Semiconductor nanowires, by definition, typically have nanoscale cross-sectional dimensions, with lengths spanning from hundreds of nanometers to millimeters. These subwavelength structures represent a new class of semiconductor materials for investigating light generation, propagation, detection, amplification, and modulation. After more than a decade of research, nanowires can now be synthesized and assembled with specific compositions, heterojunctions, and architectures. This has led to a host of nanowire photonic and electronic devices, including photodetectors, chemical and gas sensors, waveguides, LEDs, microcavity lasers, and nonlinear optical converters. Nanowires also represent an important class of nanostructure building blocks for photovoltaics as well as direct solar-to-fuel conversion because of their high surface area, tunable bandgap, and efficient charge transport and collection. This article gives a brief history of nanowire research for the past two decades and highlights several recent examples in our lab using semiconductor nanowires and their heterostructures for the purpose of solar energy harvesting and waste heat recovery.