function form and coefficient (1.40 × 10−5). In the view of data fitting, this is a
correct result. However, Original-GEP fails to recognize that the coefficient (1.40 × 10−5)
preceding the diffusion term represents the diffusion coefficient. Consequently, while the
resulting equation may be numerically accurate, it lacks complete physical significance.
For another diffusion flow with a different diffusion coefficient, the derived equation of
Original-GEP is no longer valid, while the derived equation of DHC-GEP is generally
applicable.

Subsequently, we test DHC-GEP and Original-GEP on the DSMC dataset. All settings
are consistent with those in the test on the clean dataset. The derived equations are shown
in table 2. The coefficient of the equation discovered by DHC-GEP has a minor deviation
from that of the theoretical equation, and the loss is not zero. This is because DSMC is a
stochastic molecule-based method, the data of which are inherently noisy. It is impossible
for DSMC to simulate a flow with the diffusion coefficient being exactly 1.40 ×
10−5 m2 s−1. Small fluctuations around the theoretical value are acceptable. In addition,
calculating derivatives also introduces errors. Therefore, we believe that DHC-GEP has
discovered the correct equation, while the derived equation of Original-GEP is clearly
wrong for not satisfying the fundamental dimensional homogeneity. Besides, we generate
another dataset of diffusion flow with a diffusion coefficient being 3.0 × 10−5 m2 s−1 and
calculate the losses of the two derived equations based on the new dataset. The losses
for the derived equations of Original-GEP and DHC-GEP are 0.55 and 0.06, respectively.
Therefore, the equation obtained by Original-GEP is clearly overfitting, while the equation
obtained by DHC-GEP is generally applicable in different diffusion flows.

To test the sensitivity of DHC-GEP to hyperparameters, we conduct a parametric study
on the length of the head, the number of genes in a CS and the number of individuals
in a population. Specifically, the parameter spaces for these three hyperparameters are
set to {10, 11, 12, 13, 14, 15}, {1, 2} and {800, 1000, 1200, 1400, 1600, 1660}, respectively,
resulting in a total of 72 (6 × 2 × 6) distinct parameter combinations. Other
hyperparameters are kept unchanged, including the probabilities of invoking the genetic
operators and the maximum number of evolution generations. In all 72 sets of parameter
combinations, DHC-GEP consistently discovers the correct equation. In contrast,
Original-GEP discovers 71 completely different results, all of which are overfitting and
fail to satisfy the dimensional homogeneity constraint despite their lower losses than the
correct equations.

Considering that DSMC is a simulation method at mesoscale, which coarse grains
the molecular description to the hydrodynamic regime (Hadjiconstantinou 2000), the
influence of the coarse graining on the derived equations of DHC-GEP is discussed.
For the same computational domain, we employ seven sets of sampling cells with
different resolutions (256 × 256, 128 × 128, 64 × 64, 32 × 32, 16 × 16, 8 × 8, 4 × 4) to
acquire macroscopic physical quantities. The derived equations based on these datasets
are summarized in table 3. It is encouraging to note that DHC-GEP is still capable
of discovering the correct equation when the resolution is 16 × 16 and the size of the
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Resolution of
sampling
cells

Size of sampling cells Derived equation Loss

256 × 256 0.4λ
∂ρ

∂t
= 0.984D

∂2ρ

∂y2 0.027

128 × 128 0.8λ
∂ρ

∂t
= 0.986D

∂2ρ

∂y2 0.024

64 × 64 1.6λ
∂ρ

∂t
= 0.994D

∂2ρ

∂y2 0.027

32 × 32 3.1λ
∂ρ

∂t
= 0.990D

∂2ρ

∂y2 0.045

16 × 16 6.3λ
∂ρ

∂t
= 1.001D

∂2ρ

∂y2 0.038

8 × 8 12.5λ
∂ρ

∂t
= 0.791

(
D + μ

ρ

)
∂2ρ

∂y2 0.445

4 × 4 25λ
∂ρ

∂t
= −0.075

(
D

∂ρ

∂y
∂2ρ

∂y2 + (μ + Dρ)
∂3ρ

∂y3

)
/
∂ρ

∂y
0.516

Theoretical equation
∂ρ

∂t
= D

∂2ρ

∂y2

Table 3. Derived equations of DHC-GEP based on the datasets with different resolutions.

sampling cells is up to 6.3λ. From the results, it can be concluded that DHC-GEP is robust
to coarse graining, as long as the sampled data can accurately capture the gradients of
macroscopic quantities.

In DHC-GEP, the overfitting results are automatically filtered out due to not satisfying
the dimensional homogeneity. On the contrary, Original-GEP always favours the equations
with smaller loss, so it tends to converge to overfitting results if data are noisy. Our
numerical experiences show that Original-GEP may discover the correct equations only
when tuning the hyperparameters repeatedly and terminating the evolution at a proper
generation (when overfitting equations have not appeared).

We compare the computational cost needed per 1000 generations of evolution. Based
on the 3.5 GHz Intel Xeon E5-1620 processor, the average CPU runtime of Original-GEP
(443 s) is almost twice that of DHC-GEP (216 s). The main reason is that DHC-GEP
can identify some individuals as invalid through dimensional verification and then skip
the process of evaluating losses for these individuals. It can still save computational time
despite the extra expense of dimensional verification. Additionally, as the complexity of
the problem increases, the number of invalid individuals also increases, so the advantage
of the computational efficiency of DHC-GEP becomes more significant.

Furthermore, we conduct a much more challenging test in which we do not
include the transport coefficients in the terminal set. Specifically, the terminal set is
{τ, λ, ∂ρ/∂y, ∂2ρ/∂y2, ∂3ρ/∂y3}, which involves only the fundamental physical property
parameters of gas (molecular mean collision time (τ ) and molecular mean free path (λ)),
but excludes the diffusion coefficient (D). Other hyperparameters are the same as those in
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Figure 6. Temporal evolution of vorticity. (a) Taylor–Green vortex at the instants of t = 0, 100τ, 200τ . Here, τ
and λ are the mean collision time and mean free path of argon gas molecules at standard condition, respectively.
(b) Viscous flow around a cylinder at the instants of t = 0 s, 3 s, 6 s.

the original test. The derived equation is

∂ρ

∂t
= 0.579

λ2

τ

∂2ρ

∂y2 . (3.3)

According to (3.2), the coefficient (0.579(λ2/τ)) is essentially the diffusion coefficient.
This result demonstrates that DHC-GEP has the capability to derive accurate equations
with minor prior knowledge of the essential transport coefficients, and can deduce the
essential transport coefficients from fundamental physical property parameters using
dimensional homogeneity as a constraint.

