The phytotoxicity of chlorsulfuron {2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl] benzenesulfonamide} was compared in six soils, and the relationship of activity to soil physical and chemical properties was evaluated. The influence of soil pH (4.2 to 7.8) on phytotoxicity and adsorption of chlorsulfuron incorporated into high-organic-matter soil was also studied. For the phytotoxicity studies, corn (Zea mays L. ‘Pioneer 3320’) was used as the bioassay plant. Organic matter was the soil variable most highly correlated with chlorsulfuron phytotoxicity. There was an inverse relationship between phytotoxicity and organic matter. No significant relationship between clay content and chlorsulfuron toxicity was observed. The adsorption of chlorsulfuron decreased with increasing soil pH while desorption was greater at alkaline pH. Phytotoxicity of chlorsulfuron increased with increasing soil pH and reached a maximum at pH 6.9.