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THE MODULI SPACE OF BILEVEL-6

ABELIAN SURFACES

G. K. SANKARAN and J. G. SPANDAW

Abstract. We show that the moduli space of abelian surfaces with polarisation
of type (1, 6) and a bilevel structure has positive Kodaira dimension and indeed
pg ≥ 3. To do this we show that three of the Siegel cusp forms with character
for the paramodular symplectic group constructed by Gritsenko and Nikulin are
cusp forms without character for the modular group associated to this moduli
problem. We then calculate the divisors of the corresponding differential forms,
using information about the fixed loci of elements of the paramodular group
previously obtained by Brasch.

The moduli space Abil
t of (1, t)-polarised abelian surfaces with a weak

bilevel structure was introduced by S. Mukai in [Mu]. Mukai showed that

Abil
t is rational for t = 2, 3, 4, 5. More generally, we may ask for birational

invariants, such as Kodaira dimension, of a smooth model of a compactifica-

tion of Abil
t : since the choice of model does not affect birational invariants,

we refer to the Kodaira dimension, etc., of Abil
t .

From the description of Abil
t as a Siegel modular 3-fold Γbil

t \H2 and

the fact that Γbil
t ⊂ Sp(4, Z) it follows, by a result of L. Borisov [Bo], that

κ(Abil
t ) = 3 for all sufficiently large t. For an effective result in this direction

see [Sa]. In this note we shall prove an intermediate result for the case t = 6.

Theorem A. The moduli space Abil
6 has geometric genus pg(Abil

6 ) ≥ 3
and Kodaira dimension κ(Abil

6 ) ≥ 1.

The case t = 6 attracts attention for two reasons: it is the first case not

covered by the results of [Mu]; and the image of the Humbert surface H1(1)

in Abil
t , which in the cases 2 ≤ t ≤ 5 is a quadric and plays an important role

both in [Mu] and below, becomes an abelian surface (at least birationally)

because the modular curve X(6) has genus 1.
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The method we use is that of Gritsenko, who proved a similar result

for the moduli spaces of (1, t)-polarised abelian surfaces with canonical level

structure for certain values of t: see [Gr], especially Corollary 2. We use

some of the weight 3 modular forms constructed by Gritsenko and Nikulin

as lifts of Jacobi forms in [GN] to produce canonical forms having effective,

nonzero, divisors on a suitable projective model X6 of Abil
6 . A similar

method was used by Gritsenko and Hulek in [GH2] to give a new proof that

the Barth-Nieto threefold is Calabi-Yau.

We also derive some information about divisors in X6 and linear rela-

tions among them.

Acknowledgement. We are grateful to the DAAD and the British
Council for financial assistance under ARC Project 313-ARC-XIII-99/45.

§1. Compactification

According to [Mu], Abil
t is isomorphic to the quotient Γbil

t \H2, where

H2 is the Siegel upper half-plane {Z ∈ M2×2(C) | Z = >Z, Im Z > 0} and

Γbil
t = Γ\

t ∪ ζΓ\
t ⊂ Sp(4, Z) acts on H2 by fractional linear transformations.

Here ζ = diag(−1, 1,−1, 1) and, writing In for the n × n identity matrix,

Γ\
t =





γ ∈ Sp(4, Z)

∣∣∣∣∣∣∣∣
γ − I4 ∈




tZ Z tZ tZ
tZ tZ tZ t2Z

tZ Z tZ tZ
Z Z Z tZ








.

We define H(Z) to be the Heisenberg group Z o Z2 embedded in Sp(4, Z)

as

H(Z) =





[m,n; k] =




1 m 0 0
0 1 0 0
0 n 1 0
n k −m 1




∣∣∣∣∣∣∣∣
m,n, k ∈ Z





.

Lemma 1.1. Γ\
6 is neat ; that is, if λ is an eigenvalue of some γ ∈ Γ\

6

which is a root of unity, then λ = 1. Any torsion element of Γbil
6 has order 2

and fixes a divisor in H2.

