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Abstract

We investigate an optimal stopping problem for the expected value of a discounted pay-
off on a regime-switching geometric Brownian motion under two constraints on the
possible stopping times: only at exogenous random times, and only during a specific
regime. The main objectives are to show that an optimal stopping time exists as a thresh-
old type and to derive expressions for the value functions and the optimal threshold.
To this end, we solve the corresponding variational inequality and show that its solu-
tion coincides with the value functions. Some numerical results are also introduced.
Furthermore, we investigate some asymptotic behaviors.
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1. Introduction

In the real options literature, the following type of optimal stopping problem appears
frequently:

sup
τ∈T

E[e−rτ π (Xτ ) | X0 = x], (1)

where r > 0 is the exogenous discount rate, X = {Xt}t≥0 is a stochastic process, which we call
the cash-flow process, T is the set of all stopping times that investors can choose, and π is
an R-valued function, which we call the payoff function. We can regard (1) as a function
on x, which we call the value function. The problem in (1) concerns the optimal investment
timing for an investment whose payoff is given by the random variable π (Xt) when executed at
time t. The most typical example of π is

π (x) =E

[ ∫ ∞

t
e−r(s−t)Xs ds − I | Xt = x

]
, (2)

which expresses the value of an investment that starts at time t with an initial cost I > 0 and
that brings to the investor perpetually an instantaneous return Xs at each time s > t. Note that
the right-hand side of (2) becomes a function on x when the process X has the strong Markov
property, such as a geometric Brownian motion. The main concern of (1) is to show that an
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Optimal stopping under regime switching 1221

optimal stopping time τ ∗ ∈ T exists and can be expressed as τ ∗ = inf{t > 0 | Xt ≥ x∗} for some
x∗ ∈R. This type of optimal stopping is called threshold type, and x∗ is called its optimal
threshold. It is significant to examine whether an optimal stopping is of threshold type. If so, the
optimal strategy becomes apparent, and the optimal stopping time can be explicitly described.
This framework of optimal stopping problems was discussed in [17]; see also [6, Chapter 5].
Here we focus on discussing (1) when Xt is a regime-switching geometric Brownian motion
under two constraints on T , and the payoff function π is given as π (x) = α(x − K)+ − I for
some α > 0, K ≥ 0, and I ≥ 0.

Regime-switching models, widely studied in mathematical finance (see [2, 3, 4, 9, 10, 11]
and so forth), are models in which the regime, representing, e.g., the economy’s general state,
changes randomly. In this paper, we consider a regime-switching model with two regimes,
{0, 1}. Let θ = {θt}t≥0 be a stochastic process expressing the regime at time t. In particular, θ

is a {0, 1}-valued continuous-time Markov chain. Then the cash-flow process X is given by the
solution to the following stochastic differential equation (SDE):

dXt = Xt(μθt dt + σθt dWt), X0 > 0, (3)

where μi ∈R and σi > 0 for i = 0, 1, and W = {Wt}t≥0 is a one-dimensional standard Brownian
motion independent of θ . Considering a regime-switching model, we need to define a value
function for each initial regime; that is, for each i = 0, 1, we define the value function vi as

vi(x) := sup
τ∈T

E[e−rτ π (Xτ ) | θ0 = i, X0 = x]. (4)

Furthermore, we impose two constraints on T . Liquidity risk and other considerations mean
that investment is not always possible. Therefore, it is significant to analyze models with
constraints on investment opportunities and timing. Hence, we impose two constraints simul-
taneously in this paper. One is the random arrival of investment opportunities. More precisely,
we restrict stopping to only at exogenous random times given by the jump times of a Poisson
process independent of W and θ . Another is the regime constraint. We add the restriction that
stopping is feasible only during regime 1.

Now, we introduce some related works. The problem in (1) was discussed in [1] for the
same cash-flow process X as defined in (3) without restrictions on stopping. It treated the case
where π is given as (2) and showed that an optimal stopping time exists as a threshold type by
an argument based on partial differential equation (PDE) techniques. The same problem was
discussed in [19] for a two-state regime-switching model with π (x) = x − I under the regime
constraint, but with a cash-flow process that is still a geometric Brownian motion without
regime switching. Note that [19] assumed that an optimal stopping exists as a threshold type.
In addition, [8] also studied the same problem for the case where X is a regime-switching
diffusion process but without restrictions on stopping. On the other hand, the restriction of
stopping at exogenous random times was considered in [7] in the case where the cash-flow
process is a geometric Brownian motion and the payoff function is of American call option
type, i.e. π (x) = (x − K)+, and did not deal with regime-switching models. In [7], a variational
inequality (VI) was first derived through a heuristic discussion. This was solved, and it was
shown by a probabilistic argument that the solution to the VI coincides with the value function.
There are other many works dealing with this issue, such as [12, 13, 15, 16, 18].

To the best of our knowledge, this paper is the first study that deals with the constrained
optimal stopping problem on a regime-switching geometric Brownian motion. It is also new
to simultaneously impose the random arrival of investment opportunities and the regime
constraint. We note that the discussion in this paper is based on the approach in [7].
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1222 T. ARAI AND M. TAKENAKA

The paper is organized as follows: Some mathematical preparations and the formulation of
our optimal stopping problem are given in Section 2. Section 3 introduces the corresponding
VI and solves its modified version in which two boundary conditions are replaced. We derive
explicit expressions for the solution to the modified VI, which involves solutions to quartic
equations, but it can be easily computed numerically. In Section 4, assuming that the two
boundary conditions replaced in Section 3 are satisfied, we prove that the solution to the VI
coincides with the value functions and the optimal threshold for our optimal stopping problem.
In addition, we introduce some numerical results. Section 5 is devoted to illustrating some
results on asymptotic behaviors, and Section 6 concludes the paper.

2. Preliminaries and problem formulation

We consider a regime-switching model with state space {0, 1} and suppose that the regime
process θ is a {0, 1}-valued continuous-time Markov chain with generator(−λ0 λ0

λ1 −λ1

)
,

where λ0, λ1 > 0. We use the convention θ∞ ≡ 1 to simplify the definition of T , which is
defined later. Note that the length of regime i follows an exponential distribution with param-
eter λi. We take the process X defined in (3) as the cash-flow process, and assume throughout
this paper that

r > μ0 ∨ μ1. (5)

As mentioned in [1], if (5) is violated, the value function might take any large value by choosing
a large stopping time. Let J = {Jt}t≥0 be a Poisson process with intensity η > 0 independent
of W and θ , and denote by Tk its kth jump time for k ∈N with the conventions T0 ≡ 0 and
T∞ ≡ ∞, where N := {1, 2, . . . }. Note that the process J generates the exogenous random
times when an investment opportunity arrives. In other words, for k ∈N, Tk represents the kth
investment opportunity time. Suppose that θ , W, and J are defined on a complete probabil-
ity space (	,F , P). In addition, we denote by F= {Ft}t≥0 the filtration generated by θ , W,
and J. Assume that F satisfies the usual condition. Furthermore, we restrict stopping to only
when the regime is 1. Thus, the set of all possible stopping times is described by

T := {τ ∈ T0 | for each ω ∈ 	, θτ (ω)(ω) = 1 and τ (ω) = Tj(ω) for some j ∈N∞},

where T0 is the set of all [0, ∞]-valued stopping times and N∞ := N∪ {∞}. Next we
formulate the payoff function π as follows:

