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Abstract

In order to merge the advantages of the traditional compressed sensing (CS) methodology and
the data-driven deep network scheme, this paper proposes a physical model-driven deep net-
work, termed CS-Net, for solving target image reconstruction problems in through-the-wall
radar imaging. The proposed method consists of two consequent steps. First, a learned con-
volutional neural network prior is introduced to replace the regularization term in the trad-
itional iterative CS-based method to capture the redundancy of the radar echo signal.
Moreover, the physical model of the radar signal is used in the data consistency layer to
encourage consistency with the measurements. Second, the iterative CS optimization is
unrolled to yield a deep learning network, where the weight, regularization parameter, and
the other parameters are learnable. A quantity of training data enables the network to extract
high-dimensional characteristics of the radar echo signal to reconstruct the spatial target
image. Simulation results demonstrated that the proposed method can achieve accurate target
image reconstruction and was superior to the traditional CS method, in terms of mean
squared error and the target texture details.

Introduction

The through-the-wall radar imaging (TWRI) technique has been widely used in a variety of
applications such as counter-terrorism, life detection in calamity rescuing, and security
check for its non-destructive and non-contactable characteristics [1–3]. These applications
must be guaranteed with high-resolution and high-sensitivity detection properties. However,
satisfying these properties is considerably challenging due to the factors such as strong wall
clutter reflection, radar echo signal sparseness characteristics, and prolonged data collection
[4]. To suppress the wall clutter reflection, numerous research studies have been exploited
such as low-rank and sparse representation (LRSR), spatial filtering, and subspace projection
[5–7]. To reconstruct the target image, back projection (BP), and compressed sensing (CS) can
be implemented. Compared to BP, CS can recover a sparse signal from a small number of data
sets, whose sampling rate is far lower than what the Nyquist sampling theory claims, by
exploiting signal sparsity [8]. Hence, a CS-based method is possible to reconstruct target
image with fewer data collection, which alleviates the burden of prolonged data collection
and computational cost [9, 10]. In general, CS-based microwave imaging methods can be
regarded as linear imaging under the born approximation. It can provide an accurate recon-
struction scheme when the target dielectric constant is small and the target size is appropriate.

Since the TWRI is an ill-posed and inverse problem, it can be solved by using a minimum
iterative optimization method enforced by regularization term. There are various regularization
terms that can fit different scenarios. The ℓ2 (or Tikhonov) regularization yields linear recon-
struction algorithms so that it can be applied to smooth scenarios [11]. Total-variation (TV)
regularization preserves the rapid transitions and discontinuities in the signal to impose stabil-
ity to signal recovery so that it is more suitable for piecewise smooth scenarios [12]. Low-rank
and joint sparsity regularization in CS methodology implement wall clutter estimation with
discrete prolate spheroidal sequence basis before estimating the target image so that it is suit-
able for handling the nonlinear inverse problem [4]. An autofocus CS algorithm is proposed to
construct the imagery under the condition of unknown wall parameters. In the autofocus CS
algorithm, the nonlinear conjugate gradient method is used to estimate the hyperparameters
during the iterative framework [13]. Unfortunately, the traditional regularization term is not
always optimal since they are not omni-knowledge to all types of scenarios.

In order to tackle these issues, deep learning has attracted much attention in handling the
signal recovery problem in recent years [14–17, 19]. In [14], a model-based deep learning
network was proposed to recover the target image from noisy and sparse measurements
based on an alternating recursive algorithm with the physical model. In [15], a framework
based on deep learning is proposed for solving the electromagnetic (EM)inverse scattering
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problem, which constructs and expands the functions of existing
physics-based inversion algorithms. In [16], there are also related
physics-based deep learning methods for solving the inverse scat-
tering problem. In [17], a convolutional neural network
(CNN)-based human posture reconstruction method for TWRI
is proposed to reconstruct accurate human posture behind
walls. The training process follows a supervision-prediction learn-
ing pipeline inspired by the cross-modal learning technique.
In [18], an approach based on generative adversarial nets is pro-
posed to suppress multi-path ghosts, side/grating lobe artifacts,
and wall penetration effect suppression in MIMO TWRI. In
[19], the authors proposed a fully convolutional network (FCN)
to extract multi-scale features to implement target imaging in
TWRI. However, the lack of physical model in the pure FCN in
[19] causes the network to depend heavily on a large amount of
training data and is hard to converge.