Proof. Suppose that γ ∈ Γ\
6: then the characteristic polynomial of γ

is congruent to (1 − x)4 mod 6. If some γ ∈ Γ\
6 has an eigenvalue λ which
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is a nontrivial root of unity, then we may assume that λ is a primitive p-
th root of unity for some prime p. The minimum polynomial mλ(x) of λ
over Z divides the characteristic polynomial of γ; so p = 2, 3 or 5, since
deg mλ = p− 1. But then mλ(x) = 1+x, 1+x+x2 or 1+x+x2 +x3 +x4.
The second of these does not divide (1 − x)4 in F2[x] and the other two do
not divide (1 − x)4 in F3[x].

So any torsion element of Γbil
6 is of the form γ = ζγ′ for some γ′ ∈ Γ\

6;
but then the characteristic polynomial is

det(γ − xI4) = det(ζγ′ − xζ2)

≡ (1 − x2)(1 + x2) mod 6.

From the classification of torsion elements of Sp(4, Z) and their character-
istic polynomials [Ue], it follows that γ is conjugate in Sp(4, Z) to either ζ
or ζ[0, 1; 0]. Both these are elements of Γbil

6 of order 2; their fixed loci in H2

are the divisors {τ2 = 0} and {2τ2 +(τ2
2 − τ1τ3) = 0} respectively (Humbert

surfaces of discriminants 1 and 4).

In view of Lemma 1.1, the toroidal (Voronoi, or Igusa) compactification

(A\
6)

∗ of A\
6 = Γ\

6\H2 is smooth, cf. [SC, pp. 276–277]. The action of

ζ on A\
6 extends to (A\

6)
∗, and the quotient X6 is a compactification of

Abil
6 whose singularities are isolated ordinary double points or transverse

A1 singularities. Hence X6 has canonical singularities. It agrees with the

Voronoi compactification (Abil
6 )∗ at least in codimension 1.

§2. Modular forms and canonical forms

Gritsenko and Nikulin, in [GN], construct the weight 3 cusp forms

F3 = Lift
(
η5(τ1)ϑ(τ1, 2τ2)

)
∈ M

∗

3

(
Γ+

6 , v8
η × idH

)

F ′

3 = Lift−1

(
η5(τ1)ϑ(τ1, 2τ2)

)
∈ M

∗

3

(
Γ+

6 , v16
η × idH

)

F ′′

3 = Lift
(
η3(τ1)ϑ(τ1, τ2)

2ϑ(τ1, 2τ2)
)
∈ M

∗

3

(
Γ+

6 , v12
η × idH

)

for the extended paramodular group Γ+
6 , with character χD induced from

the characters vD
η × idH of the Jacobi group SL(2, Z) n H(Z). Recall (see

[GH1], [GN]: for compatibility with [Mu] and other sources we work with

the transposes of the groups given in [GN]) that Γ+
6 is the group generated

https://doi.org/10.1017/S0027763000008394 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008394


168-08 : 2002/12/6(17:40)

116 G. K. SANKARAN AND J. G. SPANDAW

by the paramodular group

Γ6 =





γ ∈ Sp(4, Q)

∣∣∣∣∣∣∣∣
γ ∈




Z Z Z 6Z

6Z Z 6Z 6Z

Z Z Z 6Z

Z 1
6 Z Z Z








and the extra involution

V6 =




0 1/
√

6 0 0√
6 0 0 0

0 0 0
√

6

0 0 1/
√

6 0


 .

Proposition 2.1. All three of F3, F ′
3 and F ′′

3 are cusp forms, without

character, of weight 3 for Γbil
6 .

Proof. The character is induced from vD
η × idH by the inclusion map

j : SL(2, Z) n H(Z) → Γ+
6 given by

j :

((
a b
c d

)
, [m,n; k]

)
7−→




a m c 0
0 1 0 0
b n d 0
n k −m 1


 .