3.2. Vorticity transport equation
We employ DSMC to simulate the temporal evolution of a Taylor–Green vortex, as shown
in figure 6(a). The simulation model is approximately the same as that of diffusion flow,
including simulation conditions, geometry and boundary conditions. The major difference
is that the initial distribution of macroscopic velocity is a Taylor–Green vortex,{

u = v0 cos(x) sin( y),
v = −v0 sin(x) cos( y), (3.4)

where u and v are the velocities in the horizontal (x) and vertical (y) directions,
respectively, and v0 is the initial amplitude of velocity and equals 30 m s−1 in our
simulation.

The computational cell and time step are set the same as those in the diffusion flow.
Additionally, we introduce sampling cells. In this case, each sampling cell consists
of 16 computational cells, i.e. the whole computational domain has 64 × 64 sampling
cells. The macroscopic physical quantities obtained with sampling cells are cleaner than
those obtained with computational cells, due to more molecules being sampled in each
cell. In addition, to further reduce the statistical errors, 10 independent simulations are
conducted with different random number sequences to make an ensemble average. During
simulation, we sample the macroscopic velocities (u, v) and vorticities (ωz) at the instants
of t = 0, 10τ, 20τ, . . . , 310τ . The final dataset is composed of 131 072 (64 × 64 × 32)
data points distributed in 64 × 64 sampling cells at 32 instants.
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The theoretical governing equation is the vorticity transport equation,

∂ωz

∂t
= υ

(
∂2ωz

∂x2 + ∂2ωz

∂y2

)
−
(

u
∂ωz

∂x
+ v

∂ωz

∂y

)
. (3.5)

Here, ωz is the vorticity in the z direction. υ is the kinematic viscosity and approximately
equals 1.17 × 10−5 m2 s−1. Compared with the diffusion equation (3.1), this equation is
more complex, involving multiple variables and nonlinear terms.

In this case, we define the target variable as ∂ωz/∂t, the function set as {+, −, ×, ÷},
and the terminal set as {υ, u, v, ωz, ∂u/∂x, ∂2u/∂x2, ∂u/∂y, ∂2u/∂y2, ∂v/∂x, ∂2v/∂x2,
∂v/∂y, ∂2v/∂y2, ∂ωz/∂x, ∂2ωz/∂x2, ∂ωz/∂y, ∂2ωz/∂y2}.

We also test the performances of DHC-GEP on the clean dataset and the DSMC dataset
sequentially. The results are provided in table 2. An interesting observation is that the
derived equations of DHC-GEP miss two convective terms (u(∂ωz/∂x), v(∂ωz/∂y)). This
is caused by the unique feature of the Taylor–Green vortex. The analytical solution of the
Taylor–Green vortex is

⎧⎨
⎩

u = v0 cos(x) sin( y)exp(−2υt),
v = −v0 sin(x) cos( y)exp(−2υt),
ωz = −2v0 cos(x) cos( y)exp(−2υt).

(3.6)

Substituting (3.6) into the convective terms (u(∂ωz/∂x), v(∂ωz/∂y)), it is clear that the
sum of the convective terms is automatically zero. Therefore, the equations without
convective terms are also correct for the Taylor–Green vortex. It can be considered as a
specialized variant of the complete vorticity transport equation in the Taylor–Green vortex.

To discover the complete vorticity transport equation and validate the performance of
DHC-GEP on discovering nonlinear terms, we further consider a viscous flow around a
cylinder at Reynolds number being 100, as shown in figure 6(b). The dataset is the open
access dataset provided by Rudy et al. (2017), and the theoretical governing equation is

∂ωz

∂t
= 0.01 ·

(
∂2ωz

∂x2 + ∂2ωz

∂y2

)
−
(

u
∂ωz

∂x
+ v

∂ωz

∂y

)
. (3.7)

For the sake of simplicity, we regard the data as dimensional data with kinematic
viscosity υ = 0.01 m2 s−1. We randomly sampled 200 spatiotemporal data points from
the Taylor–Green vortex dataset and another 200 spatiotemporal data points from the
flow around cylinder dataset, forming a hybrid dataset consisting of 400 spatiotemporal
data points. The hyperparameters of DHC-GEP are consistent with those in the case of
the Taylor–Green vortex. The results are provided in table 2. The DHC-GEP discovers
the correct and complete vorticity transport equation. This demonstrates that in some
special cases, where the overfitting equations may satisfy the dimensional homogeneity
and fit well with the training data, employing multiple datasets can help mitigate
overfitting. Overfitting equations are generally dataset specific. While an overfitting
equation may adequately describe a particular dataset, it cannot be expected to generalize
well to multiple datasets. Besides, note that the training dataset consisting of 400
spatiotemporal data points is relatively small. Generally, if the size of dataset is small,
the information carried by data is sparse, leading to the derived equations overfitting to
specific phenomena. However, in DHC-GEP, the overfitting equations are automatically
filtered out by the constraint of dimensional homogeneity.
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4. Application on discovering unknown constitutive relations

The general governing equations for fluid flows are the conservation equations of mass,
momentum and energy, as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Dρ

Dt
+ ρ

∂vk

∂xk
= 0,

ρ
Dvi

Dt
+ ∂p

∂xi
+ ∂τik

∂xk
= ρFi,

3
2

Dθ

Dt
+ ∂qk

∂xk
= −(pδij + τij)

∂vi

∂xj
.

(4.1)

Here, D/Dt = ∂/∂t + vi(∂/∂xi) is the substantial derivative, and θ = kBT/m is the
temperature in energy/mass units. Besides the five basic physical variables ρ, vi and
θ , there are eight additional variables, i.e. the viscous stress τij and heat flux qi. To
numerically solve (4.1), the additional constitutive relations that close the viscous stress
and heat flux are needed. In the continuum regime, the NSF equations are widely
employed, which assumes that the viscous stress/heat flux is linearly proportional to the
local strain rate/temperature gradient. However, for strong non-equilibrium flows, the NSF
equations are not valid (Boyd, Chen & Candler 1995).

Alternatively, high-order constitutive relations have been derived from the Boltzmann
equation using the Chapman–Enskog method (Chapman & Cowling 1990), including
Burnett equations (Burnett 1936), super-Burnett (Su-Burnett) equations (Shavaliyev 1993)
and augmented-Burnett (Au-Burnett) equations (Zhong, MacCormack & Chapman 1993),
to account for the non-equilibrium effects. However, despite being proven to be superior
to NSF equations, these equations are still unsatisfactory in strong non-equilibrium flows.
In this work, we employ DHC-GEP to discover the unknown constitutive relations in two
representative non-equilibrium flows, as the examples to illustrate how to apply DHC-GEP
to discover unknown governing equations.