Motivated by the analysis mentioned above, a TWRI scheme is
proposed based on a physical model-driven deep learning net-
work prior, termed CS-Net, which is unrolled from the iterative
CS optimization. Compared with the pure data-driven deep learn-
ing method in TWRI, CS-Net can achieve faster convergence
speed with less training data. Our main contributions are sum-
marized as follows:

(i) A physical model of the radar signal is considered in our
proposed deep network to reduce the number of network
parameters and avoid the network to be a black-box solver.

(ii) We propose a deep network unrolled from the iterative CS
optimization. Compared with the traditional CS method, it
greatly improves the performance of texture detail recon-
struction and the reconstructed image has a higher
resolution.

(iii) The performance of the target image reconstruction in
TWRI using CS-Net is evaluated and compared with those
traditional CS, BP, and LRSR schemes. Simulation results
demonstrate that the performance of the proposed method
is better than the traditional methods in terms of minimum
square error (MSE) and target texture details.

The rest of this paper is organized as follows. Section “Signal
model and compressed sensing” briefly introduces the radar sig-
nal physical model and reviews the CS model for target image
reconstruction in TWRI. Section “CS-NET architecture” intro-
duces the architecture of the model-driven deep learning network
and loss function. Section “Simulation results” presents the
experimental results and analysis. The final section concludes.

Notations: Boldface capital letters denote matrices and bold-
face lower case letters denotevectors. (·)H denotes the conjugate
transpose operator. ·‖ ‖2 denotes the Euclidean norm of a vector,
respectively. C denotes the set of all the complex number, and R

denotes the set of all the real number. ∗ denotes the convolution
operation. 0 denotes the zero vector.

Signal model and compressed sensing

System scenario and signal model

The TWRI system in this study is considered in a two-
dimensional (2-D) domain consisting of a pair of signal transmit-
ter and receiver, a front wall, and a target. As depicted in Fig. 1,
the signal transmitter and the receiver move against the wall
with each step forms an antenna pair, which is equivalent to a

multi-input-multi-output scanning array. In order to better illus-
trate the TWRI problem, the polarization of the antenna of the
signal transmitter and receiver pair is along the z-axis. Also, a
2-D EM wave with the longitude direction along the z-axis is con-
sidered. Moreover, to investigate the performance limitation of
our proposed method, the TWRI scenario is assumed to be sur-
rounded by a perfect match area (PMA), which absorbs all the
EM waves without reflection to form a free-space setting.

Hence, the radar echo signal sr(t) is given by the convolution
of the transmitted signal st(t) and the system function h(t), which
describes the pulse response of the imaging area:

sr(t) = st(t)∗h(t). (1)

Assuming the material of the wall and the target is
non-dispersive and homogeneous, the signal channel can only
influence the magnitude and the phase of the signal [20]. h(t)
can be written as:

h(t) =
∑L
i=0

∑W
j=0

ai,jsi,jd t − tij
( )

, (2)

where ai,j and si,j, respectively, denote the complex reflectivity
coefficient and the path loss factor of a single point located at
xi,j = (xi, yj). d(t − tij) denotes the impulse response of a single
point located at xi,j with a propagation delay from transmitter
to the single point, and back to the receiver. L and W denote
the number of pixels along the length and width of the imaging
area, respectively.

Here, we use matrix X to represent the complex reflectivity
coefficient distribution of the imaging area:

X =

a1,1 a1,2 · · · a1,W

a2,1 a2,2 · · · a2,W

..

. ..
.

ai,j
..
.

aL,1 aL,2 · · · aL,W

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠. (3)

Since the radar echo signal is affected by the complex reflect-
ivity coefficient distribution of the imaging area, matrix X can be
calculated by solving the inverse problem using the CS method-
ology based on the physical model of the signal in the next
subsection.

