Pulmonary valve replacement and right ventricular outflow tract reconstruction with valved conduits have been the shortcomings of paediatric cardiac surgeons in the treatment of CHD. In recent decades, encouraging achievements have been made in right ventricular outflow tract technology. Since Klinner reported the first right ventricle-to-pulmonary artery connection using unvalved conduits made of autologous pericardium in 1964, various right ventricle-to-pulmonary artery conduits have gradually been used in the treatment of various complex CHD. Compared with other materials, valved homograft conduit (VHC) is more consistent with physiological characteristics, better haemodynamics, easy suture and good haemostasis, anti-calcification, anti-infection, and without the need for lifelong anticoagulation, which makes VHC the best material for reconstruction of right ventricular outflow tract. However, due to the shortage of donor sources, other alternative conduits such as polytetrafuoroethylene valved conduits have been developed, and the results are not inferior to VHC in clinical application. The emerging tissue engineering technology is expected to utilise recipient-derived endothelial cells for implantation onto the decellularized VHC or degradable synthetic materials in order to construct a recipient-specific tissue-engineered valved conduit. This advancement holds great potential as an ideal biological transplant material and valve replacement for CHD. It will completely solve the problems of immune rejection and the growth of the conduit that cannot adapt to the physical growth of children. This review provides a comprehensive review of the clinical indications for right ventricle-to-pulmonary artery conduits application, optimal timing for surgery, current practices in utilising various types of external conduits, and considerations for re-replacement.