To avoid any potential misleading, it is important to emphasize that we do not employ
DHC-GEP to discover the complex governing equations like (4.1). In this work, we are
focused on discovering the constitutive relations for the two unclosed variables within
(4.1), i.e. the viscous stress and heat flux.

4.1. One-dimensional shock wave
In the research community of non-equilibrium flows, the one-dimensional shock wave is
a benchmark to validate solvers and formulations in numerical computations. We employ
DSMC to simulate the one-dimensional shock wave of argon gas, the general structure of
which is shown in figure 7.

The one-dimensional shock essentially connects two equilibrium states. In this work, for
upstream (i.e. the free stream), the temperature (T1) is 300 K, the density (ρ1) is 1.067 ×
10−4 kg m−3 and the mean free path (λ1) is 1.114 × 10−3 m. For downstream, the state
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Figure 7. General structure of one-dimensional shock. Each variable is normalized with its maximum value
in the computational domain.

… …

Upstream

0.25λ1 30λ1
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x

y

Figure 8. Schematic diagram of the computational domain for one-dimensional shock.

variables are computed with Rankine–Hugoniot relations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T2 = (5Ma2∞ − 1)(Ma2∞ + 3)

16Ma2∞
T1,

ρ2 = 4Ma2∞
Ma2∞ + 3

ρ1,

v2 = Ma2∞ + 3
4Ma2∞

v1.

(4.2)

Here, Ma∞ and v1 are the Mach number and velocity of the free stream, respectively. Note
that for this one-dimensional problem, the velocity direction of each position in the flow
field is along the x direction, and all the flow variables vary along only the x direction.
Therefore, we set one cell along the y and z directions, but 120 cells along the x direction.
A schematic diagram is shown in figure 8. The lengths of the computational domain and
computational cell are 30λ1 and 0.25λ1, respectively. The time step is 0.1τ .

During simulation, we sample the macroscopic velocities (u), densities (ρ),
temperatures (T) and heat flux in the x direction (qx) at the instants of t =
10 000τ, 10 010τ, 10 020τ, . . . , 50 000τ . Then, we obtain the final data by averaging all
the sample data.
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In this case, the target variable is defined as the heat flux in the x direction (qx). The
function set is defined as {+, −, ×, ÷} as usual, while the terminal set is meticulously
constructed to embed physics knowledge as follows.

(i) Constitutive relations describe the local transport mechanisms of momentum and
energy, and hence we regard local non-equilibrium parameters as key factors.
Specifically, the GLL Knudsen number defined as KnQ = (λl/Q)(∂Q/∂x) is
selected. The local non-equilibrium characteristics intensify as the increase of the
absolute value of KnQ. Here, λl is the local mean free path, and Q represents state
variables, including temperature (θ ) and density (ρ).

(ii) The transports of momentum and energy are driven by the gradients of
state variables. As a result, the gradient terms are selected, including
∂u/∂x, ∂ρ/∂x, ∂θ/∂x, ∂2u/∂x2, ∂2ρ/∂x2, ∂2θ/∂x2, ∂3u/∂x3, ∂3ρ∂x3 and ∂3θ/∂x3.

(iii) The state variables themselves are important factors. Besides, it is noteworthy that
the constitutive relations should satisfy Galilean invariance (Han et al. 2019; Li,
Dong & Wang 2021), which means that the constitutive relations cannot contain
velocity (u) explicitly outside the partial differential operators. The proof is provided
in Appendix F. Therefore, the state variables (θ and ρ) excluding velocity are
selected. This is also the reason that we do not select the GLL Knudsen number
of velocity.

(iv) The parameters representing the physical properties of gas are selected, including
local viscosity (μ), local heat conductivity (κ), heat capacity ratio (γ = 5/3 for
argon gas) and viscosity exponent (ω = 1 for Maxwell molecules).

Finally, the terminal set is {Knθ , Knρ, ∂u/∂x, ∂ρ/∂x, ∂θ/∂x, ∂2u/∂x2, ∂2ρ/∂x2,

∂2θ/∂x2, ∂3u/∂x3, ∂3ρ/∂x3, ∂3θ/∂x3, ρ, θ, μ, κ, γ, ω}.
Moreover, constitutive relations ought to satisfy the second law of thermodynamics.

Theoretically, whether a constitutive relation satisfies the second law of thermodynamics
can be determined through the Clausius–Duhem inequality (Comeaux 1995)

ρ
Dseq

Dt
+ ∇ · q

θ
= −1

θ
τ : ∇v − 1

θ2 q · ∇θ ≥ 0. (4.3)

The two terms on the left-hand side are the local increase rate of entropy and the reversible
outflow of entropy, respectively. The sum of the two terms on the right-hand side is
the total entropy production. The second law of thermodynamics demands that the total
entropy production must be non-negative. Note that the total entropy production is the
sum of subentropy productions of all high-order macroscopic variables (the viscous stress
τij and heat flux qi). If each subentropy production is non-negative, the total entropy
production is naturally non-negative. This work deals with the discovery of the constitutive
equation of a single high-order macroscopic variable, rather than all of them. Hence, the
entropy production discussed in this work refers to the contribution of a single high-order
macroscopic variable’s constitutive relation. Specifically, in the one-dimensional shock
wave case, the target variable is the heat flux in the x direction (qx), and thus the entropy
production considered here is

Sp,qx = − 1
θ2 qx

∂θ

∂x
. (4.4)

To ensure that the resulting constitutive equation satisfies the second law of
thermodynamics, we introduce this law as a constraint into the loss function (2.9).
Specifically, we incorporate the constraint in a soft form by adding a loss term (LSp) that
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represents the ratio of the number of the data points with negative entropy production to
the total number of data points. The modified loss function is

Loss = LMRE + αLSp = 1
N

N∑
i=1

∣∣∣∣∣ Ŷi − Yi

Yi

∣∣∣∣∣+ α
〈Sp〉−

N
. (4.5)

Here, the variable with a superscript ∧ is the predicted variable, and N is the total number
of data points. Here 〈Sp〉− is the operator that counts the number of data points with
negative entropy production, and α is the weighting factor that controls the importance of
the constraint.