Compressed sensing and physical model

The TWRI system can be thought of as an operator A that acts on
an imaging domain vector x to yield a vector of measurement b
[7]. The goal of the CS imaging scheme is to recover vector x
from the measurement vector b, which is given by:

b = MPx = Ax, (4)

where A = MP denotes the sensing matrix. M [ RQ×(K×Na) and
P [ C

(K×Na)×J denote the Gaussian random measurement matrix
and the dictionary matrix, respectively [21]. Q is the number of
rows of matrix M, K is the number of frequencies point, Na repre-
sents the number of antenna pairs and J = L×W represents the
image pixels. x [ C

J×1 denotes the image of complex reflectivity
coefficient vector, which is obtained by resizing X into a column
vector. In the TWRI system, the dictionary matrix P is given by:
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P = PH
1 , P

H
2 , . . . , P

H
i , . . . , P

H
Na

( )H
, (5a)

Pi[ ] jk= exp (− j2pfktij), (5b)

where f = (f1, f2, . . . , fk, . . . , fK )
H denotes the frequencies

point of the echo signal from the receiver with number of
frequencies point K , where fk denotes the k-th frequency point.
tij denotes the round-trip delay between the i-th antenna position
and the j-th image pixel. Since A represents the mapping from the
imaging field to measurement field, measurement vector
b [ C

Q×1 can be obtained by down-sampling radar echo signal
matrix Y in frequency domain and vector b is given by:

b = Mvec(Y), (6a)

Y = FR, (6b)

where R [ C
Ti×Na denotes the echo signal matrix from the

receiver in time domain and F [ C
K×Ti denotes the 2-D discrete

Fourier transform base matrix that acting on R. Here, Ti

represents the index of traveling time in time domain and
vec(Y) represents resize matrix Y into a column vector. Then, a
high-resolution image vector xrec can be recovered from the
under determined equations b = Ax by solving the problem of
the following minimization:

xrec = argmin
x

‖b− Ax‖22 + lR(x), (7)

where l is a regularization parameter that adjusts the weights of
data consistency (DC) term and the regularization term. R(x) is
an regularization prior. R(x) is a small scalar when x is a noise-
free image, while its value is high for noisy and artifact image
[14]. Traditional choices include Tikhonov [11], TV [12], as
well as their combinations. Nevertheless, the method mentioned
above is not always optimum due to the following reasons:

(i) The reconstruction result can be affected by the initiative
value x0, but there is no theoretical instruction on how to
choose a suitable initiative value.

(ii) The l plays a vital role in the reconstruction. But it is challen-
ging to choose the most suitable l value.

Fig. 1. TWRI system scenario consists of a pair of transmitter and receiver, a front wall, a target, and a PMA. The transmitter and receiver pair move against the wall
to form a B-scan.
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In order to tackle these issues, we will introduce a deep learn-
ing network to yield a physical model-driven deep network
(CS-Net) in the next subsection.

CS-Net architecture

To overcome the limitations mentioned above, we propose an effi-
cient and flexible iterative CNN-based framework CS-Net based
on the physical model to reconstruct the target image. The struc-
ture of the CS-Net is shown in Fig. 2. The iterative network alter-
nates between a CNN-based estimator sub-network E(x) and a
DC sub-network based on the conjugate gradient (CG) method.
In order to enhance the network performance and effectively
speed up the convergence rate, each layer in E(x) is composed
of three types of operations: convolution (Conv), batch normaliz-
ing (BN), and rectified linear units (ReLU). The first and the mid-
dle layers “CNN + BN + ReLU” use 64 filters with size 3× 3× 64.
The last layer “CNN + BN” adopts 64 filters with size 3× 3× 64
to reconstruct the output image.

In Section “Signal model and compressed sensing,” we have
introduced that solving the problem of TWRI is to recover high-

resolution image vector xrec by (7). Here, we will solve the prob-
lem efficiently by introducing a CNN-based regularization prior,
and the problem (7) can be reformulated as:

xrec = argmin
x

‖b− Ax‖22 + l Nw( x)‖ ‖2, (8a)

Nw( x) = x − E( x), (8b)

where Nw is a learned CNN estimator of noise and alias patterns,
which depends on the learned parameters w. l is a trainable regu-
larization parameter. E(x) is a CNN-based estimator sub-network
of CS-Net. It can be regarded as a denoising part of x to learn the
redundancies radar echo signals and remove ghosts and noises.

Then, by introducing an auxiliary intermediate variable en, we
can obtain an alternating iterative formulation to unroll the recur-
sive network:

xn+1 = argmin
x

‖b− Ax‖22 + l x − en‖ ‖2, (9a)

en = E(xn). (9b)

By calculating the gradient of problem (9a) and setting it to be
zero, then we can obtain the following equation:

AH(Ax − b)+ l(x − en) = 0. (10)

Then problem (9a) can be solved by:

xn+1 = AHA+ lI
( )−1

AHb+ len
( )

. (11)

Problem (11) can be solved by using CG method. Furthermore, by
regarding each iteration in CG scheme as a layer, it forms the DC
sub-network in the whole network.

