Corresponding to known results on Orlicz–Sobolev inequalities which are stronger than the Poincaré inequality, this paper studies the weaker Orlicz–Poincaré inequality. More precisely, for any Young function $\varPhi$ whose growth is slower than quadric, the Orlicz–Poincaré inequality
$$ \|f\|_\varPhi^2\le C\E(f,f),\qquad\mu(f):=\int f\,\mathrm{d}\mu=0 $$
is studied by using the well-developed weak Poincaré inequalities, where $\E$ is a conservative Dirichlet form on $L^2(\mu)$ for some probability measure $\mu$. In particular, criteria and concrete sharp examples of this inequality are presented for $\varPhi(r)=r^p$ $(p\in[1,2))$ and $\varPhi(r)= r^2\log^{-\delta}(\mathrm{e} +r^2)$ $(\delta>0)$. Concentration of measures and analogous results for non-conservative Dirichlet forms are also obtained. As an application, the convergence rate of porous media equations is described.