New time series photometry of WISE J152614.95-111326.4, an eclipsing binary candidate, has been obtained. Full cycles of variation were covered in five filters, ranging from B to z. Archival time series photometry is also available from several sources. The phased light curve shape changes from a double wave form in the red, to a single wave at shorter wavelengths. Analysis of the spectral energy distribution and SALT spectra shows the presence of a cool ($\sim$7 250–7 900 K) white dwarf and an M6 star. The light curves can be explained by a hot spot on the opposing hemisphere of the white dwarf. The star may be in a pre-cataclysmic variable phase with a very low rate of mass flow from the red dwarf to the white dwarf, such that no flickering is evident. Evidence in favour of this hypothesis is that the period of the system (2.25 h) is in the cataclysmic variable period gap. It is speculated that a weak magnetic field associated with the white dwarf funnels accreted material onto a magnetic pole. Amplitudes of the W1 and W2 WISE light curves are anomalously large. The possibility is discussed that variability in this spectral region is primarily driven by electron cyclotron radiation.