For γ ∈ SL(2, Z) we define j1(γ) = j(γ, [0, 0; 0]), putting γ in the first and
third rows and columns in Sp(4, Z); and similarly j2(γ) puts it in the second
and fourth.

The character vD
η × idH is trivial on H(Z). In the present cases, where

D = 8, 16 or 12, vD
η is trivial on ±Γ(6) = ±Ker(SL(2, Z) → SL(2, Z/6)) by

[GN, Lemma 1.2]. Since j(−I2, [0, 0; 0]) = ζ, we see that

Γbil
6 ∩ j

(
SL(2, Z) n H(Z)

)
⊆ j

(
±Γ(6) n H(Z)

)
⊆ KerχD

for D = 8, 12, 16. If D = 8 or 16 then, since V6 and I = j1

((
0 1
−1 0

))

are in Γ+
6 and have even order and the order of χD is 3, we know that

χD(V6) = χD(I) = 1. Therefore the element

J6 = IV6IV6 =




0 0 −1 0
0 0 0 −6
1 0 0 0
0 1/6 0 0


 ∈ Γ+

6
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is in Ker χD. If D = 12 then χ12(J6) = χ12(IV6)
2 = 1 so again J6 ∈ KerχD.

Now we proceed as in [Gr, Lemma 2.2], and show that the group generated

by j
(
Γ(6)nH(Z)

)
and J6 includes Γ\

6. To see this, we work with the conju-

gate groups Γ̃\
6 = ν6(Γ

\
6) and Γ̃6 = ν6(Γ6), where ν6 denotes conjugation by

R6 = diag(1,1, 1, 6). Note that ν6(J6) = R6J6R
−1
6 =

(
0 −I2

I2 0

)
. If γ̃ ∈ Γ̃\

6

then its second row γ̃2∗ is (0, 1, 0, 0) mod 6. Suppose first that γ̃22 = 1 and
put

β̃ = ν6

(
J6[γ̃21/6, γ̃23/6; γ̃24/6]J−1

6

)
=




1 0 0 γ̃23/6
γ̃21 1 γ̃23 γ̃24

0 0 1 γ̃23/6
0 0 0 1




Now (0, 1, 0, 0)β̃ = γ̃2∗ so the second row of γ̃β̃−1 ∈ Γ̃\
6 is (0, 1, 0, 0). Such a

matrix is in ν6

(
j
(
Γ(6) n H(Z)

))
.

It remains to reduce to the case γ̃22 = 1. Certainly the vector γ̃2∗ is
primitive, since det γ̃ = 1, and since γ̃ ∈ Γ̃\

6 we have gcd(6, γ̃21, γ̃23) = 6. In
the proof of [FS, Satz 2.1], it is shown that there are integers λ, µ such that
γ̃′ = γ̃ν6

(
[µ, 0; 0]J6[0, λ; 0]J−1

6

)
has gcd(γ̃′

21, γ̃
′
23) = 6, so the second row of

γ̃′ is (6x1, 6x2 + 1, 6x3, 6x4) with gcd(x1, x3) = 1. But then the (2, 2)-entry
of γ̃′ν6([m,n; 0]) is 6(mx1 + nx3 + x2) + 1 which is equal to 1 if we choose
m and n suitably.

Proposition 2.2. The differential forms ω̃ = F3 dτ1 ∧ dτ2 ∧ dτ3, ω̃′ =
F ′

3 dτ1 ∧ dτ2 ∧ dτ3 and ω̃′′ = F ′′
3 dτ1 ∧ dτ2 ∧ dτ3 give rise to canonical forms

ω, ω′, ω′′ ∈ H0(KX6
).