π (x) = α(x − K)+ − I (6)

for some α > 0, K ≥ 0, and I ≥ 0, but we exclude the case where K = I = 0 since the optimal
threshold x∗ is 0, as seen in Remark 1. This formulation includes π (x) = (x − K)+ as treated
in [7], and π (x) = x − I as in [19]. Moreover, (6) covers the payoff function introduced in (2).
In fact, [1] showed that

E

[ ∫ ∞

0
e−rtXt dt | θ0 = i, X0 = x

]
= (r − μ1−i + λi + λ1−i)x

(r − μ1−i)(r − μi) + λi(r − μ1−i) + λ1−i(r − μi)
.
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In the setting described above, we define the value functions vi, i = 0, 1 as follows:⎧⎨⎩v1(x) := sup
τ∈T

E
1,x[e−rτ π (Xτ )],

v0(x) := E
0,x[e−rξ0 v1(Xξ0 )]

(7)

for x > 0, where ξ0 := inf{t > 0 | θt = 1} and E
i,x means the expectation with the initial con-

dition θ0 = i and X0 = x. In fact, we should define v0 as v0(x) := supτ∈T E
0,x[e−rτ π (Xτ )] in

terms of (4), but the definition in (7) is justified by the following:

sup
τ∈T

E
0,x[e−rτ π (Xτ )] =E

0,x
[

e−rξ0 sup
τ ′∈T ′

E[e−rτ ′
π (X′

τ ) | θ ′
0 = 1, X′

0 = Xξ0 ]

]
=E

0,x[e−rξ0 v1(Xξ0 )],

where θ ′ and X′ are independent copies of θ and X, respectively, and T ′ is the set of all possible
stopping times defined based on θ ′ and X′. We discuss the optimal stopping problem (7) in the
following sections.

Remark 1. When K = I = 0, π is given as π (x) = αx; thus v1(x) = α supτ∈T E
1,x[e−rτ Xτ ]

holds. Since {e−rtXt}t≥0 is a supermartingale, E1,x[e−rτ1 Xτ1 ] ≥E
1,x[e−rτ2 Xτ2 ] holds for any

pair τ1, τ2 of stopping times with τ1 ≤ τ2 by [20, Theorem 3.3, Chapter II]. Thus, the optimal
stopping time is given by the first one we can stop, which corresponds to the case where the
optimal threshold is 0.

3. Variational inequality

We discuss the variational inequality (VI) corresponding to the value functions vi, i = 0, 1.
From the same sort of argument as in [7, Section 3], the VI is given as follows.

Problem 1. Find two non-negative C2-functions V0, V1 : R+ →R+ and a constant x∗ ≥ K̃
satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vi(0 + ) = 0, i = 0, 1, (8)

−rV0(x) +A0V0(x) + λ0(V1(x) − V0(x)) = 0, x > 0, (9)

−rV1(x) +A1V1(x) + λ1(V0(x) − V1(x)) = 0, 0 < x < x∗, (10)

−rV1(x) +A1V1(x) + λ1(V0(x) − V1(x)) + η(π (x) − V1(x)) = 0, x > x∗, (11)

V1(x∗) = π (x∗), (12)

V1(x) > π (x), 0 < x < x∗, (13)

V1(x) < π (x), x > x∗, (14)

where R+ := [0, ∞), K̃ := K + (I/α), and Ai, i = 0, 1, are the infinitesimal generators of X
under regime i defined as (Aif )(x) := μixf ′(x) + 1

2σ 2
i x2f ′′(x), x > 0, for the C2-function f .

Remark 2. We now explain intuitively the derivation of the VI (8)–(14). First of all, the value
functions vi, i = 0, 1, are non-negative since v1(x) ≥ supτ∈T E

1,x[e−rτ (−I)] = 0. Thus, (8)
would hold. Assuming that the optimal stopping time τ ∗ is of threshold type with the optimal
threshold x∗, that is,

τ ∗ = inf{t > 0 | Xt ≥ x∗, θt = 1, t = Tj for some j ∈N},
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we expect that the conditions (12)–(14) are satisfied. Next, suppose that θ0 = 0. Since ξ0 ∼
exp (λ0), we can rewrite v0 as

v0(x) =E
0,x
[ ∫ ∞

0
e−(r+λ0)tλ0v1(Xt) dt

]
.

Thus, (9) is derived from [14, Proposition 5.7.2]. To see (10) and (11), we define

V(x) := π (x) ∨ V1(x) =
{

π (x), x ≥ x∗,
V1(x), x < x∗.

(15)

We can then unify (10) and (11) into

−rV1(x) +A1V1(x) + λ1(V0(x) − V1(x)) + η(V(x) − V1(x)) = 0, x > 0. (16)

V corresponds to v(x) := v1(x) ∨ π (x), which is the value function of the optimal stopping
problem with 0 added to the possible stopping times, as discussed in [7], i.e. v is described as

v(x) = sup
τ∈T ∪{0}

E
1,x[e−rτ π (Xτ )].

Now, assume θ0 = 1 and define ξ1 := inf{t > 0 | θt = 0}. Since ξ1 ∼ exp (λ1) and T1 ∼ exp (η),
we can rewrite v1 as

v1(x) =E
1,x[e−r(ξ1∧T1)(v0(Xξ1 )1{ξ1<T1} + v(XT1 )1{ξ1>T1}

)]
=E

1,x
[ ∫ ∞

0

∫ ∞

0
e−r(t1∧t2)(v0(Xt1 )1{t1<t2} + v(Xt2 )1{t1>t2}

)
λ1e−λ1t1ηe−ηt2 dt1 dt2

]
=E

1,x
[ ∫ ∞

0
e−(r+λ1+η)t(λ1v0(Xt) + ηv(Xt)) dt

]
.

As a result, [14, Proposition 5.7.2] provides (16).

This section aims to solve the following modified version of Problem 1, in which we replace
the boundary conditions (13) and (14) with (17) below.

Problem 2. Find two C2-functions V0, V1 : R+ →R+ and a constant x∗ ≥ K̃ satisfying
(8)–(12) and

0 < lim
x→∞

V1(x)

π (x)
< 1. (17)

To solve Problem 2, we need some preparations. For i = 0, 1 and k = L, U, Gk
i is the

quadratic function on β ∈R defined as

Gk
i (β) := 1

2
σ 2

i β(β − 1) + μiβ − (λi + r + η1{i=1,k=U}).

The equation Gk
i (β) = 0 has one positive and one negative solution, denoted by ζ

k,+
i and ζ

k,−
i ,

respectively. For each k = U, L, we write Fk(β) := Gk
0(β)Gk

1(β) − λ0λ1, and consider the quar-

tic equation Fk(β) = 0. Since Fk(0) > 0, Fk
(
ζ

k,±
i

)
< 0, and Fk(β) → ∞ as β tends to ±∞, the

equation Fk(β) = 0 has four different solutions, two of which are positive, and two of which are
negative. Now, for the equation FL(β) = 0, we denote the larger positive solution by βL

A and the
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other positive solution by βL
B. Note that FL(1) is positive, and ζ

L,+
i > 1 holds since GL

i (1) < 0.
Thus, 1 < βL

B < ζ
L,+
i < βL

A holds for i = 0, 1. A similar argument can be found in [10, Remark
2.1]. Furthermore, the same holds for the quartic equation FU(β) = 0. Let βU

A and βU
B be the

larger and the other negative solutions to FU(β) = 0, respectively, i.e. βU
B < ζ

U,−
i < βU

A < 0
holds for i = 0, 1. In addition, we define the following constants:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 := αηλ0

(r − μ0 + λ0)(r − μ1 + λ1 + η) − λ0λ1
,

a1 := αη(r − μ0 + λ0)