We employ the DHC-GEP, combined with the constraint of the second law of
thermodynamics, to discover the underlying constitutive relation based on the data of two
cases with the free stream Mach number Ma∞ = 3.0 and 4.0. We sequentially set α to
0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. Each α corresponds to an independent
training run and a resulting equation with relatively low LMRE. Among them, the equation
with the smallest LSp is ultimately selected as the optimal equation. For this case, the
optimal equation is

qx = −0.468
(

6Knρ + Knθ

Knρ

+ Knρ

Knθ

)
κ

∂θ

∂x
, (4.6)

which is derived with α = 0.3. The entropy production is

Sp,qx = 0.468κ

θ2

(
6Knρ + Knθ

Knρ

+ Knρ

Knθ

)(
∂θ

∂x

)2

. (4.7)

According to figure 7, for the one-dimensional shock wave case, the gradients of
density and temperature are non-negative. Additionally, according to the definition
of the local Knudsen number (KnQ = (λl/Q)(∂Q/∂x)), both Knρ and Knθ are thus
non-negative. Therefore, from a mathematical perspective, the entropy production (4.7)
must be non-negative. As a comparison, whether the Burnett equation, augmented-Burnett
equation and super-Burnett equation satisfy the second law of thermodynamics is obscure
(Comeaux 1995).

We compare the results predicted by (4.6) with those predicted by the NSF equation,
the Burnett equation, the augmented-Burnett equation and the super-Burnett equation in
figure 9. For a quantitative comparison, we define the relative error as

error =

√√√√ N∑
i=1

(q̂x,i − qx,i)
2

√√√√ N∑
i=1

q2
x,i

. (4.8)

The relative errors for each constitutive relation are summarized in table 4. It can be found
that the derived constitutive relation of DHC-GEP exhibits higher accuracy than other
equations over a wide range of Ma∞, and is applicable to cases beyond the parameter
space of the training data, i.e. 2.0 ≤ Ma∞ < 3.0 and 4.0 < Ma∞ ≤ 5.5.

Furthermore, to investigate the sensitivity to hyperparameters in non-equilibrium cases,
we conduct a parametric study. Specifically, we focus on the sensitivity to the length of
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Figure 9. Comparisons of the NSF equation, Burnett equation, augmented-Burnett equation (Au-Burnett),
super-Burnett equation (Su-Burnett), derived equation of DHC-GEP and DSMC (exact solution) at Ma∞ =
2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 for the one-dimensional shock wave case.

the head, the number of genes in a CS and the number of individuals in a population.
The parameter spaces for these three hyperparameters are set to {10, 11, 12, 13, 14, 15},
{1, 2} and {800, 1000, 1200, 1400, 1600, 1660}, respectively, resulting in a total of 72
(6 × 2 × 6) distinct hyperparameter combinations. Other hyperparameters, including the
probability of invoking the genetic operators, are kept unchanged. Among the total of 72
distinct hyperparameter combinations, DHC-GEP successfully derives the same equation
as (4.6) based on 38 of these hyperparameter combinations. In contrast, Original-GEP
discovers 70 completely different results, all of which fail to satisfy even the fundamental
dimensional homogeneity constraint, let alone other physical constraints. It can be
concluded that in non-equilibrium cases, while DHC-GEP is not entirely insensitive to
model hyperparameters, it does exhibit significantly reduced sensitivity compared with
Original-GEP.

4.2. Rarefied Poiseuille flow
Poiseuille flow is a flow confined between two infinite, parallel and relative static plates.
The gas is driven by an external force in the x direction. The external force is uniformly
distributed along the y direction. A schematic diagram of Poiseuille flow is shown in
figure 10. The global Knudsen number (Kn) is defined as

Kn = λ
H

. (4.9)

Here, H is the distance between two plates, and λ is the mean free path of argon
gas molecules at standard condition. For different Kn, λ remains the same, while H
changes according to (4.9). The uniform external force is implemented through a uniform
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Figure 10. (a) Schematic diagram of Poiseuille flow. (b) Profiles of velocity, density and
temperature along the direction normal to the plate. Each variable (U) is normalized with
UNormal = (U − Umin)/(Umax − Umin).

Kn = 0.01 Kn = 0.1 Kn = 0.2 Kn = 0.3 Kn = 0.35 Kn = 0.4 Kn = 0.5 Kn = 0.6

Acceleration
(×109 m s−2)

3.31 320 444 716 856 986 1240 1490

Table 5. Accelerations for different Kn.

acceleration in molecular simulations. The accelerations for different Kn are listed in
table 5.

All the flow variables vary along only the y direction. Therefore, we set one
cell along the x and z directions, but 3000 cells along the y direction. The
time step is 0.2τ . During simulation, we sample the macroscopic velocities (u),
densities (ρ), temperatures (T) and viscous shear stress (τxy) at the instants of
t = 100 000τ, 102 000τ, 104 000τ, . . . , 1 000 000τ . Then, we obtain the final data by
averaging all the sample data. In addition, to avoid the influence of boundary conditions,
we subsample the data points in the region of 0.1H ≤ y ≤ 0.9H to form the training
dataset.

In this case, the target variable is defined as the viscous shear stress (τxy), and the
function set is defined as {+, −, ×, ÷}. The terminal set is almost the same as that in the
case of the one-dimensional shock wave, i.e. {Knθ , Knρ, ∂u/∂y, ∂ρ/∂y, ∂θ/∂y, ρ, θ, μ,

γ, ω}, except that the high-order gradients are removed. The motivation for removing
high-order gradients is that the derived constitutive relation should be applicable in CFD.
If containing high-order gradients, the constitutive relation would be unstable and require
additional boundary conditions (Bobylev 1982; Zhong et al. 1993; Struchtrup & Torrilhon
2003; Torrilhon & Struchtrup 2004; Singh, Jadhav & Agrawal 2017), which are the
common problems with the kind of Burnett equations. Besides, note that the GLL Knudsen
number in this case is defined as KnQ = (λl/Q)(∂Q/∂y).
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Figure 11. Comparisons of the NSF equation, Burnett equation, augmented-Burnett equation (Au-Burnett),
super-Burnett equation (Su-Burnett), derived equation of DHC-GEP and DSMC (exact solution) at Kn =
0.2, 0.3, 0.35, 0.4, 0.5 and 0.6 for the rarefied Poiseuille flow case. Note that the NSF equation is equal to
the Burnett equation in this case.

Similar to the one-dimensional shock wave case, we employ the DHC-GEP, combined
with the constraint of the second law of thermodynamics, to discover the underlying
constitutive relation based on the data for the cases of Kn = 0.01, 0.3 and 0.4. The optimal
equation is

τxy = −0.247

(
5

Kn2
ρ + γ

− Knθ

Knρ

)
μ

∂u
∂y

, (4.10)

which is derived with α = 0.7. The LSp for (4.10) is 0, which quantitatively indicates that
the entropy productions at all data points are non-negative.

