The overall degradation of chlorimuron was very similar at −0.1 and −1.5 MPa and slightly less in air-dry soil. Degradation rates increased with increasing temperature. The primary 14C-labeled compounds observed in moist-soil extracts were desmethyl chlorimuron and saccharin, while the primary 14C-labeled compound observed in air-dry soil extracts was saccharin. Saccharin is formed quantitatively from ethyl 2-(aminosulfonyl)benzoate (phenylsulfonamide) during extraction and therefore represents phenylsulfonamide formed in the soil as a result of chemical hydrolysis of the sulfonylurea bridge. These degradation products suggest that chemical hydrolysis of the sulfonylurea bridge is the primary mode of degradation in air-dry soil, while microbial degradation and chemical hydrolysis both occur in moist soil. These laboratory results demonstrate that chlorimuron will degrade in air-dry soil at a temperature-dependent rate by chemical hydrolysis.