(r − μ0 + λ0)(r − μ1 + λ1 + η) − λ0λ1
,

b0 := αK̃ηλ0

λ0λ1 − (r + λ0)(r + λ1 + η)
,

b1 := αK̃η(r + λ0)

λ0λ1 − (r + λ0)(r + λ1 + η)
,

(18)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PL
A := α(βL

B − βU
A )(−βL

B + βU
B ) + a1(βU

A − 1)(βU
B − 1)

(βL
A − βL

B)(βL
A + βL

B − βU
A − βU

B )
,

QL
A := −αK̃(βL

B − βU
A )(−βL

B + βU
B ) + b1β

U
AβU

B

(βL
A − βL

B)(βL
A + βL

B − βU
A − βU

B )
,

PL
B := α(βL

A − βU
A )(βL

A − βU
B ) − a1(βU

A − 1)(βU
B − 1)

(βL
A − βL

B)(βL
A + βL

B − βU
A − βU

B )
,

QL
B := −αK̃(βL

A − βU
A )(βL

A − βU
B ) − b1β

U
AβU

B

(βL
A − βL

B)(βL
A + βL

B − βU
A − βU

B )
,

PU
A := α(βL

A − βU
B )(βL

B − βU
B ) + a1(βU

B − 1)(βL
A + βL

B − βU
B − 1)

(βU
A − βU

B )(βL
A + βL

B − βU
A − βU

B )
,

QU
A := −αK̃(βL

A − βU
B )(βL

B − βU
B ) + b1β

U
B (βL

A + βL
B − βU

B )

(βU
A − βU

B )(βL
A + βL

B − βU
A − βU

B )
,

PU
B := α(βL

A − βU
A )(−βL

B + βU
A ) − a1(βU

A − 1)(βL
A + βL

B − βU
A − 1)

(βU
A − βU

B )(βL
A + βL

B − βU
A − βU

B )
,

QU
B := −αK̃(βL

A − βU
A )(−βL

B + βU
A ) − b1β

U
A (βL

A + βL
B − βU

A )

(βU
A − βU

B )(βL
A + βL

B − βU
A − βU

B )
.

(19)

With the above preparations, we solve Problem 2 as follows.

Proposition 1. Problem 2 has the following unique solution (V0, V1, x∗): For i = 0, 1,{
Vi(x) = AL

i xβL
A + BL

i xβL
B , 0 < x < x∗, (20)

Vi(x) = AU
i xβU

A + BU
i xβU

B + aix + bi, x > x∗, (21)
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and

x∗ = −
(1 − βL

A)QL
A

GL
0 (βL

A)
+ (1 − βL

B)QL
B

GL
0 (βL

B)
+ (βU

A − 1)QU
A

GU
0 (βU

A )
+ (βU

B − 1)QU
B

GU
0 (βU

B )
+ b0

λ0

(1 − βL
A)PL

A

GL
0 (βL

A)
+ (1 − βL

B)PL
B

GL
0 (βL

B)
+ (βU

A − 1)PU
A

GU
0 (βU

A )
+ (βU

B − 1)PU
B

GU
0 (βU

B )

, (22)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ak
1 = (x∗)−βk

A(Pk
Ax∗ + Qk

A),

Bk
1 = (x∗)−βk

B (Pk
Bx∗ + Qk

B),

Ak
0 = −λ0

Gk
0(βk

A)
Ak

1,

Bk
0 = −λ0

Gk
0(βk

B)
Bk

1

(23)

for k = L, U.

Proof. For the time being, we use π̃ (x) := αx − αK̃ instead of π , i.e. we rewrite (11) and
(12) as follows:{−rV1(x) +A1V1(x) + λ1(V0(x) − V1(x)) + η(π̃(x) − V1(x)) = 0, x > x∗, (24)

V1(x∗) = π̃ (x∗). (25)

Step 1. For 0 < x < x∗, a general solution to (9) and (10) is expressed as (20) with some
AL

i , BL
i ∈R and some βL

A, βL
B > 0. Note that the non-negativity of βL

A and βL
B is derived from

the condition (8). Without loss of generality, we may assume that βL
A > βL

B. Substituting (20)
for (9) and (10), we obtain

(AL
i GL

i (βL
A) + λiA

L
1−i)x

βL
A + (BL

i GL
i (βL

B) + λiB
L
1−i)x

βL
B = 0, i = 0, 1,

for any x ∈ (0, x∗), which is equivalent to AL
i GL

i (βL
A) + λiAL

1−i = 0 and BL
i GL

i (βL
B) + λiBL

1−i = 0
for i = 0, 1. Thus, βL

A satisfies AL
0 GL

0 (βL
A)AL

1 GL
1 (βL

A) = (−λ0AL
1 )(−λ1AL

0 ), i.e. GL
0 (βL

A)GL
1 (βL

A) −
λ0λ1 = 0. In addition, the same is true for βL

B. Thus, as defined above, βL
A and βL

B are the larger
and smaller positive solutions to the equation FL(β) = 0. Moreover, AL

i and BL
i satisfy the

following:

AL
0 = − λ0

GL
0 (βL

A)
AL

1 , BL
0 = − λ0

GL
0 (βL

B)
BL

1 . (26)

Step 2. Next, we discuss the case where x > x∗. First, we need to find a special solution to (9)
and (24), since (24) is inhomogeneous. Note that π̃ is of linear growth. For each i = 0, 1, we
can therefore write a special solution as aix + bi. Substituting aix + bi for (9) and (24), we have{

(−ra0 + μ0a0 + λ0(a1 − a0))x + (−rb0 + λ0(b1 − b0)) = 0,

(−ra1 + μ1a1 + λ1(a0 − a1) + η(α − a1))x + (−rb1 + λ1(b0 − b1) + η(−αK̃ − b1)) = 0
(27)

for any x > x∗; in other words, all the coefficients in (27) are 0, from which ai and bi

satisfy (18).
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Now, we derive Vi(x) for x > x∗ in the same way as the previous step. For each i = 0, 1, we
can write a general solution to (9) and (24) as

Vi(x) = AU
i xβU

A + BU
i xβU

B + aix + bi, x > x∗,

with some AU
i , BU

i ∈R and βU
A , βU

B ∈R. By (9), (24), and (27), it follows that

AU
i GU

i (βU
A ) + λiA

U
1−i = 0, BU

i GU
i (βU

B ) + λiB
U
1−i = 0

for i = 0, 1. Thus, in the same way as for Step 1, βU
A and βU

B are solutions to the quartic equation
FU(β) = 0. On the other hand, if either of βU

A or βU
B is positive, then (17) is violated since any

positive solution is greater than 1. Thus, βU
A and βU

B are the negative solutions, and we may
take them so that βU

B < βU
A < 0 without loss of generality. Moreover, we have

AU
0 = − λ0

GU
0 (βU

A )
AU

1 , BU
0 = − λ0

GU
0 (βU

B )
BU

1 . (28)

Step 3. By the C2 property of V1 and the boundary condition (25), it follows that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

AL
1 (x∗)β

L
A + BL

1 (x∗)β
L
B = AU

1 (x∗)β
U
A + BU

1 (x∗)β
U
B + a1x∗ + b1 = π̃(x∗),

βL
AAL

1 (x∗)β
L
A−1 + βL

BBL
1 (x∗)β

L
B−1 = βU

A AU
1 (x∗)β

U
A −1 + βU

B BU
1 (x∗)β

U
B −1 + a1,

βL
A(βL

A − 1)AL
1 (x∗)β

L
A−2 + βL

B(βL
B − 1)BL

1 (x∗)β
L
B−2 = βU

A (βU
A − 1)AU

1 (x∗)β
U
A −2

+βU
B (βU

B − 1)BU
1 (x∗)β

U
B −2.

