The probability that two randomly selected phylogenetic trees of the same size are isomorphic is found to be asymptotic to a decreasing exponential modulated by a polynomial factor. The number of symmetrical nodes in a random phylogenetic tree of large size obeys a limiting Gaussian distribution, in the sense of both central and local limits. The probability that two random phylogenetic trees have the same number of symmetries asymptotically obeys an inverse square-root law. Precise estimates for these problems are obtained by methods of analytic combinatorics, involving bivariate generating functions, singularity analysis, and quasi-powers approximations.