In this paper we study the factorizable braid monoid (also known as the merge-and-part braid monoid) introduced by Easdown, East and FitzGerald in 2004. We find several presentations of this monoid, and uncover an interesting connection with the singular braid monoid. This leads to the definition of the flexible singular braid monoid, which consists of ‘flexible-vertex-isotopy’ classes of singular braids. We conclude by defining and studying the pure factorizable braid monoid, the maximal subgroups of which are (isomorphic to) quotients of the pure braid group.