Solving the above, together with (26) and (28), we obtain (23).

Step 4. In this step, we derive (22). Since V0 and V ′
0 are continuous at x∗, we have⎧⎨⎩AL

0 (x∗)β
L
A + BL

0 (x∗)β
L
B = AU

0 (x∗)β
U
A + BU

0 (x∗)β
U
B + a0x∗ + b0,

βL
AAL

0 (x∗)β
L
A−1 + βL

BBL
0 (x∗)β

L
B−1 = βU

A AU
0 (x∗)β

U
A −1 + βU

B BU
0 (x∗)β

U
B −1 + a0.

Using (23) and cancelling a0, we obtain(
(1 − βL

A)PL
A

GL
0 (βL

A)
+ (1 − βL

B)PL
B

GL
0 (βL

B)
+ (βU

A − 1)PU
A

GU
0 (βU

A )
+ (βU

B − 1)PU
B

GU
0 (βU

B )

)
x∗

+ (1 − βL
A)QL

A

GL
0 (βL

A)
+ (1 − βL

B)QL
B

GL
0 (βL

B)
+ (βU

A − 1)QU
A

GU
0 (βU

A )
+ (βU

B − 1)QU
B

GU
0 (βU

B )
+ b0

λ0
= 0,

and denote this as Px∗ +Q= 0. Recall that βL
A > ζ

L,+
0 > βL

B > 1 and βU
B < ζ

U,−
0 < βU

A < 0.
Thus, GL

0 (βL
A), GU

0 (βU
B ) > 0 and GL

0 (βL
B), GU

0 (βU
A ) < 0 hold. Moreover, we can easily see that

PL
A, PU

B < 0, PL
B, PU

A > 0, QL
A, QU

B > 0, and QL
B, QU

A < 0. Thus, all the terms in P are positive,
and those in Q are negative. We then have x∗ = −Q/P > 0, i.e. (22) holds.

Step 5. We show that Vi, i = 0, 1, are R+-valued in this last step. Since Vi(x) ∼ aix + bi as
x → ∞ and ai > 0 for i = 0, 1, there is an M > 0 such that Vi(x) > 0 for any x > M and i = 0, 1.
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Now, we write Vi(̂x) := minx∈(0,M] mini=0,1 Vi(x) and assume that Vi(̂x) < 0. We then have
V ′

i
(̂x) = 0, V ′′

i
(̂x) > 0, and Vi (̂x) ≤ V1−i (̂x). When x̂ ∈ (0, x∗), it follows that

−rVi (̂x) + μîxV ′
i
(̂x) + 1

2
σ 2

i
x̂2V ′′

i
(̂x) + λi(V1−i(̂x) − Vi(̂x)) = 0. (29)

Thus, we have Vi (̂x) ≥ 0, which contradicts the assumption that Vi (̂x) < 0. Next, consider the
case where x̂ > x∗. If i = 0, then (29) holds. This is a contradiction. When i = 1, we have

−rV1(̂x) + μ1̂xV ′
1(̂x) + 1

2
σ 2

1 x̂2V ′′
1 (̂x) + λ1(V0(̂x) − V1(̂x)) + η(π̃ (̂x) − V1(̂x)) = 0.

The second, third, and fourth terms are non-negative. In addition, the fifth term is also
non-negative since π̃ (̂x) > π̃(x∗) = V1(x∗) ≥ V1(̂x). Thus, V1(̂x) ≥ 0, which is a contradiction.
Lastly, when x̂ = x∗, for any ε > 0 there is a δ > 0 such that μiV

′
i
(x) > −ε, V ′′

i
(x) > 0, and

V1−i(x) − Vi(x) > −ε hold for any x ∈ (x∗ − δ, x∗). We then have −rVi(x) − εx∗ − λiε ≤ 0 for
any x ∈ (x∗ − δ, x∗) from (29), which means that Vi(x

∗) ≥ 0 holds. This is a contradiction.
Consequently, Vi, i = 0, 1, are R+-valued. In particular, we have V1(x∗) = π̃ (x∗) ≥ 0, from
which x∗ ≥ K̃ follows. Thus, Vi, i = 0, 1, satisfy (11) and (12) since K̃ ≥ K and π̃ (x) = π (x) for
any x ≥ K. Consequently, (V0, V1, x∗) gives the unique solution to Problem 2. This completes
the proof of Proposition 1. �

4. Verification

In this section, we show that the functions Vi, i = 0, 1, given in Proposition 1 coincide with
the value functions vi, i = 0, 1, defined by (7), and an optimal stopping time τ ∗ exists as a
threshold type with the optimal threshold x∗ given in (22). To this end, we assume that V1
satisfies the boundary conditions (13) and (14). This assumption should be proven, but we will
give only a sufficient condition because it is difficult and complicated.

Proposition 2. V1 satisfies (13) and (14) whenever all of the following conditions hold:

(i) BL
1 , AU

1 > 0,

(ii) βL
A(βL

A − 1)AL
1 (x∗)β

L
A−2 + βL

B(βL
B − 1)BL

1 (x∗)β
L
B−2 > 0, and

(iii) βL
AAL

1 (x∗)β
L
A−1 + βL

BBL
1 (x∗)β

L
B−1 < α.

Proof. We have V ′′
1 (x) = xβL

B−2{βL
A(βL

A − 1)AL
1 xβL

A−βL
B + βL

B(βL
B − 1)BL

1 } on (0, x∗). Since
1 < βL

B < βL
A, V ′′

1 (x) > 0 holds on (0, x∗) under (i) if AL
1 ≥ 0. On the other hand, (ii) implies

that βL
A(βL

A − 1)AL
1 (x∗)β

L
A−βL

B + βL
B(βL

B − 1)BL
1 > 0. Thus, V ′′

1 (x) > 0 on (0, x∗) even if AL
1 < 0,

i.e. V1 is convex on (0, x∗). Moreover, (iii) yields that V ′
1(x∗) < α, i.e. V ′

1(x) < α on (0, x∗) by
the convexity of V1. Simultaneously, V ′

1(x) > 0 holds since V ′
1(0 + ) = 0 and V ′′

1 (x) > 0. As a
result, V1(x) > 0 on (0, x∗). Hence, we have

V1(x) > {−α(x∗ − x) + V1(x∗)} ∨ 0 = {−α(x∗ − x) + π (x∗)} ∨ 0 ≥ π (x)

for any x ∈ (0, x∗), from which (13) is satisfied.
Next, from (i), (ii), βU

B < βU
A < 0, and the continuity of V ′′

1 at x∗, we have

V ′′
1 (x) = xβU

B −2{βU
A (βU

A − 1)AU
1 xβU

A −βU
B + βU

B (βU
B − 1)BU

1 }
≥ xβU

B −2{βU
A (βU

A − 1)AU
1 (x∗)β

U
A −βU

B + βU
B (βU

B − 1)BU
1 } > 0
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for any x ∈ (x∗, ∞), i.e. V1 is convex on (x∗, ∞). We then have V ′
1(x∗) ≤ V ′

1(x) ≤ a1 for any
x ∈ (x∗, ∞) since V ′

1(x) → a1 as x → ∞. Since a1 < α holds by (18), we obtain

V1(x) < α(x − x∗) + V1(x∗) = α(x − x∗) + π (x∗) = π (x)

on (x∗, ∞), and (14) follows. �

Using numerical computation, we can confirm that the above conditions (i)–(iii) are met for
many parameter sets. In fact, with r = 0.1 and π (x) = (x − 0.9)+ − 0.1 fixed, the values of μ0
and μ1 as −5, −2, −1, −0.5, 0, 0.05, 0.099, and σ0, σ1, λ0, λ1, and η as 0.1, 1, 2, 5, the above
conditions were satisfied for all 50 176 parameter sets.

