The flow and noise created by sawtooth trailing-edge serrations has been studied experimentally at a low Reynolds number. Experiments have been performed on a flat-plate model with an elliptical leading edge and an asymmetrically bevelled trailing edge at Reynolds numbers of Rec = 1 × 105–1.3 × 105, based on chord. Wide serrations with a wavelength (λs) to amplitude (2h) ratio of λs/h = 0.6 were found to reduce the overall sound pressure level by up to 11dB. In contrast, narrower serrations with λs/h = 0.2 produce tonal noise and increase the overall noise level by up to 4dB. Intense vortices across the span of the trailing edge with narrow serrations are shown to be the source of tonal noise. Wide serrations reduce turbulent velocity fluctuations at low frequencies which explains the lower radiated noise. The narrow serrations that produce low Reynolds number tonal noise were shown previously to be effective at higher Reynolds numbers (Rec > 2 × 105), demonstrating that care is needed to fully understand the flow field over serrations for all intended operating conditions.