Techniques are developed for surrounding each of the points in a multidimensional scaling solution with a region which will contain the population point with some level of confidence. Bayesian credibility regions are also discussed. A general theorem is proven which describes the asymptotic distribution of maximum likelihood estimates subject to identifiability constraints. This theorem is applied to a number of models to display asymptotic variance-covariance matrices for coordinate estimates under different rotational constraints. A technique is described for displaying Bayesian conditional credibility regions for any sample size.