It is known that the simple slice sampler has robust convergence properties; however, the class of problems where it can be implemented is limited. In contrast, we consider hybrid slice samplers which are easily implementable and where another Markov chain approximately samples the uniform distribution on each slice. Under appropriate assumptions on the Markov chain on the slice, we give a lower bound and an upper bound of the spectral gap of the hybrid slice sampler in terms of the spectral gap of the simple slice sampler. An immediate consequence of this is that the spectral gap and geometric ergodicity of the hybrid slice sampler can be concluded from the spectral gap and geometric ergodicity of the simple version, which is very well understood. These results indicate that robustness properties of the simple slice sampler are inherited by (appropriately designed) easily implementable hybrid versions. We apply the developed theory and analyze a number of specific algorithms, such as the stepping-out shrinkage slice sampling, hit-and-run slice sampling on a class of multivariate targets, and an easily implementable combination of both procedures on multidimensional bimodal densities.