Proof. By Proposition 2.1, ω̃, ω̃′ and ω̃′′ are all Γbil
6 -invariant, so they

give rise to forms ω, ω′, ω′′ on Abil
6 . Since F3, F ′

3 and F ′′
3 are cusp forms, if

any of ω, ω′ and ω′′ are holomorphic on Abil
6 they extend holomorphically

to the cusps of (Abil
6 )∗. Since X6 agrees with (Abil

6 )∗ in codimension 1 and
has canonical singularities it follows that these forms can be thought of as
3-forms on X6 holomorphic at infinity. We need to check that ω, ω′ and
ω′′ are holomorphic everywhere. But this is a well-known result of Freitag
([Fr, Satz II.2.6]).

§3. Divisors in the moduli spaces

In this section we shall describe the canonical divisors DivX6
(ω),

DivX6
(ω′) and DivX6

(ω′′) in X6 and give some detail about the branch-

ing locus in X6 arising from torsion in Γbil
6 .
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Γbil
6 is a subgroup both of the paramodular group Γ6 and of Γ+

6 . Hence

there is a finite morphism σ : Abil
6 → A+

6 . We denote the projection map

H2 → Abil
6 by πbil

6 and similarly π6, π+
6 , etc.

For discriminant ∆ = 1, 4 we put

H∆(k) =

{(
τ1 τ2

τ2 τ3

)
∈ H2

∣∣∣∣
1
24 (k2 − ∆)τ1 + kτ2 + 6τ3

}
= 0

where k ∈ Z is chosen so that 1
24 (k2 − ∆) ∈ Z. The irreducible com-

ponents of the Humbert surfaces H1 and H4 of discriminants 1 and 4 in

A6 are π6(H1(k)) and π6(H4(k)) for 0 ≤ k < 6: the statements of [vdG,

Theorem IX.2.4] and of [GH1, Corollary 3.3] are wrong because H∆(−k)

is Γt-equivalent to H∆(k). Nevertheless the irreducible components of the

Humbert surfaces of discriminants 1 and 4 in A+
6 are as stated in [GN],

namely π+
6 (H1(1)) and π+

6 (H1(5)) for discriminant 1 and π+
6 (H4(1)) for

discriminant 4.

The calculation of the divisors uses the product expansion of the mod-

ular forms F3, F ′
3 and F ′′

3 given in [GN]. We have chosen to work with the

transposes of the matrices given in [GN], so we have to write q = e2πiτ1 ,

r = e2πiτ2/6 and s = e2πiτ3/36 for these expansions to be correct. This

is because >Γt = diag(1, t, 1, t−1)Γt diag(1, t−1, 1, t) (for any t ∈ N), and

diag(1, t, 1, t−1) : (τ1, τ2, τ3) → (τ1, tτ2, t
2τ3). A similar correction is needed

in [GH2].

By [GN], equations (4.12)–(4.14), correcting a minor misprint, we have

F3 = Exp-Lift(5φ2
0,3 − 4φ0,2φ0,4) = Exp-Lift(φ3),

F ′

3 = Exp-Lift(φ2
0,3) = Exp-Lift(φ′

3),

F ′′

3 = Exp-Lift(3φ2
0,3 − 2φ0,2φ0,4) = Exp-Lift(φ′′

3).

(φ3, φ′
3 and φ′′

3 are defined by these formulae.)

By [GN, Example 2.3 and Lemma 2.5], we have

φ0,2 = (r±1 + 4) + q(r±3 − 8r±2 − r±1 + 16) + O(q2),

φ0,3 = (r±1 + 2) + q(−2r±3 − 2r±2 + 2r±1 + 4) + O(q2),

φ0,4 = (r±1 + 1) + q(−r±4 − r±3 + r±1 + 2) + O(q2),

where the notation r±k means rk + r−k.
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Proposition 3.1. The divisors in H2 of the cusp forms are

Div(F3) = (π+
6 )−1

(
π+

6

(
H1(1) + 5H1(5) + H4(1)

))
,

Div(F ′

3) = (π+
6 )−1

(
π+

6

(
5H1(1) + H1(5) + H4(1)

))
,

Div(F ′′

3 ) = (π+
6 )−1

(
π+

6

(
3H1(1) + 3H1(5) + H4(1)

))
.