Remark 3. To show that Vi, i = 0, 1, satisfy (13) and (14), a PDE approach discussed in [1]
should be helpful. Note that [1] treated the same cash-flow process as this paper, but no restric-
tions on stopping time were considered. Thus, different from (9)–(11), the two value functions
in [1] satisfy the same type of PDEs. In addition, since the random arrival of investment oppor-
tunities is not considered in [1], the value functions on the interval (x∗, ∞) coincide with the
payoff function π . In our setting, however, V1 satisfies different PDEs depending on whether x
is greater than x∗ or not. As a result, the structure of the VI in our setting becomes much more
complicated than that in [1], making the proof of (13) and (14) challenging.

Let us start with some preparations in order to show our main theorem. First of all, we show
the following lemma.

Lemma 1. For i = 0, 1, V ′
i is bounded, and there is a ci > 0 such that Vi(x) ≤ cix for any x > 0.

Proof. For any x ∈ (0, x∗) and i = 0, 1, we have

|V ′
i (x)| = ∣∣AL

i βL
AxβL

A−1 + BL
i βL

BxβL
B−1
∣∣≤ ∣∣AL

i

∣∣βL
A(x∗)β

L
A−1 + ∣∣BL

i

∣∣βL
B(x∗)β

L
B−1

since βL
A, βL

B > 1. On the other hand, for any x > x∗ and i = 0, 1,

|V ′
i (x)| = ∣∣AU

i βU
A xβU

A −1 + BU
i βU

B xβU
B −1 + ai

∣∣≤ ∣∣AU
i βU

A

∣∣(x∗)β
U
A −1 + ∣∣BU

i βU
B

∣∣(x∗)β
U
B −1 + |ai|,

since βU
A , βU

B < 0. Hence, V ′
i is bounded, which implies that, for each i = 0, 1, there is a ci > 0

such that Vi(x) ≤ cix for any x > 0 since Vi(0 + ) = 0. �

In addition, we define T1
k := inf{t > T1

k−1 | θt = 1 and t = Tj for some j ∈N} for k ∈N with
the conventions T1

0 ≡ 0 and T1∞ ≡ ∞. Note that T1
k ∈ T represents the kth time when stopping

is feasible, and T is described as

T = {τ ∈ T0 | for each ω ∈ 	, τ (ω) = T1
j (ω) for some j ∈N∞}.

Now, we define N∗ := inf{n ∈N | XT1
n
≥ x∗}, with the convention inf ∅ = ∞. Note that N∗ is

an N∞-valued stopping time, where N∞ := N∪ {∞}. Hereafter, we write Z ∼ exp (λ) when a
random variable Z follows the exponential distribution with parameter λ > 0.

The following theorem is our main result.

Theorem 1. Suppose that V1 satisfies (13) and (14). Then vi(x) = Vi(x) holds for any x > 0
and i = 0, 1, and the stopping time τ ∗ := T1

N∗ ∈ T is optimal for the optimal stopping problem
defined by (7).
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Proof. We divide this proof into five steps.

Step 1. In this step, we fix θ0 = 0 and X0 = x, and write ξ0 := inf{t > 0 | θt = 1}. For i = 0, 1,
we denote by Yi = {Yi

t }t≥0 a geometric Brownian motion starting at 1 under regime i, i.e.
the solution to the SDE dYi

t = Yi
t (μi dt + σi dWt), Yi

0 = 1. In the following, when we write
Yi

t , its independent copy may be taken if necessary. Note that xY0
t = Xt holds if t < ξ0, and

ξ0 ∼ exp (λ0). Now, we see the following:

V0(x) =E

[ ∫ ∞

0
e−(r+λ0)tλ0V1(xY0

t ) dt

]
, x > 0. (30)

To this end, we first define

�0
t := e−(r+λ0)tV0(xY0

t )1{t<ξ0}. (31)

Itô’s formula implies that

�0
t =
{

V0(x) +
∫ t

0
e−(r+λ0)s(−(r + λ0)V0(xY0

s ) +A0V0(xY0
s )) ds

+
∫ t

0
e−(r+λ0)sσ0xY0

s V ′
0(xY0

s ) dWs

}
1{t<ξ0}.

Taking expectation on both sides, we have

E[�0
t ] = V0(x)E[1{t<ξ0}] +E

[ ∫ t

0
e−(r+λ0)s(−λ0)V1(xY0

s ) ds1{t<ξ0}
]

+E

[ ∫ t

0
e−(r+λ0)sσ0xY0

s V ′
0(xY0

s ) dWs1{t<ξ0}
]

=
{

V0(x) −E

[ ∫ t

0
e−(r+λ0)sλ0V1(xY0

s ) ds

]
+E

[ ∫ t

0
e−(r+λ0)sσ0xY0

s V ′
0(xY0

s )dWs

]}
e−λ0t

=
{

V0(x) −E

[ ∫ t

0
e−(r+λ0)sλ0V1(xY0

s ) ds

]}
e−λ0t.

The first equality is due to (9); the second is due to the independence of ξ0 and W, and
ξ0 ∼ exp (λ0). The last equality is obtained from the boundedness of V ′

0 by Lemma 1 and
the integrability of

∫ t
0 (Y0

s )2 ds. From (31), we obtain

V0(x) =E[e−(r+λ0)tV0(xY0
t )] +E

[ ∫ t

0
e−(r+λ0)sλ0V1(xY0

s ) ds

]
.

Since V0(x) ≤ c0x from Lemma 1 and r > μ0 from (5), we have

E[e−(r+λ0)tV0(xY0
t )] ≤E[e−(r+λ0)tc0xY0

t ],

which tends to 0 as t → ∞. As a result, since V1 ≥ 0, the monotone convergence theorem
implies (30).

Since ξ0 ∼ exp (λ0), (30) can be rewritten as

V0(x) =E[e−rξ0 V1(xY0
ξ0

)] =E
0,x[e−rξ0 V1(Xξ0 )]. (32)
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From (7), showing v1 = V1, we obtain v0 = V0 immediately. In what follows, we focus on the
proof of v1 = V1.

Step 2. Throughout the rest of this proof, we fix θ0 = 1 and X0 = x. Here we aim to show the
following by a similar argument to Step 1:

V1(x) =E

[ ∫ ∞

0
e−(r+λ1+η)t{λ1V0(xY1

t ) + ηV(xY1
t )} dt

]
, (33)

where V is defined in (15). To this end, we define �1
t := e−(r+λ1+η)tV1(xY1

t )1{t<ξ1∧T1}, where
ξ1 := inf{t > 0 | θt = 0}. In addition, recall that T1 = inf{t > 0 | Jt = 1}, i.e. the first investment
opportunity time. Noting that P(t < ξ1 ∧ T1) = e−(λ1+η)t, we obtain

E[�1
t ] =
{

V1(x) −E

[ ∫ t

0
e−(r+λ1+η)s(λ1V0(xY1

s ) + ηV(xY1
s )) ds

]}
e−(λ1+η)t

from Itô’s formula and (16). By the same sort of argument as in Step 1, (33) follows.

