The effects of the different shot peening parameters on the 6061 alloy specimens' surface have been investigated. It is found that the compressive residual stresses and the surface roughness of the surface layer for all shot-peened specimens are improved greatly. The maximum stress value and the maximum roughness are obtained by the shot flow rate of 5.5 lbs/min and air pressure of 20 psi. The microstructure observation results indicate that a nanostructured layer with an average grain size below 100 nm has been created on the top surface layer of each specimen. In the top surface nanostructured layer, the microhardness is enhanced. It is resulted from the grain refinement and the strain hardening. The results of electrochemical measurements, surface corrosion morphology observation, and EDS analysis indicate that the corrosion susceptibility of the 6061 alloy could be significantly enhanced by means of the shot-peening-induced surface nanocrystallization.