Remark. This corrects the coefficients given in [GN, Example 4.6]: for
instance, it is easy to see, by considering the effect of an element of order 2
fixing an Humbert surface, that the coefficients of H1(1), H1(5) and H4(1)
must be odd.

Proof. Write φ3 =
∑

f(n, l)qnrl, and similarly for φ′
3 and φ′′

3 . By [GN,
Theorem 2.1], the coefficient of π+

6

(
H∆(b)

)
in A+

6 is

m∆,b =
∑

d>0

f(d2a, db)

where b2 − 24a = ∆. So to calculate m1,1 we may take b = 1 and a = 0, so
m1,1 =

∑
d>0 f(0, d). From the formulae above, φ3 = (r±2 + 6) + O(q), so

m1,1 = f(0, 2) = 1. Similarly we have φ′
3 = (r±2 + 4r±1 + 6) so m′

1,1 = 5

and φ′′
3 = (r±2 + 2r±1 + 6) so m′′

1,1 = 3.

To calculate the coefficients of π+
6

(
H4(1)

)
we note that H4(1) is Γ+

6 -
equivalent to H4(2), so we may as well work with that and calculate m4,2.
For this purpose we can take b = 2 and a = 0; so m4,2 =

∑
d>0 f(0, 2d) = 1,

and m′
4,2 = m′′

4,2 = 1 also.

To calculate m1,5 we take b = 5 and a = 1, so m1,5 =
∑

d>0 f(d2, 5d).
The Fourier coefficient f(n, l) depends only on 24n− l2 and on the residue
class of l mod 12 (see [GN]); that is, in our case, on d2 and on d mod 12.
If d 6≡ ±1 mod 6 then 5d ≡ ±d mod 12, so f(d2, 5d) = f(0,±d) which is
zero unless d = ±2 or d = 0. Since we are only interested in d > 0 the
only contribution for d 6≡ ±1 mod 6 arises from d = 2, when f(4, 10) =

f(0,−2) = 1. If d ≡ ±5 mod 12 then f(d2, 5d) = f
(
−d2+1

24 ,±1
)

which
vanishes because f(n, l) = 0 for n < 0. If d ≡ ±1 mod 12 then f(d2, 5d) =

f
(
−d2+25

24 ,±5
)

which vanishes except possibly when d = 1. So m1,5 =
1 + f(1, 5) and from the expansions of φ0,2, φ0,3 and φ0,4 we calculate
f(1, 5) = 4. Similarly m′

1,5 = 1 + f ′(1, 5) = 1 and m′′
1,5 = 1 + f ′′(1, 5) = 3.

Brasch [Br] has studied the branch locus of πlev
t : H2 → Alev

t for all t:

for t ≡ 2 mod 4 the divisorial part has five irreducible components. They
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are πlev
6 (Hζi

) for 0 ≤ i ≤ 4, where Hζi
⊂ H2 is the fixed locus of ζi and

ζ0 = ζ, ζ1 = ζ>[−6, 0; 0], ζ2 =




−7 4 0 0
−12 7 0 0
0 0 −7 −12
0 0 4 7


 ,

ζ3 = ζ[1, 0; 0], ζ4 =




−1 −1 0 6
0 1 −6 0
0 0 −1 0
0 0 −1 1


 .