Step 3. This step is devoted to preparing some notation. First of all, we define two sequences
of stopping times inductively as follows: ξ0→1

0 ≡ 0 and, for k ∈N,

ξ1→0
k := inf{t > ξ0→1

k−1 | θt− = 1, θt = 0},
ξ0→1

k := inf{t > ξ1→0
k | θt− = 0, θt = 1}.

We call the time interval [ξ0→1
k−1 , ξ0→1

k ) the kth phase. Note that each phase begins when
the regime changes into 1, moves to regime 0 midway through, and ends when it returns to
regime 1 again. Moreover, we define the following two sequences of independent and identi-
cally distributed random variables: U1

k := ξ1→0
k − ξ0→1

k−1 , U0
k := ξ0→1

k − ξ1→0
k . Note that each

Ui
k ∼ exp (λi) expresses the length of regime i in the kth phase, and U0

k0
and U1

k1
are indepen-

dent for any k0, k1 ∈N. For k ∈N, we denote by T̃k the first investment opportunity time after
the start of the kth phase, i.e.

T̃k := inf{t > ξ0→1
k−1 | t = Tj for some j ∈N}.

Note that T̃k is not necessarily in the kth phase, and θT̃k
may take the value of 0. In addition,

we define UP
k := T̃k − ξ0→1

k−1 ∼ exp (η), which represents the length of time from the start of
the kth phase until the arrival of the first investment opportunity.

Step 4. In this step, we show that

V1(x) =E
1,x[e−rT1

1 V(XT1
1
)]. (34)

Recall that T1
1 = inf{t > 0 | θt = 1 and t = Tj for some j ∈N}, i.e. the time when stopping

becomes feasible for the first time.
First of all, we can rewrite (33) as

V1(x) =E

[
e−rU1

1 V0(xY1
U1

1
)1{U1

1<UP
1 } + e−rUP

1 V(xY1
UP

1
)1{UP

1 <U1
1}
]
, (35)
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since U1
1 is independent of UP

1 and P(UP
1 > t) = e−ηt. Using (32) and (35), we have

V1(x) =E

[
e−rU1

1

(
E−rU0

1 V1

(
xY1

U1
1
Y0

U0
1

))
1{U1

1<UP
1 } + e−rUP

1 V
(

xY1
UP

1

)
1{UP

1 <U1
1 }
]

=E

[
e−r(U1

1+U0
1 )
(

e−rU1
2 V0

(
xY1

U1
1
Y0

U0
1
Y1

U1
2

)
1{U1

2<UP
2 } + e−rUP

2 V
(

xY1
U1

1
Y0

U0
1
Y1

UP
2

)
1{UP

2 <U1
2 }
)

1{U1
1<UP

1 }

+ e−rUP
1 V
(

xY1
UP

1

)
1{UP

1 <U1
1 }
]

=E

[
e−r(U1

1+U0
1+U1

2 )V0

(
xY1

U1
1
Y0

U0
1
Y1

U1
2

)
1{U1

1<UP
1 }∩{U1

2<UP
2 }

+ e−r(U1
1+U0

1+UP
2 )V
(

xY1
U1

1
Y0

U0
1
Y1

UP
2

)
1{U1

1<UP
1 }∩{UP

2 <U1
2 } + e−rUP

1 V
(

xY1
UP

1

)
1{UP

1 <U1
1 }
]

.

Note that all random variables in the above are independent. Now, we write

Z0
n := exp

{
−r

(
n∑

k=1

U1
k +

n−1∑
k=1

U0
k

)}
V0

(
x

n−1∏
k=1

(
Y1

U1
k
Y0

U0
k

)
Y1

U1
n

)
1⋂n

k=1{U1
k <UP

k }

for n ∈N, Z1 := e−rUP
1 V
(
xY1

UP
1

)
1{UP

1 <U1
1}, and

Zk := exp

{
−r

(
k−1∑
j=1

(U1
j + U0

j ) + UP
k

)}
V

(
x

k−1∏
j=1

(
Y1

U1
j
Y0

U0
j

)
Y1

UP
k

)
1⋂k−1

j=1 {U1
j <UP

j }∩{UP
k <U1

k }

for k ≥ 2. Note that, for k ∈N, we can rewrite Zk as

Zk = e−rT1
1 V(XT1

1
)1{ξ0→1

k−1 ≤T1
1 <ξ1→0

k } (36)

when θ0 = 1 and X0 = x. We then have, for any n ∈N, V1(x) =E
[
Z0

n +∑n
k=1 Zk

]
.

From Lemma 1 and the independence of all the random variables, it follows that

E[Z0
n ] ≤E

[
exp

{
−r

(
n∑

k=1

U1
k +

n−1∑
k=1

U0
k

)}
V0

(
x

n∏
k=1

Y1
U1

k

n−1∏
k=1

Y0
U0

k

)]

≤E

[
c0x

n∏
k=1

(
e−rU1

k Y1
U1

k

) n−1∏
k=1

(
e−rU0

k Y0
U0

k

)]

= c0x
n∏

k=1

E
[
e−rU1

k Y1
U1

k

] n−1∏
k=1

E
[
e−rU0

k Y0
U0

k

]≤ c0x

(
λ1

r − μ1 + λ1

)n(
λ0

r − μ0 + λ0

)n−1

,

since

E

[
e−rUi

k Yi
Ui

k

]
= λi

r − μi + λi
.

As a result, we obtain limn→∞ E[Z0
n] = 0. Since each Zk is non-negative, the monotone

convergence theorem implies that

V1(x) = lim
n→∞ E

[
Z0

n +
n∑

k=1

Zk

]
=E

[ ∞∑
k=1

Zk

]
.
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Thus, (36) provides that

V1(x) =E
1,x

[
e−rT1

1 V(XT1
1
)

∞∑
k=1

1{ξ0→1
k−1 ≤T1

1 <ξ1→0
k }

]
=E

1,x[e−rT1
1 V(XT1

1
)1{T1

1 <∞}
]
.

On the other hand, e−rtV(Xt) ≤ e−rt(c1 ∨ α)Xt holds. Since e−rtXt is a non-negative super-
martingale, it converges to 0 almost surely (a.s.) as t → ∞ by, e.g., [14, Problem 1.3.16]. As a
result, we have

E
1,x[e−rT1

1 V(XT1
1
)1{T1

1 <∞}
]=E

1,x[e−rT1
1 V(XT1

1
)
]
,

from which (34) follows.

Step 5. We define a filtration G= {Gn}n∈N0 as Gn := FT1
n

and a process S = {Sn}n∈N0 as Sn :=
e−rT1

n V
(
XT1

n

)
, where N0 := N∪ {0}. We then have, for any n ∈N0,

Sn ≥ e−rT1
n V1
(
XT1

n

)
= e−rT1

nE
1,y
[
e−rT̂1

1 V
(
XT̂1

1

)]∣∣∣
y=X

T1
n

=E
1,x
[
e−rT1

n+1 V
(
XT1

n+1

) | Gn

]
=E

1,x[Sn+1 | Gn],

where T̂1
1 is an independent copy of T1

1 . Thus, S is a non-negative G-supermartingale, and Sn

converges to 0 a.s. as n → ∞. On the other hand, [7, Lemma 1] implies

T = {T1
N | N is an N∞-valued G-stopping time}. (37)

Since S0 ≥E
1,x[Sn] ≥ 0 for any n ∈N, the optional sampling theorem, e.g. [5, Theorem 16,

Chapter V], together with (34), yield

V1(x) =E
1,x[S1] ≥E

1,x[SN] ≥E
1,x
[
e−rT1

N π
(
XT1

N

)]
for any N∞-valued G-stopping time N. Taking the supremum on the right-hand side over all
such N, we obtain v1 ≤ V1 from (7) and (37).

