The neurotrophins are trophic and mitogenic factors critical for the development of specific classes of neurons in the central and peripheral nervous systems. In the retina, BDNF and NT-3 have been shown to promote the survival of differentiated ganglion cells (Rodriguez-Tebar et al., 1989; De La Rosa et al., 1994). NT-3 has also been demonstrated to support the survival of amacrine cells and facilitates the differentiation of retinal neurons in culture (De La Rosa et al., 1994). Here, we examine immunohistochemically the expression of BDNF and NT-3 proteins, their cognate receptors, trk B and trk C, respectively, and the p75 neurotrophin receptor in the developing chick retina. At E8, the earliest stage of retinal development examined, all of these proteins exhibit diffuse expression throughout the width of the retina, with the strongest reactivity in the innermost layers. A gradual restriction in expression to ganglion cells and amacrine cells, the staining of which is most prominent at E15, is followed by a downregulation of expression with the strongest immunoreactivity persisting in the ganglion cell layer. Overlapping patterns of expression throughout embryonic development indicate a colocalization of the neurotrophins and their receptors, although NT-3 and p75 alone are present in the inner plexiform layer and only p75 is observed in the outer plexiform layer. Although some of the immunoreactivity for BDNF, NT-3, and their receptors in retina may reflect trophic mechanisms operating in association with the optic tectum and isthmo-optic nucleus, the colocalization of ligands and receptors in retina strengthens the assertion that these neurotrophins function locally during development.