The Southern Alps – Ligurian basin junction is one of the most active seismic areas in Western Europe countries. The topographic and the structural setting of this region is complex because of (i) its position between the high topography of the Southern Alps and the deep, narrow Ligurian oceanic basin, and (ii) the large number of structures inherited from the Alpine orogeny. Historical seismicity reveals about twenty moderate-size earthquakes (up to M=6.0), mostly distributed along the Ligurian coast and the Vésubie valley. A recent geodetic experiment shows a significant strain rate during the last 50 years in the area between the Argentera massif and the Mediterranean coastline. Results of this experiment suggest a N-S shortening of about 2-4 mm/yr over the network, this shortening direction is consistent with the seismological (P-axes of earthquakes) and the microtectonic data. The Pennic front (E-NE of the Argentera massif) and the northern Ligurian margin are the most seismically active areas. In the Nice arc and in the Argentera massif, some seismic lineaments correspond to faults identified in the field (such as theTaggia-Saorge fault or the Monaco-Sospel fault). In the western part of the Alpes Maritimes, no seismic activity is recorded in the Castellane arc. In the field, geological evidence, such as offsets of recent alluvial sediments, recent fault breccia, speleothem deformations, radon anomalies and others indicates recent deformation along these faults. Nevertheless, to this date active fault scarps have not been identified: this probably results from a relatively high erosion rate versus deformation rate and from the lack of Quaternary markers. We also suspect the presence of two hidden active faults, one in the lower Var valley (Nice city area) and the other one at the base of the Argentera crustal thrust-sheet. Offshore, along the northern Ligurian margin, the seismic reflection data shows traces of Quaternary extensional deformation, but the accuracy of the data does not yet allow the construction of a structural map nor does it allow the determination of the continuity between the offshore and onshore structures. From these data set we propose a preliminary map of 11 active faults and we discuss the questions which remain unsolved in the perspective of seismic hazard evaluations.