Next, we see the reverse inequality v1 ≥ V1. To this end, we recall that N∗ := inf
{
n ∈N |

XT1
n
≥ x∗} and define S

∗
n := exp{−rT1

N∗∧n}V
(
XT1

N∗∧n

)
for n ∈N0. As shown in Lemma 2, S

∗ =
{S∗

n}n∈N0 is a uniformly integrable martingale, which implies that

V1(x) ≤ V(x) = S
∗
0 = lim

n→∞ E
1,x[S∗

n

]
=E

1,x
[

lim
n→∞ S

∗
n

]
=E

1,x
[
e−rT1

N∗ V
(
XT1

N∗
)]=E

1,x
[
e−rT1

N∗ π
(
XT1

N∗
)]≤ v1(x),

since V(x) = π (x) for any x ≥ x∗, and T1
N∗ ∈ T . Consequently, we obtain

v1(x) = V1(x) =E
1,x
[
e−rT1

N∗ π
(
XT1

N∗
)]

, x > 0,

and thus the stopping time T1
N∗ is optimal. This completes the proof of Theorem 1. �
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Lemma 2. S
∗

is a uniformly integrable martingale.

Proof. We prove this lemma with an argument similar to [7, Step 2, Section 3.2]. First of
all, for any n ∈N, we have

E
1,x[S∗

n | Gn−1
]=E

1,x[e−rT1
n V(XT1

n
)1{N∗≥n} | Gn−1

]+E
1,x[e−rT1

N∗ V
(
XT1

N∗
)
1{N∗<n} | Gn−1

]
= e−rT1

n−1E
1,y[e−rT̂1

1 V
(
XT̂1

1

)]∣∣∣
y=X

T1
n−1

1{N∗≥n} + e−rT1
N∗ V
(
XT1

N∗
)
1{N∗<n}

= e−rT1
n−1 V1

(
XT1

n−1

)
1{N∗≥n} + e−rT1

N∗ V
(
XT1

N∗
)
1{N∗<n}

= e−rT1
n−1 V
(
XT1

n−1

)
1{N∗≥n} + e−rT1

N∗ V
(
XT1

N∗
)
1{N∗<n} = S

∗
n−1,

where T̂1
1 is an independent copy of T1

1 . As a result, S
∗

is a G-martingale.
Next, we show the uniform integrability. To see this, we have only to show that

supn∈N E
1,x
[∣∣S∗

n

∣∣p]< ∞ for some p > 1. Since V(x) ≤ (c1 ∨ α)x, it suffices to see that

sup
n∈N

E
1,x
[

exp
{−prT1

N∗∧n

}
Xp

T1
N∗∧n

]
< ∞ for some p > 1. (38)

Note that

e−prtXp
t = xp exp

{
p
∫ t

0

(
μθs − r − 1

2
σ 2

θs

)
ds + p

∫ t

0
σθs dWs

}
= xp exp

{
p
∫ t

0

(
μθs − r + p − 1

2
σ 2

θs

)
ds −
∫ t

0

p2

2
σ 2

θs
ds +
∫ t

0
pσθs dWs

}
.

Now, we take a p > 1 satisfying μi − r + 1
2σ 2

i (p − 1) < 0 for any i = 0, 1. Writing M∗
n :=

e−prT1
n Xp

T1
n
, n ∈N0, we can see that M∗ = {M∗

n}n∈N0 is a non-negative G-supermartingale. Thus,

the optional sampling theorem, e.g. [5, Theorem 16, Chapter V], implies that

E
1,x
[

exp
{− prT1

N∗∧n

}
Xp

T1
N∗∧n

]
=E

1,x[M∗
N∗∧n

]≤ M∗
0 = xp

holds for any n ∈N, from which (38) follows. �

By Theorem 1, an optimal stopping time τ ∗ exists as a threshold type with the optimal
threshold x∗ if V1 in Proposition 1 satisfies the boundary conditions (13) and (14). Moreover,
(20), (21), and (22) give expressions for the value functions vi, i = 0, 1, and the optimal thresh-
old x∗, respectively. Although these expressions contain solutions to quartic equations, we can
compute the value of x∗ numerically and illustrate the value functions vi, i = 0, 1; for example,
for the case where π (x) = (x − 0.9)+ − 0.1, r = 0.1, μ0 = −0.1, μ1 = 0.05, σ0 = 0.2, σ1 = 0.1,
λ0 = 2, λ1 = 1, and η = 1, we obtain approximately

v0(x) =
⎧⎨⎩−4.05 × 10−5x17.18 + 0.10x3.52, 0 < x < x∗,

0.16x−5.28 − 0.12x−26.12 + 0.80x − 0.83, x > x∗,

v1(x) =
⎧⎨⎩−3.53 × 10−5x17.18 + 0.11x3.52, 0 < x < x∗,

0.07x−5.28 − 0.91x−26.12 + 0.88x − 0.87, x > x∗
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by rounding off the third decimal place of all the coefficients and all exponents, and x∗ =
1.250 142 442 232 948. Figure 1 illustrates the functions v0(x), v1(x), and π (x) by dashed,
solid, and bold curves. Furthermore, it is immediately seen that the value functions vi, i = 0, 1,
are non-negative, non-decreasing convex functions and vi(x) ∼ aix as x → ∞ for i = 0, 1.
However, the magnitude relationship of v0 and v1 depends on how we take the parameters.
The function v1 is larger in the above example, but simply replacing the values of μ0 and μ1
with 0.08 and −0.5, respectively, reverses the magnitude relationship between v0 and v1 as
illustrated in Figure 2. Also, x∗ for this case takes the value 1.004 076 896 125 947. Note that
the two cases discussed here satisfy all three conditions of Proposition 2.

5. Asymptotic behaviors

This section discusses the asymptotic behaviors of the value functions vi, i = 0, 1, and
the optimal threshold x∗ when some parameter goes to ∞. To compare with results in the
existing literature, we consider the case where X is a geometric Brownian motion given as
dXt = Xt(μ dt + σ dWt), i.e. μ = μ0 = μ1 and σ = σ0 = σ1. Then, simple calculations show
that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βL
A = 1

2
− μ

σ 2
+
√(

1

2
− μ

σ 2

)2

+ 2(λ0 + λ1 + r)

σ 2
,

βL
B = 1

2
− μ

σ 2
+
√(

1

2
− μ

σ 2

)2

+ 2r

σ 2
,

βU
A = 1

2
− μ

σ 2
−
√(

1

2
− μ

σ 2

)2

+ 1

σ 2
(λ0 + λ1 + η + 2r −√(λ0 + λ1 + η)2 − 4λ0η),

βU
B = 1

2
− μ

σ 2
−
√(

1

2
− μ

σ 2

)2

+ 1

σ 2
(λ0 + λ1 + η + 2r +√(λ0 + λ1 + η)2 − 4λ0η).

