We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Although the study of the neuroanatomical correlates of generalized anxiety disorder (GAD) is gaining increasing interest, up to now the cortical anatomy of GAD patients has been poorly investigated and still no data on cortical gyrification are available. The aim of the present study is to quantitatively examine the cortical morphology in patients with GAD compared with healthy controls (HC) using magnetic resonance imaging (MRI). To the best of our knowledge, this is the first study analyzing the gyrification patterns in GAD.
Methods
A total of 31 GAD patients and 31 HC underwent 3 T structural MRI. For each subject, cortical surface area (CSA), cortical thickness (CT), gray matter volume (GMV), and local gyrification index (LGI) were estimated in 19 regions of interest using the Freesurfer software. These parameters were then compared between the two groups using General Linear Model designs.
Results
Compared with HC, GAD patients showed: (1) reduced CT in right caudal middle frontal gyrus (p < 0.05, Bonferroni corrected), (2) hyper-gyrification in right fusiform, inferior temporal, superior parietal and supramarginal gyri and in left supramarginal and superior frontal gyri (p < 0.05, Bonferroni corrected). No significant alterations in CSA and GMV were observed.
Conclusions
Our findings support the hypothesis of a neuroanatomical basis for GAD, highlighting a possible key role of the right hemisphere. The alterations of CT and gyrification in GAD suggest a neurodevelopmental origin of the disorder. Further studies on GAD are needed to understand the evolution of the cerebral morphology with age and during the clinical course of the illness.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.