We compare the results predicted by (4.10) with those predicted by the NSF equation,
the Burnett equation, the augmented-Burnett equation and the super-Burnett equation in
figure 11. The relative errors for each constitutive relation are summarized in table 6. It can
be found that the derived constitutive relation of DHC-GEP is much more accurate than
other equations in a wide range of Kn, and is applicable to cases beyond the parameter
space of the training data, i.e. 0.4 < Kn ≤ 0.6.

Moreover, note that for continuum flows, the GLL Knudsen numbers (Knρ and Knθ )
approach zero, and (4.10) reduces to

τxy = −0.247
(

5
γ

− Knθ

Knρ

)
μ

∂u
∂y

= −0.247
(

3 − Knθ

Knρ

)
μ

∂u
∂y

. (4.11)

Here, we used the value of γ = 5/3 for monatomic gas in the above equation. For the
Poiseuille flow in the continuum regime, the pressure along the y direction is observed
to remain constant. Taking the flow of Kn = 0.01 as an example, the pressure oscillates
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Kn = 0.01 Kn = 0.1 Kn = 0.2 Kn = 0.3 Kn = 0.35 Kn = 0.4 Kn = 0.5 Kn = 0.6

DHC-GEP 0.028 0.083 0.044 0.019 0.025 0.039 0.076 0.137
NSF/Burnett 0.029 0.659 0.844 1.233 1.426 1.606 1.963 2.318
Au-Burnett 0.029 0.594 0.697 0.805 0.783 0.687 0.264 0.667
Su-Burnett 0.030 0.921 1.435 2.948 4.012 5.306 9.045 14.000

Table 6. Relative errors of the derived equation of DHC-GEP, NSF equation, Burnett equation, Au-Burnett
equation and Su-Burnett equation for the rarefied Poiseuille flow case. Note that the NSF equation is equal to
the Burnett equation in this case.

approximately 0.5 % of its absolute value. Considering the ideal gas equation of state
ρ = p/θ , we can obtain

∂ρ = − p
θ2 ∂θ = −ρ

θ
∂θ. (4.12)

Then, combining (4.12) with Knρ = (λl/ρ)(∂ρ/∂y) and Knθ = (λl/θ)(∂θ/∂y), we can
conclude that Knθ /Knρ = ∂θ/∂ρ·ρ/θ = −1. Substituting this relation into (4.11) yields

τxy = −0.247(3 + 1)μ
∂u
∂y

≈ −μ
∂u
∂y

. (4.13)

Therefore, it can be concluded that in the continuum regime, the derived constitutive
relation of DHC-GEP can be reduced to NSF equations. This makes it applicable to
real complex flow problems, where flows tend to be multiscale, i.e. consisting of both
continuum flows and non-equilibrium flows.

Finally, we emphasize that as containing only the first-order gradient of velocity, the
derived constitutive relation is stable and requires the same boundary conditions as NSF
equations. It is convenient to embed it into the well-developed CFD frameworks with
minor modification.

5. Limitations and future works

Although DHC-GEP outperforms Original-GEP in the test cases investigated in this work,
it still exhibits certain limitations. Consequently, we objectively outline several limitations
associated with DHC-GEP and discuss the potential directions for future optimization as
follows.

(i) The DHC-GEP remains reliant on the prior knowledge of essential transport
coefficients present in the target models. Lacking such knowledge could impede the
discovery of meaningful relationships, rendering it impractical to address intricate
and unknown problems. Note that dimensional transport coefficients can be derived
from fundamental physical property parameters. Therefore, one alternative strategy
is incorporating fundamental physical property parameters, such as the molecular
mean collision time (τ ) and molecular mean free path (λ), into the terminal set. Our
advanced test presented in § 3.1, where the diffusion equation is discovered without
incorporating the diffusion coefficient into the terminal set, has preliminarily
demonstrated the feasibility of this strategy.

(ii) The DHC-GEP necessitates computing the derivatives of training data, which can
pose a notably ill-conditioned challenge, particularly in the presence of significantly
noisy training data. In future investigations, a critical research direction would be
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Figure 12. Comparisons of the results numerically computed with the DHC-GEP-derived/NSF constitutive
relations for the one-dimensional shock wave with Ma∞ = 3.0.

to explore the incorporation of the weak formulation utilized in the prior works
by Gurevich et al. (2019), Reinbold et al. (2020) and Alves & Fiuza (2022) into
DHC-GEP.

(iii) As an initial study on DHC-GEP, the two non-equilibrium test cases investigated
in this study are one-dimensional, and thus tensor symmetry and rotational
invariance have not been considered. The target variables of DHC-GEP in the
present work include scalars and one component of vectors (or tensors), which
cannot be generalized to discover the equation constituting of tensor variables for
higher-dimensional problems. A feasible avenue for future research is to incorporate
the dimensional homogeneity constraint into multidimensional GEP (M-GEP)
proposed by Weatheritt & Sandberg (2016), which modified Original-GEP for
the purpose of tensor modelling. Furthermore, in our work, the constraint of
dimensional homogeneity is integrated in a non-intrusive manner, which does not
alter the fundamental features of Original-GEP, including CS structure, expression
rules, selection and genetic operators. Therefore, the constraint of dimensional
homogeneity can be conveniently incorporated into other variants of genetic
programming such as M-GEP, as long as their individuals can be translated into
mathematical expressions.

(iv) The denominators of both (4.6) and (4.10) include the gradient-length local Knudsen
number (Knρ and Knθ ). In numerical calculation, these two equations would
become unstable and exhibit discontinuous jumps in the regions where density
and temperature are uniform and both local Knudsen numbers vanish. One feasible
solution is to use a relaxation technique. For instance, (4.6) can be relaxed to

qx = −0.444

(
6Knρ + Knθ + KnθKnρ − 0.01

Kn2
ρ + 0.01

+ KnθKnρ − 0.01
Kn2

θ + 0.01

)
κ

∂θ

∂x
. (5.1)

By embedding (5.1) into an open-source CFD solver, SU2 (Economon et al. 2016),
we can numerically solve the one-dimensional wave. Figure 12 shows the results for
a case with free stream Mach number of 3.0. It can be observed that the results based
on the DHC-GEP-derived constitutive relation exhibit excellent agreement with
DSMC simulations. It should be noted that this merely serves as a manual correction
method and does not fundamentally resolve the issue of possible singularities in
the obtained equations. To enable DHC-GEP to automatically yield equations that
require no further correction and can be employed in numerical computations, one
possible approach is to couple the evolutionary process of DHC-GEP with the
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numerical computation process. When evaluating the loss function of a particular
equation, it involves more than simply computing the discrepancy between the
stresses (or heat flux) predicted by the equation and those obtained from DSMC.
Instead, the equation would be embedded into the CFD numerical computation
program, and the equation is numerically solved. The computed velocity, density
and temperature are then compared with the DSMC results to obtain the discrepancy
between them as the loss value for the equation. This strategy provides a possible
way to yield equations that require no further corrections and can be utilized for
numerical computations, but also imposes higher demands on the computational
performance of computers.

