Abramov glacier, located in the Pamir Alay, Kyrgyzstan, is a reference glacier within the Global Terrestrial Network for Glaciers. Long-term glaciological measurements exist from 1968 to 1998 and a mass-balance monitoring programme was re-established in 2011. In this study we re-analyse existing mass-balance data and use a spatially distributed mass-balance model to provide continuous seasonal time series of glacier mass balance covering the period 1968–2014. The model is calibrated to seasonal mass-balance surveys and then applied to the period with no measurements. Validation and recalibration is carried out using snowline observations derived from satellite imagery and, after 2011, also from automatic terrestrial camera images. We combine direct measurements, remote observations and modelling. The results are compared to geodetic glacier volume change over the past decade and to a ground-penetrating radar survey in the accumulation zone resolving several layers of accumulation. Previously published geodetic mass budget estimates for Abramov glacier suggest a close-to-zero mass balance for the past decade, which contradicts our results. We find a low plausibility for equilibrium conditions over the past 15 years. Instead, we suggest that the glacier’s sensitivity to increased summer air temperature is decisive for the substantial mass loss during the past decade.