These are all elements of Γbil
6 . Their fixed loci are

Hζ0 = {τ2 = 0}, Hζ1 = {6τ1 − 2τ2 = 0}, Hζ2 = {6τ1 − 7τ2 + 2τ3 = 0},
Hζ3 = {2τ2 + τ3 = 0}, Hζ4 = {2τ2 + τ3 − 6 = 0},

of discriminants 1, 4, 1, 4, 4 respectively. Thus three of the components

have discriminant 4 and therefore map to π+
6 H4(1) ⊂ A+

6 (they correspond

to bielliptic abelian surfaces). Hζ0 = H1(1) corresponds to product sur-

faces E × E′ with polarisation given by OE(1) � OE′(6), and Hζ2 maps

to π+
6

(
H1(5)

)
, corresponding to abelian surfaces E × E′ with polarisation

OE(2) � OE′(3).

Proposition 3.2. The branch locus of πbil
6 : H2 → Abil

6 has seven irre-

ducible components, each with branching of order 2. They are πbil
6 (Hζi

) and

two other components πbil
6 (Hζ′

1
), πbil

6 (Hζ′′
1
), which are equivalent to πbil

6 (Hζ1)

in Alev
6 .

Proof. It follows from Lemma 1.1 that the branch locus consists of
divisors only and that the branching is of order 2.

Write G = Γlev
6 B H = Γbil

6 and let G act on Ω = G/H ∼= PSL(2, Z/6).
By [Br, Corollary 1.3], the number of irreducible divisors in Abil

6 mapping
to πlev

6 (Hζi
), which is equal to the number of H-conjugacy classes in the

G-conjugacy class of ζi, is |G : H.CG(ζi)|. (If ξ ∈ G for some group G
then CG(ξ) denotes the centraliser of ξ in G.) Moreover, for fixed i, these
divisors are permuted transitively by Ω so they all have the same branching
behaviour: πbil

6 is branched of order 2 above each one.
|G : H.CG(ζi)| = |G/H : CG(ζi)/(H ∩ CG(ζi))|, which is the index of

the image of CG(ζi) in Ω. For i = 0, 1, 2, 3 the centraliser CSp(4,
�
)(ζi) is

described in [Br, Lemma 2.1], and CG(ζi) = CSp(4,
�
)(ζi) ∩ G.
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For ζ0, if γ ∈ PSL(2, Z/6) ∼= Ω and γ̃ ∈ SL(2, Z) is some lift of γ then
j(γ̃, [0, 0; 0]) ∈ CG(ζ0) so the index is 1.

For ζ1, if γ =

(
a b
c d

)
∈ PSL(2, Z/6) and b is even then




ã 0 b̃ 3b̃

3(ã − 1) 1 3b̃ 0

c̃ 0 d̃ 3(d̃ − 1)
0 0 0 1


 ∈ CG(ζ1)

for a lift γ̃; and this is a necessary condition for such an element to exist
since if β = βij ∈ CG(ζ1) then 3β13 ≡ 0 mod 6. So CG(ζ1)/(CG(ζ1) ∩
H) ⊂ PSL(2, Z/6) is the reduction mod 6 of >Γ0(2), i.e. the preimage of{(

a 0
c d

)
∈ SL(2, Z/2)

}
, which is of index 3 because it is the stabiliser of

(1, 0) when SL(2, Z/2) acts as the symmetric group on the nonzero vectors
in F2

2.
For ζ2, any two elements γ, γ∗ ∈ SL(2, Q) determine an element β(γ, γ∗)

∈ CSp(4,
�
) (see [Br, Lemma 2.1] and the preceding discussion), namely

β(γ, γ∗) =




4γ11 − 3γ∗
11 −2γ11 + 2γ∗

11 4γ12 + γ∗
12 6γ12 + 2γ∗

12

6γ11 − 6γ∗
11 −3γ11 + 4γ∗

11 6γ12 + 2γ∗
12 9γ12 + 4γ∗

12

4γ21 + 9γ∗
21 −2γ21 − 6γ∗

21 4γ22 − 3γ∗
22 6γ22 − 6γ∗

22

−2γ21 − 6γ∗
21 γ21 + 4γ∗

21 −2γ22 + 2γ∗
22 −3γ22 + 4γ∗

22


 .