(v) It is difficult for the present strategy (singly employing DHC-GEP) to discover a
real universal governing equation. For example, the derived constitutive relation
in the case of rarefied Poiseuille flow is definitely not universally valid for any
non-equilibrium flows. This equation is essentially a model equation for a specific
class of flows, the flow characteristics of which are similar to Poiseuille flow,
instead of the real universal constitutive relation. Considering the non-equilibrium
transport being complex, it is believed that the real universal constitutive relation
tends to be correspondingly complex, for instance, containing high-order gradients.
Although such constitutive relation is accurate, it is difficult or even impossible to
embed it into the present CFD frameworks. Therefore, it is not suitable for practical
engineering applications. Alternatively, we should focus on the model equations,
each of which is valid for a specific class of problem and is easy to use in practice.
One promising direction is combining clustering algorithms (Schmid et al. 2011;
Callaham et al. 2021) with DHC-GEP. Based on a complex flow that contains a
variety of flow characteristics, clustering algorithms can be first employed to divide
the flow into several subflows. Then, DHC-GEP is employed in each subflow to
discover the corresponding model equations. The derived constitutive relations in
the present work are two examples of all model equations. During specific numerical
computations, for each mesh point, we can first determine which subflow it belongs
to, and then apply corresponding model equations. It is noteworthy that although the
above discussions are based on non-equilibrium constitutive relations, they can also
be extended to other fields.

6. Conclusions

In this work, an improved algorithm for GEP is proposed, referred to as DHC-GEP. The
constraint of dimensional homogeneity is introduced to the Original-GEP method through
an additional dimensional verification process. The major features of Original-GEP are
not changed, including the structure of CSs, the rules of expression, selection and
reproduction. Therefore, DHC-GEP inherits the advantages of Original-GEP. Specifically,
DHC-GEP discovers the forms of functions and their corresponding coefficients
simultaneously. The resulting equations are constructed by randomly combining basic
elements in the terminal set and function set while satisfying the syntactic requirements
of the mathematical expression, rather than by linearly combining the predetermined
candidate functions, leading to great flexibility. The CSs in DHC-GEP have fixed
length, avoiding bloating and unaffordable computational costs that are common in
other evolutionary algorithms when dealing with complex problems. On the other
hand, the length of open reading frame is variable, ensuring strong expressivity. The
DHC-GEP is tested on two benchmark cases, including the diffusion equation and vorticity
transport equation. It is demonstrated that DHC-GEP is capable of discovering the right

985 A12-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

27
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.272


DHC-GEP for discovering governing equations

equations from both the views of data fitting and revealing physical principles, and the
result of DHC-GEP is more robust to hyperparameters, the noise level and the size
of datasets, compared with that of Original-GEP. When the data are noisy or scarce,
Original-GEP tends to converge to the overfitting results with lower loss. However, these
overfitting results can be automatically filtered out in DHC-GEP. Moreover, DHC-GEP
is more computationally economical than Original-GEP, as DHC-GEP can identify some
individuals as invalid individuals through dimensional verification and skip the process
of evaluating losses for these individuals. The total cost decreases despite the extra
expense of dimensional verification. These advantages make DHC-GEP a promising tool
for discovering unknown governing equations from molecular simulation data.

We also present how to employ DHC-GEP to discover the unknown constitutive
relations for two representative non-equilibrium flows, including a one-dimensional shock
wave and rarefied Poiseuille flow. We generate the datasets by DSMC, which does not
assume any governing equations. For other scientific and engineering disciplines, the
datasets could be generated by experiments or first principle calculations without any
assumptions of governing equations. Then, in these investigations for unknown equations,
we meticulously design the terminal set to incorporate pertinent physical knowledge, such
as Galilean invariance. Besides, the constraint of the second law of thermodynamics is
embedded via adding an additional loss term, which is related to entropy production, to
the loss function. Finally, based on the terminal and function sets, DHC-GEP conducts
a global search in the space of mathematical expressions until a satisfying equation is
obtained. For the two cases in our work, the derived constitutive relations are much
more accurate than the conventional equations derived based on physics knowledge and
phenomenological assumptions (including NSF, Burnett, augmented-Burnett equation and
super-Burnet equations) in a wide range of Knudsen number and Mach number, and are
even applicable to cases beyond the parameter space of the training data. In addition,
the physical properties of the derived constitutive relations are excellent. Specifically, the
derived constitutive relations contain only the first-order gradients, and hence are stable
and require the same boundary conditions as NSF equations. As a comparison, the kind
of Burnett equations are unstable, and cannot be exactly proven to satisfy the second law
of thermodynamics. It is convenient to embed the derived constitutive relations into the
well-developed CFD frameworks with minor modifications.

Acknowledgements. The authors thank D.A. Lockerby for providing stimulating discussions.

Funding. This work was supported by the National Natural Science Foundation of China (grant nos. 92052104
and 12272028). The results were obtained on the Zhejiang Super Cloud Computing Center M6 Partition.

Declaration of interests. The authors report no conflict of interest.

Data availability statement. The datasets and source codes used in this work are available on GitHub at
https://github.com/Wenjun-Ma/DHC-GEP.

Author ORCIDs.
Wenjun Ma https://orcid.org/0000-0001-5520-1262;
Jun Zhang https://orcid.org/0000-0002-3731-4594.

Author contributions. W.M., J.Z. and D.W. contributed to the ideation and design of the research; W.M.,
K.F. and H.X. generated the datasets; W.M. performed the research; W.M., J.Z. and D.W. wrote the paper.

985 A12-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

27
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/Wenjun-Ma/DHC-GEP
https://orcid.org/0000-0001-5520-1262
https://orcid.org/0000-0001-5520-1262
https://orcid.org/0000-0002-3731-4594
https://orcid.org/0000-0002-3731-4594
https://doi.org/10.1017/jfm.2024.272


W. Ma, J. Zhang, K. Feng, H. Xing and D. Wen

t y1

x y2

(a) Forward pass

(b) Backward pass
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∂Ŷ/∂y2

ω1

ω2

ω3

ω4

ω6

ω5

Figure 13. Schematic diagram of backpropagation. (a) The input variables are passed forward, and the
corresponding target variables are predicted at the output layer. (b) The gradients are propagated backwards
using the chain rule of differential calculus.