Taking each iteration as one layer, the above update rule can be
regarded as an unrolled deep CNN called CS-Net. After initializ-
ing with x0 = AHb, it alternatively updates en and xn+1 by
CNN-based estimator step (9b) and CG step (11). The sub-
network E(x) learns the redundancies of the radar echo signal
and remove ghosts and noises. Then, the DC sub-network,
which encourages consistency with the measurements, fetches

Fig. 2. Flowchart of the CS-Net architecture. The network consists of a cascade of iteration block, with each block consisting of a CNN-based estimator E(x) and a
DC sub-network DC. Each layer in E(x) is composed of three types of operations: convolution (Conv), batch normalizing (BN), and rectified linear units (ReLU).

Table 1. Basic simulation parameters

Description Notation Value

Size of the domain ld × wd 2.5m× 2m

Size of imaging area li × wi 1m× 1m

Thickness of the wall dw 0.1˜m ≤ dw ≤ 0.6˜m
The starting position of Tx Tx (0.5 m, 1.5 m)

The starting position of Rx Rx (0.64 m, 1.5 m)

Distance between Tx and Rx da 0.14m

Number of antenna pairs Na 43

Frequencies point K 64

Central frequency of the
transmit signal

ft 0.5 GHz

Training data set Np 200

Training time ttrain 51 h
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the input of E(x) and the output of E(x) to implement CG algo-
rithm. We can obtain the radar targets reconstruction image after
several iterations.

In the general compressive sensing problem model, matrix A is
usually a measurement matrix without physical meaning. In our
physical model driven CS-Net, matrix A represents the mapping
from the imaging field to the measurement field in the radar
detection scene. Since the choice of l is affected by the spectrum
of A, in this study, l is seen as one of the training parameters in
the CS-Net. CS-Net learns the spectrum of A and update the l
and en to a suitable value during the training process. Hence,
we set the initial value of en = 0 and l = 0.5. The input of
CS-Net is initialized to be x0 = AHb, and vector b represents
the radar echo signal data after down-sampling in frequency
domain. Once the network depth De and iteration number Ni is
fixed, the update step in (9) and (11) and be viewed as an unrolled
deep network in Fig. 2. Since each iteration uses the same solving
structure, we use weight sharing mechanism at different iterations
to reduce the number of network parameters and speed up the
training time. Moreover, we use the same regularization param-
eter l in each iteration to ensure the consistency of each iteration.

In order to balance the network performance and computational
cost, similar to the parameter settings in [14], the depth of the net-
work is set as 5 and the number of iterations is set as 6. After that,
the network is trained by minimizing the loss function, which is
specified as the MSE between x and the training label l:

loss =
∑Np

i=1

x(i)− l(i)‖ ‖22, (12)

where Np is the number of training data sets. x(i) and l(i) denote the
i-th output and the i-th label, respectively.

Simulation results

This section mainly shows the experimental details of CS-Net, the
training process evaluation, and the comparison with the recon-
struction results of other methods.

In the simulation experiments, we set the imaging area as a
rectangle and the target as two cylinders. In order to obtain

diversified sample data, the position is randomly distributed.
Some specific simulation parameters about radar detection are
given in Table 1. The radar echo signal data R is obtained by
simulating the EM wave propagation in the set scene, and the
ground truth of the target is obtained by simulating the distribu-
tion of the detected target as the label data of the CS-Net. After
the transformation of radar echo data R in (6), the down-sampled
frequency domain data b is obtained as the data set needed by the
network. The network training data set is 200, and the test data
set is 100. After the network training is completed, the down-
sampled frequency domain data b in the test data is input into
the network model to obtain the target reconstruction image in
the corresponding scene.

In order to explore the performance limitation of the CS-Net,
we implement wall signal elimination (WSE) to remove the echo
signal from the wall by using time-gate method. Figure 3 depicts
the reconstructed target images by the CS-Net with WSE and
two traditional representative schemes. As shown in Fig. 3,
CS-Net can recover most of the target texture. Reconstructed
image with the BP method in T(a) can present the target position.
However, the larger target in the reconstructed image with the BP
method in T(b) is immersed by the echo signal from the smaller
one. The reconstructed image with the CS method can reveal the
target position. Nevertheless, similar to the BP method, the larger
target in T(b) is immersed in the echo signal from the smaller one.

