We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In recent years, the importance of telemedicine has increased significantly. Especially in the field of echocardiography, virtual reality glasses offer the possibility of real-time data transmission without restrictions in the examination process. In particular, the care of critically ill newborns with suspected CHD might be improved by allowing a specialized paediatric cardiologist to remotely guide an echocardiographic examination. The current study aims to prove whether novices, under Google Glass guidance by a paediatric cardiologist, can perform an appropriate neonatal echocardiography.
Methods:
The current study is a prospective monocentric single-blinded pilot study. Participants were supposed to perform two test runs: The first test run was “unguided” and the second test run was instructed via Google Glass. A validated training simulator for neonatal echocardiography “EchocomNeo, Echocom GmbH” was used. The study took place at the Leipzig Heart Center, Department of Pediatric Cardiology from April 2022 to November 2022.
Results:
A total of 21 medical students were enrolled. In total 252 views (126 views in each test run) were recorded. The overall performance was significantly higher in the Google Glass guided test run compared to “unguided” (structure score: 77.6% vs. 63.2%. p < 0.001 and quality score: 58.7% vs. 47.2%, p < 0.001). Also, the time was significantly lower in the Google Glass guided test run than in the unguided test run, p = 0.014.
Conclusion:
Google Glass guidance by a paediatric cardiologist could optimize the performance of novices in echocardiography using a standardized neonatal echo-simulator with structural normal cardiac anatomy.
Mass-casualty incidents (MCIs) are events in which many people are injured during the same period of time. This has major implications in regards to practical concerns and planning for both personnel and medical equipment. Smart glasses are modern tools that could help Emergency Medical Services (EMS) in the estimation of the number of potential patients in an MCI. However, currently there is no study regarding the advantage of employing the use of smart glasses in MCIs in Thailand.
Study Objective:
This study aims to compare the overall accuracy and amount of time used with smart glasses and comparing it to manual counting to assess the number of casualties from the scene.
Methods:
This study was a randomized controlled trial, field exercise experimental study in the EMS unit of Srinagarind Hospital, Thailand. The participants were divided into two groups (those with smart glasses and those doing manual counting). On the days of the simulation (February 25 and 26, 2022), the participants in the smart glasses group received a 30-minute training session on the use of the smart glasses. After that, both groups of participants counted the number of casualties on the simulation field independently.
Results:
Sixty-eight participants were examined, and in the smart glasses group, a total of 58.8% (N = 20) of the participants were male. The mean age in this group was 39.4 years old. The most experienced in the EMS smart glasses group had worked in this position for four-to-six years (44.1%). The participants in the smart glasses group had the highest scores in accurately assessing the number of casualties being between 21-30 (98.0%) compared with the manual counting group (89.2%). Additionally, the time used for assessing the number of casualties in the smart glasses group was shorter than the manual counting group in tallying the number of casualties between 11-20 (6.3 versus 11.2 seconds; P = .04) and between 21-30 (22.1 versus 44.5 seconds; P = .02).
Conclusion:
The use of smart glasses to assess the number of casualties in MCIs when the number of patients is between 11 and 30 is useful in terms of greater accuracy and less time being spent than with manual counting.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.