Appendix A. Automatic differentiation

The spatial and temporal derivatives are computed with AD, which conducts a
non-standard interpretation of a given computer program by replacing the domain
of the variables to incorporate derivative values and redefining the semantics of the
operators to propagate derivatives per the chain rule of differential calculus (Baydin
et al. 2018). Theoretically, AD can be implemented using any regression algorithms.
In this work, we utilize feedforward neural networks due to their exceptional fitting
capabilities, which have been widely validated in various regression problems. In
theory, multilayer feedforward neural networks can approximate any complex functional
relationship (Hornik, Stinchcombe & White 1989).

Specifically, we begin by constructing a standard feedforward neural network, with
spatial coordinates and time as inputs, and the physical variables to be fitted as outputs
(such as horizontal velocity (u), vertical velocity (v) and vorticity (ωz) in the case of
cylinder flow). All the available data are fed into the network for training, and the loss
function is defined using the mean squared error (MSE) as

LMSE = 1
N

N∑
i=1

(Ŷ i − Yi)
2, (A1)

where the variable with a superscript ∧ is the predicted variable, and N is the total
number of data points. Once training is completed, the derivatives of the physical variables
with respect to the input variables can be obtained by the backwards propagation of the
sensitivity of the objective value at the output layer, utilizing the chain rule of differential
calculus (see in figure 13).

The AD calculates the derivatives by accumulating values during code execution to
produce numerical derivative evaluations, instead of derivative expressions. This method
enables precise evaluation of derivatives at machine precision, with only a small constant
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Figure 14. The theoretical values of ∂2ωz/∂x2 and the numerical values computed with automatic
differentiation at the instants of t = 0, 100τ, 200τ . The contour lines represent the theoretical values, while
the colour regions represent the numerical values obtained through automatic differentiation.

factor of overhead and ideal asymptotic efficiency (Baydin et al. 2018). It is reported in
Raissi (2018) and Xu, Chang & Zhang (2019) that AD is more stable than finite differences
and polynomial interpolation with respect to noise, which is beneficial for discovering the
correct equations from noisy data. Another interesting point is that based on the trained
neural networks, it is also convenient to combine the output variables and compute the
derivatives of their combination with respect to input variables. Therefore, while not
validated in this work, it is promising to incorporate partial differential operators into the
function set by coupling the trained neural networks and DHC-GEP.

In this work, the feedforward neural networks have eight hidden layers, each with
20 neurons. During the training process, Adam optimization (Kingma & Ba 2014) is
employed for the first 20 000 iterations, after which L-BFGS-B optimization (Byrd et al.
1995) is utilized until convergence.

Moreover, to demonstrate the accuracy of the derivatives computed with this method,
we conduct a quantitative analysis based on the DSMC data of a Taylor–Green vortex.
Specifically, according to the analytical solution of the Taylor–Green vortex given in (3.6),
we can theoretically obtain the higher-order derivative term ∂2ωz/∂x2 as follows:

∂2ωz

∂x2 = 2v0 cos(x) cos( y)exp(−2υt) = −ωz. (A2)

Figure 14 shows the theoretical values of ∂2ωz/∂x2, which equals −ωz, and the numerical
values computed with automatic differentiation at the instants of t = 0, 100τ, 200τ .

At these three instants, the relative errors between the numerical and theoretical values
are 0.04, 0.03 and 0.03, respectively. Hence, this analysis preliminarily indicates that
the precision of the high-order derivatives obtained through automatic differentiation is
satisfactory.

In addition, we generate the accurate flow field of Taylor–Green vortex based on (3.6),
and then add noise of varying magnitudes into the accurate data. Specifically, the definition
of noise data is consistent with the approach in Gurevich et al. (2021). Taking vorticity as
an example, the vorticity data with noise is given by

ωz,σ = ωz + σN1sω. (A3)

Here, σ is the noise level, N1 is the sampled standard normal random variables at each
point in space and time and sω is the sample standard deviation of ωz. Based on the
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Noise level Relative error
(

∂2ωz

∂x2

)
Derived equation

2 % 0.053
∂ωz

∂t
= 1.048υ

(
∂2ωz

∂x2 + ∂2ωz

∂y2

)

4 % 0.054
∂ωz

∂t
= 1.054υ

(
∂2ωz

∂x2 + ∂2ωz

∂y2

)

6 % 0.058
∂ωz

∂t
= 1.040υ

(
∂2ωz

∂x2 + ∂2ωz

∂y2

)

8 % 0.063
∂ωz

∂t
= 1.033υ

(
∂2ωz

∂x2 + ∂2ωz

∂y2

)

10 % 0.134
∂ωz

∂t
= 1.006υ

(
− ∂2ωz

∂x2 + 3
∂2ωz

∂y2

)

Table 7. Relative error of AD-computed ∂2ωz/∂x2 and the corresponding derived governing equations at
different noise levels.

noisy data, we use AD to compute the derivatives and use DHC-GEP to discover the
underlying governing equations. Table 7 displays the relative error of AD-computed
∂2ωz/∂x2 compared with theoretical values, along with the corresponding derived
governing equations. It can be observed that when the noise level does not exceed 8 %,
AD is capable of accurately computing second-order derivative terms, and DHC-GEP
can discover correct governing equations. Xu et al. (2019) conducted a similar study, and
they found that with the assistance of the AD based on neural network without imposing
additional constraints, the sparse regression could discover the correct equations from
noisy data with a noise level of around 10 %. In comparison, the sparse regression using
polynomial interpolation, as described by Rudy et al. (2017), could, at best, discover the
correct equations from data with a noise level of around 1 %.

In general, given the remarkable fitting capabilities of neural networks, it is not difficult
to achieve accurate fitting and derivative calculations, as long as the training data can
represent the gradients. Nonetheless, it is imperative to clarify that if the training data are
overly scarce and noisy, the learned neural networks would fail to calculate the derivatives
correctly.

Appendix B. Dc domain

It is common to have numerical constants in governing equations. In the gene of GEP,
the numerical constants are represented by a special terminal ‘?’. During expression, the
‘?’ would be replaced with the random numerical constants (RNCs) from a predefined
array, under the guidance of a special domain called Dc domain. The Dc domain is an
additional domain behind the gene, and consists of the indices that determine which RNCs
are selected to replace the ‘?’. In this work, RNCs are randomly integers between −10 and
10. Indeed, RNCs could be selected from a broader range and are not inherently limited to
integers. Nevertheless, considering the utilization of the linear scaling technique, such an
extension appears unnecessary. This is because the multiplication of the scaling factor and
RNCs allows for the generation of arbitrary numerical constants, which is introduced in
Appendix C. Consequently, it is a common practice within the GEP community to define
RNCs as integers within the specified range of (−10, 10). A simple schematic diagram is
shown in figure 15. It is worth noting that, due to the introduction of negative constants,
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Figure 15. Schematic diagram of how the Dc domain works.