In particular we choose

β = β

((
3 4
2 3

)
,

(
10 9
11 10

))
=




−18 14 25 42
−42 31 42 72
107 −70 −18 −42
−70 46 −14 31




and

β′ = β

((
11 4
8 3

)
,

(
7 9
3 4

))
=




23 −8 25 42
24 −5 42 72
59 −34 0 −6
−34 20 −6 7


 .

β and β′ both belong to Γlev
6 , and their images in PSL(2, Z/6) are

(
0 1
−1 0

)

and

(
−1 1
−1 0

)
. These two elements generate PSL(2, Z/6) because their lifts

generate SL(2, Z), so the index we want is 1.
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For ζ3, as for ζ0, j(γ̃, [0, 0; 0]) ∈ CG(ζ3) so the index is 1.

For ζ4, note that ζ4 = >[0, 0; 6]ζ3(
>[0, 0; 6])−1 so CSp(4,

�
)(ζ4) = >[0, 0; 6]

CSp(4,
�
)(ζ3)(

>[0, 0; 6])−1 . It happens that >[0, 0; 6]j(γ̃ , [0, 0; 0])(> [0, 0; 6])−1

= j(γ̃, [0, 0; 0]), so again the index is 1.

Next we look at the boundary divisors of X6. These correspond to

1-dimensional subspaces of Q4 up to the action of Γbil
6 . We may think

of such a space as being given by a unique, up to sign, primitive vector

v = (v1, v2, v3, v4) ∈ Z4. It is shown in [FS, Satz 2.1], that the Γ6-orbit

of v is determined by r = gcd(6, v1, v3), so A6 has four corank 1 cusps (or

boundary divisors in the toroidal compactification). However, the cusps

r = 1 and r = 6 are interchanged by V6, as are the cusps r = 2 and r = 3,

so A+
6 has just two corank 1 cusps. Since F3, F ′

3 and F ′′
3 are modular forms

(with character) for Γ+
6 , the order of vanishing of any of them at a cusp of

X6 given by v depends only on which cusp of A+
6 it lies over, i.e. on whether

r is or is not a proper divisor of 6.

We write D1 for the divisor in X6 which is the sum of all the boundary

components with r = 1 or r = 6, and D2 for the sum of all the components

with r = 2 or r = 3. By modifying the argument of [FS, Satz 2.1] as in [Sa],

it can be shown that D1 has 28 irreducible components and D2 has 12, but

we shall not make any use of this.

Theorem 3.3. The divisors of ω, ω′ and ω′′ in X6 are

DivX6
(ω) = 4πbil

6 (Hζ2) + D1 + D2,

DivX6
(ω′) = 4πbil

6 (Hζ0) + 3(D1 + D2),

DivX6
(ω′′) = 2πbil

6 (Hζ0) + 2πbil
6 (Hζ2) + 2(D1 + D2).

Proof. If πbil
6 is branched along the irreducible divisors Bα with ram-

ification index eα, then dτ1 ∧ dτ3 ∧ dτ3 acquires poles of order eα/2 along
Bα. So by Proposition 3.1

DivX6
(ω) = σ−1π+

6

(
H1(1) + 5H1(5) + H4(1)

)
− 1

2

∑
eαBα + D,

DivX6
(ω′) = σ−1π+

6

(
5H1(1) + H1(5) + H4(1)

)
− 1

2

∑
eαBα + D′,

DivX6
(ω′′) = σ−1π+

6

(
3H1(1) + 3H1(5) + H4(1)

)
− 1

2

∑
eαBα + D′′,
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where D, D′ and D′′ are effective divisors supported on the boundary X6 \
Abil

6 . The form of the branch locus part of the divisors follows now from
Proposition 3.2 and the discriminants of Hζi