In order to reflect the anti-interference performance to the
front wall of the CS-Net, we test the network with the echo signal
without implementing WSE and compare the reconstructed result
with those obtained by three traditional representative schemes.
Based on the same setting in Fig. 3, the experimental data in
Fig. 4 is the echo signal that do not implement WSE by using
the time-gate method, and is marked as without WSE.
Specifically, under the same scenario and parameter settings,
T(a) in Fig. 3 includes the ground truth, echo signal, and the
reconstructed target images of different methods after implement-
ing WSE, while T(b) in Fig. 4 do not implement WSE, and
obtained the corresponding results. The reconstructed images
with the CS-Net still can present the target position and some
of the related texture details with the wall eliminated.
Meanwhile, the results with the LRSR method show the target

Fig. 3. Target texture detail recovery performance of the reconstructed target images achieved by CS-Net with WSE and CS, BP schemes. The first column shows the
ground truth images for two representative scenarios and the other columns are the echo signal and the reconstruction results, respectively.
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position and number without the target texture details, since it
reconstructs the target image based on the echo signal from the
front wall and targets. Comparatively, the results with the BP
and CS methods even cannot reflect the target position due to
the interference from the front wall.

To better reflect the performance of the reconstructed image
with CS-Net in the TWRI system, without generality, we use
MSE and program running time (PRT) as an evaluation index.
MSE is used to evaluate the error between the ground truth and
the reconstruction result, and PRT is used to reflect imaging
time. Since the output vector from each method is in different
value scales, we normalize the i-th value xi in the output vector

x = (x1, x2, . . . , xi, . . . xN )
T to xi [ [0, 1] as shown below:

xi = xi − xmin

xmax − xmin
, (13)

where xmax and xmin denote the maximum and minimum value of
the vector x, respectively.

Table 2 compares the performance achieved by CS-Net with
those obtained by the traditional method based on CS, BP, and
LRSR schemes. Table 2 shows that the MSE of the CS-Net is smal-
ler than those with CS, BP, and LRSR schemes, both in with WSE
and without WSE configurations. It validates that the quality of

Fig. 4. Target texture detail recovery performance of the reconstructed target images achieved by CS-Net without WSE and CS, BP, LRSR schemes. The first column
shows the ground truth images for two representative scenarios and the other columns are the echo signal and the reconstruction results, respectively.
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the reconstructed image with the proposed CS-Net is better than
those with the traditional scheme. Moreover, the MSE of those
with WSE configuration in T(a) and T(b) is smaller than those
without WSE in T(c) and T(d). Thus, the echo signal from the
wall can largely affect the quality of the reconstructed image
and it is necessary to eliminate the echo signal from the wall
before implementing the reconstruction method.

Table 3 compares the imaging time achieved by CS-Net with
those obtained by the traditional method based on CS, BP, and
LRSR schemes. Table 3 shows that the PRT of the CS-Net is
shorter than those with CS, BP, and LRSR schemes, both in
with WSE and without WSE configurations. It validates that
CS-Net can reconstruct the target image faster than the traditional
algorithm, and has great advantages in imaging time.

Figures 5 and 6 show the evaluation in the network training
process. Figure 5 displays the influence of the number of alternat-
ing iterations of E(x) and DC on MSE. It can be observed that as
the increase of network iterations, MSE gradually decreases to
around six iterations to reach a stable value. Figure 6 indicates

the impact of the number of network training sets on MSE.
It can be observed that MSE tends to be stable when the training
data set is around 200. This shows that CS-Net can use less train-
ing data to achieve faster network convergence speed.

Conclusion

In this paper, a physical model-driven deep network, termed
CS-Net, was proposed to estimate the target image of a TWRI sys-
tem. The proposed method introduced a regularization prior
based on CNN and alternately iterates with the DC layer to
form a physical model-driven network solution model, without
manually adjusting algorithm parameters. Simulation results
have shown the superiority of our proposed CS-Net estimation
scheme in comparison with the existing traditional schemes.
Compared with the traditional iterative solution method, the
deep learning method proposed in this study can significantly
improve the speed of reconstructing the target image and accur-
ately reconstruct the target image and show excellent computa-
tional performance in TWRI.
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