Genetic operator Probabilities

Dc specific mutation 0.05
Dc specific inversion 0.1
Dc specific transposition 0.1
Random constant mutation 0.02

Table 8. Probabilities for genetic operators of the Dc domain being invoked.

the subtraction operator in the function set is redundant. The inclusion of the subtraction
operator in this work is simply to maintain consistency with other researches relevant to
GEP.

In GEP, there are several genetic operators specifically for the Dc domain and RNCs,
including Dc inversion, Dc transposition and random constant mutation operators. These
genetic operators have similar mechanisms to the genetic operators introduced in § 2.2.1,
and are also invoked with certain probabilities, as listed in table 8.

Appendix C. Linear scaling

Generally, GEP discovers the structure of derived equations quickly, but struggles in
optimizing the numerical constants. For example, if the target equation is y = 9.7x2

(where y is the target variable and 9.7x2 is the mathematical expression that we want to
derive), GEP would discover x2 easily but struggles in discovering the numerical constant
(9.7), because the number space is relatively large. To address this issue, a linear scaling
technique was proposed in Keijzer (2003). Specifically, assuming that the mathematical
expression of a CS is g(x), then the scaling factor (ξ ) can be directly obtained as

ξ = y
g(x)

. (C1)

Revisiting the previous example, as long as GEP generates a CS with its mathematical
expression being ax2, where a can be any integer constant, the correct equation can be
discovered simultaneously since the scaling factor (9.7/a) of this CS can be easily obtained
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using (C1). In this fashion, GEP focuses on discovering the function structures, which is
its forte, and the linear scaling technique facilitates the identification of the appropriate
scaling factors.

It is important to note that in the example provided above, for the sake of simplification,
g(x) is represented as a simple monomial. However, it can be a linear combination
of multiple functional terms, such as g(x) = ax3 + bx2 + cx. Here, a, b and c are
integer constants, which are generated using the rules introduced in Appendix B. The
final equation is y = ξg(x) = aξx3 + bξx2 + cξx. Hence, the numerical constants are
determined by a joint influence of the scaling factor (ξ ) and the integer constants within
the CS.

Appendix D. Loss function

In this work, to evaluate the performances of individuals, we define the loss function using
the MRE as

LMRE = 1
N

N∑
i=1

∣∣∣∣∣ Ŷ i − Yi

Yi

∣∣∣∣∣. (D1)

Here, the variable with a superscript ∧ is the predicted variable, and N is the total number
of data points. In MRE, each data point receives equal attention, making it highly suitable
for this study. Since the constitutive relations reflect local momentum and energy transport
characteristics, it is imperative to treat each data point with equal attention.

Moreover, we emphasize that the selection of loss function should be jointly determined
based on the distribution of training data and the requirements of problems. It is
challenging to ascertain that a particular loss function is always the optimal choice for any
given problem. The MRE is suitable for this study, but it is not widely applicable to other
problems. The MRE is sensitive to outliers in the data. A single outlier can significantly
increase the relative error, affecting the stability and performance of the model during
training. In problems where strict equal attention to each data point is not needed, the
Huber loss (Huber 1992) is a better alternative, which is better equipped to handle outliers.

Appendix E. Hyperparameters

The three key hyperparameters in the GEP method are the length of the head, the number
of genes in a CS and the number of individuals in a population. The length of the head and
the number of genes in a CS determine the upper limit of the complexity of the derived
equation. The number of individuals in a population determines the diversity of individuals
in a population. Generally, a larger population means a greater diversity of individuals,
and a higher computational cost in an evolution as well. According to the parametric study
on the diffusion flow case (§ 3.1), we find that Original-GEP is quite sensitive to these
three hyperparameters. However, this is not the issue of DHC-GEP. Therefore, we keep all
hyperparameters consistent across all cases. Specifically, the length of the head is set to 15,
and the number of genes a CS is set to 2, ensuring that the upper limit of the complexity
of equations DHC-GEP could explore is sufficiently high. The number of individuals in
a population is set to 1660 to ensure that there are enough varieties of equations in each
generation.

The possibilities of the genetic operators being selected refer to Ferreira (2006), listed
in tables 1 and 8, which were concluded from various examples via the trial-and-error
approach.

985 A12-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

27
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.272


DHC-GEP for discovering governing equations

Appendix F. Proof of Galilean invariance

Galilean invariance is a fundamental property of physical laws, which has been proven to
be important for constructing constitutive relations with data-driven methods (Han et al.
2019, 2020; Huang et al. 2021; Li et al. 2021). Specifically, this means that the equation
forms of physical laws remain invariant in all inertial frames. Assuming that one inertial
frame (x′y′z′) moves at a constant speed (v0) with respect to another inertial frame (xyz),
the transformations of spatiotemporal coordinates between these two frames are{

r′ = r − v0t,

t′ = t.
(F1)

Here, r and r′ are the radius vectors. Moreover, the macroscopic state variables satisfy{
v′ = v − v0,

ρ′, θ ′, p′ = ρ, θ, p.
(F2)

The partial differential operators have the following relations:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂U
∂t′

= ∂U
∂t

· ∂t
∂t′

+ ∂U
∂r

·∂r
∂t

· ∂t
∂t′

= ∂U
∂t

+ v0
∂U
∂r

,

∂U
∂r′ = ∂U

∂t
· ∂t
∂r′ + ∂U

∂r
· ∂r
∂r′ = ∂U

∂r
,

∂nU
∂r′n = ∂

∂r′

(
∂n−1U

∂r′n−1

)
= ∂

∂r

(
∂n−1U

∂r′n−1

)
= · · · = ∂nU

∂rn ,

(F3)

where U represents variables that are relevant to r and t.
Assuming that the constitutive relation for viscous stress contains velocity (v) explicitly

outside the partial differential operators, a simple but representative example is

τ = v
∂U
∂r

. (F4)

In the inertial frame (x′y′z′), it can be derived that

τ ′ = v′ ∂U
∂r′ = (v − v0)

∂U
∂r

/= τ , (F5)

which means that such a constitutive relation does not satisfy the Galilean invariance.
On the contrary, if the constitutive relations do not contain velocity (v) explicitly outside

the partial differential operators, it is straightforward to prove that they would remain
invariant in different inertial frames, i.e. satisfying the Galilean invariance, according to
(F2)–(F3).
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