We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We still do not have an end-to-end theory of binary star formation that both satisfies observational constraints and also includes all necessary physical ingredients. Large-scale star formation simulations do an excellent job of replicating binary statistics under severely simplified physical conditions (neglect of thermal feedback and magnetic fields). Simulations that include these processes, however, tend to suppress binary formation, and their extra computational expense makes it hard to generate statistical samples of binaries for observational comparison. In addition to reviewing the literature on binary formation simulations, this chapter also examines the insights into the process that are provided by observations of the youngest protomultiple systems.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.