We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents backstepping control and backstepping constraint control approaches for a quadrotor unmanned aerial vehicle (UAV) control system. The proposed methods are applied to a Parrot Mambo drone model to control rotational motion along the $x$, $y$, and $z$ axes during hovering and trajectory tracking. In the backstepping control approach, each state of the system controls the previous state and is called “virtual control.” The last state is controlled by the real control input. The idea is to compute, in several steps, a control law that ensures the asymptotic stability of the system. The backstepping constraint control method, based on barrier Lyapunov functions (BLFs), is designed not only to track the desired trajectory but also to guarantee no violation of the position and angle constraints. Symmetric BLFs are introduced in the design of the controller. A nonlinear mathematical model is considered in this study. Based on Lyapunov stability theory, it can be concluded that the proposed controllers can guarantee the stability of the UAV system and the state converges asymptotically to the desired trajectory. To make the control robust, an adaptation law is applied to the backstepping control that estimates the unknown parameters and ensures their convergence to their respective values. Validation of the proposed controllers was performed by simulation on a flying UAV system.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.