.
It remains to calculate the vanishing orders of the forms at each bound-

ary divisor. For each form, we need only consider two boundary compo-
nents, one from D1 and one from D2. We use the components D(v1), D(v2)
corresponding to v1 = (0, 0, 1, 0) and v2 = (0, 0, 2, 1). The first step in con-
structing the toroidal compactification near D(v1) is to take a quotient by
the lattice P ′

v1
(Γbil

6 ) (see for instance [GH2, pp. 925–926] or for a full expla-
nation [HKW, Section I.3D]). As in [HKW, Proposition I.3.98], P ′

v1
(Γbil

6 ) is

generated by j1

((
1 6
0 1

))
; so a local equation for D(v1) at a general point

is t1 = 0, where t1 = e2πiτ1/6 = q1/6. Using the values of f(0, l) calculated
above and the Fourier expansion given in [GN, Theorem 2.1], we see that
the expansions of F3, F ′

3 and F ′′
3 begin q1/3rs2, q2/3r3s4 and q1/2r2s3 re-

spectively, so their orders of vanishing along D1 are 2, 4 and 3. The form
dτ1 ∧ dτ2 ∧ dτ3 contributes a simple pole at the boundary so the coefficients
of D1 in the divisors of ω, ω′ and ω′′ are 1, 3 and 2.

We put

θ =




1 −1 0 0
−1 2 0 0
0 0 2 1
0 0 1 1


 ∈ Sp(4, Z),

so that v2 = v1θ. Then Pv2
= θ−1Pv1

θ (where, as in [HKW], Pv denotes
the stabiliser of v in Sp(4, Q)), and from this one readily calculates that

P ′

v2
(Γbil

6 ) =








1 0 4n 2n
0 1 2n n
0 0 1 0
0 0 0 1




∣∣∣∣∣∣∣∣
n ≡ 0 mod 36





.

So the cusp D2 is given by t2 = 0, where t2 = e2πi(τ1/144+τ2/72+τ3/36) =
q1/144r1/12s. The number of times this term divides the expressions for F3,
F ′

3 and F ′′
3 is in fact equal to the power of s that occurs, namely 2, 4 and 3

respectively; so we get the same orders of vanishing along D2 as along D1.

This calculation shows directly (without appealing to Freitag’s result

in [Fr]) that ω, ω′ and ω′′ are all holomorphic.
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Remark. Notice that DivX6
(ω) + DivX6

(ω′) = 2DivX6
(ω′′), reflecting

the fact (easily seen from [GN]) that F3F
′
3 = (F ′′

3 )2.

Theorem A now follows at once from the following observation.

Proposition 3.4. ω, ω′ and ω′′ are linearly independent elements of

H0(KX6
).

Proof. Suppose that λω + λ′ω′ + λ′′ω′′ = 0. At a general point of
πbil

6 (Hζ0), ω′ and ω′′ vanish but ω does not. Therefore λ = 0. Similarly
λ′ = 0, considering a general point of πbil

6 (Hζ2). Finally, λ′′ 6= 0 because F ′′
3

is not identically zero.

We want to remark that κ(Abil
6 ) ≥ 1 can be deduced from the ex-

istence of ω′ alone. The divisor DivX6
(ω′) is effective and πbil

6 (Hζ) ⊂
Supp DivX6

(ω′). Since X6 has canonical singularities, K is effective on

any smooth model of X6, and hence also on any minimal model X ′
6 of X6.

Any surfaces contracted by the birational map X6 99K X ′
6 must be bira-

tionally ruled. But πbil
6 (Hζ) is not birationally ruled: it is isomorphic to

X(6) × X(6), since Hζ is isomorphic to H × H and is preserved by the

subgroup Γ(6) × Γ(6) embedded in Γbil
6 by (j1, j2). Thus its closure is bi-

rationally an abelian surface, since X(6) has genus 1. So the canonical

divisor of X ′
6 is effective and nontrivial; so, by abundance, some multiple of

it moves and therefore κ(Abil
6 ) ≥ 1.
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