(39)

5.1. Asymptotic behaviors as η → ∞
When η → ∞, investment opportunities arrive continuously, which means only the regime

constraint remains. First of all, we have

lim
η→∞ βU

A = 1

2
− μ

σ 2
−
√(

1

2
− μ

σ 2

)2

+ 2(λ0 + r)

σ 2
= ζ

L,−
0 , lim

η→∞ βU
B = −∞, (40)

but the values of βL
A and βL

B are independent of η. In addition, it follows that

a0 → αλ0

r − μ + λ0
, a1 → α, b0 → − αK̃λ0

r + λ0
, b1 → −αK̃ (41)

as η → ∞. By (19) and (40), we can see that

PL
A → (−βL

B + 1)α

βL
A − βL

B

, QL
A → βL

BαK̃

βL
A − βL

B

, PL
B → (βL

A − 1)α

βL
A − βL

B

, QL
B → −βL

AαK̃

βL
A − βL

B

as η → ∞, and PU
A, QU

A, PU
B, and QU

B converge to 0, which implies that limη→∞ v1(x) = αx −
αK̃. Now, we assume that limη→∞ v1(x) ≥ π (x) for any x ∈ (0, x∗∞), which makes Theorem 1

https://doi.org/10.1017/jpr.2023.122 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.122


1236 T. ARAI AND M. TAKENAKA

FIGURE 1. v0(x), v1(x), and π (x) for μ0 = −0.1 and μ1 = 0.05.

available. By Proposition 1, Theorem 1, and (39), we obtain

lim
η→∞ v1(x)

=

⎧⎪⎪⎨⎪⎪⎩
(−βL

B + 1)αx∗∞ + βL
BαK̃

βL
A − βL

B

(
x

x∗∞

)βL
A + (βL

A − 1)αx∗∞ − βL
AαK̃

βL
A − βL

B

(
x

x∗∞

)βL
B

, 0 < x < x∗∞,

αx − αK̃, x > x∗∞,

where βL
A and βL

B are given in (39), and x∗∞ := limη→∞ x∗ is given in (42). Since GL
0 (βL

A) = λ1

and GL
0 (βL

B) = −λ0, we have, for 0 < x < x∗∞,

lim
η→∞ v0(x) = −λ0

λ1

(−βL
B + 1)αx∗∞ + βL

BαK̃

βL
A − βL

B

(
x

x∗∞

)βL
A + (βL

A − 1)αx∗∞ − βL
AαK̃

βL
A − βL

B

(
x

x∗∞

)βL
B

,

by (26). In addition, the continuity of V0 at x∗∞, togther with (41) and PU
B, QU

B → 0, imply that

lim
η→∞ v0(x) = A

U
0

(
x

x∗∞

)ζ
L,−
0 + αλ0

r − μ + λ0
x − αK̃λ0

r + λ0
, x > x∗∞,

where ζ
L,−
0 = limη→∞ βU

A by (40), and

A
U
0 := −λ0

λ1

(−βL
B + 1)αx∗∞ + βL

BαK̃

βL
A − βL

B

+ (βL
A − 1)αx∗∞ − βL

AαK̃

βL
A − βL

B

− αλ0

r − μ + λ0
x∗∞ + αK̃λ0

r + λ0
.
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FIGURE 2. v0(x), v1(x), and π (x) for μ0 = 0.08 and μ1 = −0.5.

From this last equation we have

lim
η→∞

−λ0PU
A

GU
0 (βU

A )
= −λ0

λ1

(−βL
B + 1)α

βL
A − βL

B

+ (βL
A − 1)α

βL
A − βL

B

− αλ0

r − μ + λ0
,

lim
η→∞

−λ0QU
A

GU
0 (βU

A )
= −λ0

λ1

βL
BαK̃

βL
A − βL

B

+ −βL
AαK̃

βL
A − βL

B

+ αK̃λ0

r + λ0
.

Substituting these limits and the limits obtained so far into (22), we get the following:

x∗∞ =

(r − μ + λ0)
{(

λ0

(
βL

A − ζ
L,−
0

)
βL

B + λ1

(
βL

B − ζ
L,−
0

)
βL

A

)
(r + λ0) + ζ

L,−
0 (βL

A − βL
B)λ0λ1

}
K̃

(r + λ0)
{(

λ0

(
βL

A − ζ
L,−
0

)
(βL

B − 1) + λ1

(
βL

B − ζ
L,−
0

)
(βL

A − 1)
)

(r − μ + λ0) +
(
ζ

L,−
0 − 1

)
(βL

A − βL
B)λ0λ1

} .

(42)

We can see that

x∗∞ ≥ βL
A

βL
A − 1

K̃ ≥ K̃

holds. In addition, for the case where α = 1 and K = 0, we can confirm that the above result
coincides with [19, Proposition 1].

https://doi.org/10.1017/jpr.2023.122 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.122


1238 T. ARAI AND M. TAKENAKA

5.2. Asymptotic behaviors as λ0 → ∞
As λ0 tends to ∞, the regime 0 vanishes, and only the constraint on the random arrival of

investment opportunities remains. In other words, the model converges to the one treated in
[7]. In this case, it follows that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
λ0→∞ βL

A = ∞,

lim
λ0→∞ βU

A = 1

2
− μ

σ 2
−
√(

1

2
− μ

σ 2

)2

+ 2(η + r)

σ 2
,

lim
λ0→∞ βU

B = −∞,

lim
λ0→∞ a0, a1 = αη

r − μ + η
,

lim
λ0→∞ b0, b1 = − αK̃η

r + η
.

(43)

Note that the value of βL
B is independent of λ0. We then have limλ0→∞ PL

A, QL
A, PU

B, QU
B = 0,

and

lim
λ0→∞ PL

B = α, lim
λ0→∞ QL

B = −αK̃, lim
λ0→∞ PU

A = (r − μ)α

r − μ + η
, lim

λ0→∞ QU
A = − rαK̃

r + η
.

Moreover, GU
0 (βU

A ) ∼ η − λ0 as λ0 → ∞. In the same way as the previous subsection, we
obtain

lim
λ0→∞ x∗ = (r − μ + η){(βL

B − 1)(r + η) + (1 − βU
A )r + η}K̃

(r + η){(βL
B − 1)(r − μ + η) + (1 − βU

A )(r − μ)}

= (r − μ + η)((r + η)βL
B − rβU

A )K̃

(r + η)((r − μ + η)βL
B − (r − μ)βU

A − η)
(=: x∗∞),

lim
λ0→∞ v1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α(x∗∞ − K̃)

(
x

x∗∞

)βL
B

, 0 < x < x∗∞,(
(r − μ)αx∗∞
r − μ + η

− rαK̃

r + η

)(
x

x∗∞

)βU
A + αη

r − μ + η
x − αK̃η

r + η
, x > x∗∞,

and limλ0→∞ v0(x) = limλ0→∞ v1(x) for any x > 0, where βU
A is the limit given in (43). As

seen in [7], we can prove that

x∗∞ ≥ r(r − μ + η)

(r − μ)(r + η)
K̃ ≥ K̃

holds, and the boundary conditions (13) and (14) are satisfied. When α = 0 and I = 0, the result
in this subsection is consistent with [7].

6. Conclusions

We considered a two-state regime-switching model and discussed the optimal stopping
problem defined by (7) under two constraints on stopping: the random arrival of investment
opportunities, and a regime constraint. Under the assumption that the boundary conditions
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(13) and (14) are satisfied, we showed that an optimal stopping time exists as a threshold type.
In addition, we derived expressions for the value functions vi, i = 0, 1, and the optimal thresh-
old x∗, which include solutions to quartic equations, but can be easily computed numerically.
The asymptotic behaviors of vi, i = 0, 1, and x∗ were also discussed. On the other hand, con-
firmation that (13) and (14) are always satisfied is still open. As discussed in Remark 3, this
is a difficult question. In addition, as future work, it is possible to extend our model to one
in which stopping is possible even in regime 0 but only at the jump times of an independent
Poisson process with different intensity from regime 1.
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