We propose a method for estimating first passage time densities of one-dimensional diffusions via Monte Carlo simulation. Our approach involves a representation of the first passage time density as the expectation of a functional of the three-dimensional Brownian bridge. As the latter process can be simulated exactly, our method leads to almost unbiased estimators. Furthermore, since the density is estimated directly, a convergence of order 1 / √N, where N is the sample size, is achieved, which is in sharp contrast to the slower nonparametric rates achieved by kernel smoothing of cumulative distribution functions.