We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the variations of mixed Hodge structures (VMHS) associated with a pencil ${\mathcal{X}}$ of equisingular hypersurfaces of degree $d$ in $\mathbb{P}^{4}$ with only ordinary double points as singularities, as well as the variations of Hodge structures (VHS) associated with the desingularization of this family $\widetilde{{\mathcal{X}}}$. The notion of a set of singular points being in homologically good position is introduced, and, by requiring that the subset of nodes in (algebraic) general position is also in homologically good position, we can extend Griffiths’ description of the $F^{2}$-term of the Hodge filtration of the desingularization to this case, where we can also determine the possible limiting mixed Hodge structures (LMHS). The particular pencil ${\mathcal{X}}$ of quintic hypersurfaces with 100 singular double points with 86 of them in (algebraic) general position that served as the starting point for this paper is treated with particular attention.
We show that the set of real polynomials in two variables that are sums of three squares of rational functions is dense in the set of those that are positive semidefinite. We also prove that the set of real surfaces in $\mathbb{P}^{3}$ whose function field has level 2 is dense in the set of those that have no real points.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.