Recent developments in text style transfer have led this field to be more highlighted than ever. There are many challenges associated with transferring the style of input text such as fluency and content preservation that need to be addressed. In this research, we present PGST, a novel Persian text style transfer approach in the gender domain, composed of different constituent elements. Established on the significance of parts of speech tags, our method is the first that successfully transfers the gendered linguistic style of Persian text. We have proceeded with a pre-trained word embedding for token replacement purposes, a character-based token classifier for gender exchange purposes, and a beam search algorithm for extracting the most fluent combination. Since different approaches are introduced in our research, we determine a trade-off value for evaluating different models’ success in faking our gender identification model with transferred text. Our research focuses primarily on Persian, but since there is no Persian baseline available, we applied our method to a highly studied gender-tagged English corpus and compared it to state-of-the-art English variants to demonstrate its applicability. Our final approach successfully defeated English and Persian gender identification models by 45.6% and 39.2%, respectively.